Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Genetic mutations in sporadic pituitary adenomas—what to screen for?

Key Points

  • More than 95% of pituitary adenomas are sporadic

  • AIP mutations are the most frequent germline mutations found in patients with sporadic isolated pituitary adenomas, and are particularly frequent in children and young adults with macroadenomas or gigantism

  • AIP mutations are almost always inherited from one parent; the penetrance of these mutations requires further evaluation, but seems to be very low

  • The presence of germline MEN1 mutations should be considered a possibility in very young patients with isolated sporadic pituitary adenomas when AIP mutation screening is negative

  • Both AIP and MEN1 are considered to be tumour suppressor genes and might act via regulators of the cell cycle and/or the cAMP pathway

Abstract

Pituitary adenomas are benign intracranial neoplasms that can result in morbidity owing to local invasion and/or excessive or deficient hormone production. The prevalence of symptomatic pituitary adenomas is approximately 1:1,000 in the general population. The vast majority of these tumours occur sporadically and are not part of syndromic disorders. However, germline mutations in genes known to predispose individuals to familial pituitary adenomas are found in a few patients with sporadic pituitary adenomas. Mutations in AIP (encoding aryl-hydrocarbon receptor-interacting protein) are the most frequently observed germline mutations. The prevalence of these mutations in patients with sporadic pituitary adenomas is 4%, but can increase to 8–20% in young adults with macroadenomas or gigantism, and also in children. Germline mutations in MEN1 (encoding menin) result in multiple endocrine neoplasia type 1 and are found in very young patients with isolated sporadic pituitary adenomas, which highlights the importance of the chromosome 11q13 locus in pituitary tumorigenesis. In this Review, we describe the clinical features of patients with sporadic pituitary adenomas that are associated with AIP or MEN1 mutations, and discuss the molecular mechanisms that might be involved in pituitary adenoma tumorigenesis. We also discuss genetic screening of patients with sporadic pituitary adenomas and investigations of relatives of these patients who also have the same genetic mutations.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Characteristics of patients with sporadic pituitary adenomas.
Figure 2: Prevalence of AIP mutations in patients with sporadic pituitary adenomas.
Figure 3: Signalling pathways involved in sporadic pituitary adenomas.

Similar content being viewed by others

References

  1. Surawicz, T. S. et al. Descriptive epidemiology of primary brain and CNS tumors: results from the Central Brain Tumor Registry of the United States, 1990–1994. Neuro. Oncol. 1, 14–25 (1999).

    PubMed  PubMed Central  CAS  Google Scholar 

  2. Ezzat, S. et al. The prevalence of pituitary adenomas: a systematic review. Cancer 101, 613–619 (2004).

    Article  PubMed  Google Scholar 

  3. Daly, A. F. et al. High prevalence of pituitary adenomas: a cross-sectional study in the province of Liege, Belgium. J. Clin. Endocrinol. Metab. 91, 4769–4775 (2006).

    Article  CAS  PubMed  Google Scholar 

  4. Fontana, E. & Gaillard, R. Epidemiology of pituitary adenoma: results of the first Swiss study [French]. Rev. Med. Suisse 5, 2172–2174 (2009).

    CAS  PubMed  Google Scholar 

  5. Fernandez, A., Karavitaki, N. & Wass, J. A. Prevalence of pituitary adenomas: a community-based, cross-sectional study in Banbury (Oxfordshire, UK). Clin. Endocrinol. (Oxf.) 72, 377–382 (2010).

    Article  Google Scholar 

  6. Raappana, A., Koivukangas, J., Ebeling, T. & Pirilä, T. Incidence of pituitary adenomas in Northern Finland in 1992–2007. J. Clin. Endocrinol. Metab. 95, 4268–4275 (2010).

    Article  CAS  PubMed  Google Scholar 

  7. Holdaway, I. M. & Rajasoorya, C. Epidemiology of acromegaly. Pituitary 2, 29–41 (1999).

    Article  CAS  PubMed  Google Scholar 

  8. Herman, V., Fagin, J., Gonsky, R., Kovacs, K. & Melmed, S. Clonal origin of pituitary adenomas. J. Clin. Endocrinol. Metab. 71, 1427–1433 (1990).

    Article  CAS  PubMed  Google Scholar 

  9. Xekouki, P., Azevedo, M. & Stratakis, C. A. Anterior pituitary adenomas: inherited syndromes, novel genes and molecular pathways. Expert Rev. Endocrinol. Metab. 5, 697–709 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Naziat, A. et al. Confusing genes: a patient with MEN2A and Cushing's disease. Clin. Endocrinol. (Oxf.) 78, 966–968 (2013).

    Article  Google Scholar 

  11. Melmed, S. Pathogenesis of pituitary tumors. Nat. Rev. Endocrinol. 7, 257–266 (2011).

    Article  CAS  PubMed  Google Scholar 

  12. Vierimaa, O. et al. Pituitary adenoma predisposition caused by germline mutations in the AIP gene. Science 312, 1228–1230 (2006).

    Article  CAS  PubMed  Google Scholar 

  13. Daly, A. F. et al. Clinical characterization of familial isolated pituitary adenomas. J. Clin. Endocrinol. Metab. 91, 3316–3323 (2006).

    Article  CAS  PubMed  Google Scholar 

  14. Beckers, A., Aaltonen, L. A., Daly, A. F. & Karhu, A. Familial isolated pituitary adenomas (FIPA) and the pituitary adenoma predisposition due to mutations in the aryl hydrocarbon receptor interacting protein (AIP) gene. Endocr. Rev. 34, 239–277 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Iwata, T. et al. The aryl hydrocarbon receptor-interacting protein gene is rarely mutated in sporadic GH-secreting adenomas. Clin. Endocrinol. (Oxf.) 66, 499–502 (2007).

    CAS  Google Scholar 

  16. Yu, R., Bonert, V., Saporta, I., Raffel, L. J. & Melmed, S. Aryl hydrocarbon receptor interacting protein variants in sporadic pituitary adenomas. J. Clin. Endocrinol. Metab. 91, 5126–5129 (2006).

    Article  CAS  PubMed  Google Scholar 

  17. Cazabat, L., Bouligand, J. & Chanson, P. AIP mutation in pituitary adenomas. N. Engl. J. Med. 364, 1973–1974 (2011).

    Article  CAS  PubMed  Google Scholar 

  18. Cazabat, L. et al. Germline AIP mutations in apparently sporadic pituitary adenomas: prevalence in a prospective single-center cohort of 443 patients. J. Clin. Endocrinol. Metab. 97, E663–E670 (2012).

    Article  CAS  PubMed  Google Scholar 

  19. Cazabat, L. et al. Germline inactivating mutations of the aryl hydrocarbon receptor-interacting protein gene in a large cohort of sporadic acromegaly: mutations are found in a subset of young patients with macroadenomas. Eur. J. Endocrinol. 157, 1–8 (2007).

    Article  CAS  PubMed  Google Scholar 

  20. Occhi, G. et al. Prevalence of AIP mutations in a large series of sporadic Italian acromegalic patients and evaluation of CDKN1B status in acromegalic patients with multiple endocrine neoplasia. Eur. J. Endocrinol. 163, 369–376 (2010).

    Article  CAS  PubMed  Google Scholar 

  21. Cai, F. et al. Screening for AIP gene mutations in a Han Chinese pituitary adenoma cohort followed by LOH analysis. Eur. J. Endocrinol. 169, 867–884 (2013).

    Article  CAS  PubMed  Google Scholar 

  22. Barlier, A. et al. Mutations in the aryl hydrocarbon receptor interacting protein gene are not highly prevalent among subjects with sporadic pituitary adenomas. J. Clin. Endocrinol. Metab. 92, 1952–1955 (2007).

    Article  CAS  PubMed  Google Scholar 

  23. Georgitsi, M. et al. Large genomic deletions in AIP in pituitary adenoma predisposition. J. Clin. Endocrinol. Metab. 93, 4146–4151 (2008).

    Article  CAS  PubMed  Google Scholar 

  24. Daly, A. F. et al. Clinical characteristics and therapeutic responses in patients with germ-line AIP mutations and pituitary adenomas: an international collaborative study. J. Clin. Endocrinol. Metab. 95, E373–E383 (2010).

    Article  PubMed  Google Scholar 

  25. Tichomirowa, M. A. et al. High prevalence of AIP gene mutations following focused screening in young patients with sporadic pituitary macroadenomas. Eur. J. Endocrinol. 165, 509–515 (2011).

    Article  CAS  PubMed  Google Scholar 

  26. Personnier, C. et al. Clinical features and treatment of pediatric somatotropinoma: case study of an aggressive tumor due to a new AIP mutation and extensive literature review. Horm. Res. Pædiatr. 75, 392–402 (2011).

    Article  CAS  PubMed  Google Scholar 

  27. Oriola, J. et al. Germline mutations of AIP gene in somatotropinomas resistant to somatostatin analogues. Eur. J. Endocrinol. 168, 9–13 (2013).

    Article  CAS  PubMed  Google Scholar 

  28. Chahal, H. S. et al. Somatostatin analogs modulate AIP in somatotroph adenomas: the role of the ZAC1 pathway. J. Clin. Endocrinol. Metab. 97, E1411–E1420 (2012).

    Article  CAS  PubMed  Google Scholar 

  29. Martucci, F., Trivellin, G. & Korbonits, M. Familial isolated pituitary adenomas: an emerging clinical entity. J. Endocrinol. Invest. 35, 1003–1014 (2012).

    Article  CAS  PubMed  Google Scholar 

  30. Occhi, G. et al. The R304X mutation of the aryl hydrocarbon receptor interacting protein gene in familial isolated pituitary adenomas: mutational hot-spot or founder effect? J. Endocrinol. Invest. 33, 800–805 (2010).

    Article  CAS  PubMed  Google Scholar 

  31. Chahal, H. S. et al. AIP mutation in pituitary adenomas in the 18th century and today. N. Engl. J. Med. 364, 43–50 (2011).

    Article  CAS  PubMed  Google Scholar 

  32. Salvatori, R. et al. Founder effect in recurring AIP mutation causing familial isolated pituitary adenoma syndrome [abstract]. Presented at the Endocrine Society's 96th Annual Meeting, http://press.endocrine.org/doi/abs/10.1210/endo-meetings.2014.NP.26.SUN-0698 (2014).

  33. Daly, A. F. et al. Aryl hydrocarbon receptor-interacting protein gene mutations in familial isolated pituitary adenomas: analysis in 73 families. J. Clin. Endocrinol. Metab. 92, 1891–1896 (2007).

    Article  CAS  PubMed  Google Scholar 

  34. Buchbinder, S. et al. Aryl hydrocarbon receptor interacting protein gene (AIP) mutations are rare in patients with hormone secreting or non-secreting pituitary adenomas. Exp. Clin. Endocrinol. Diabetes 116, 625–628 (2008).

    Article  CAS  PubMed  Google Scholar 

  35. Guaraldi, F. & Salvatori, R. Familial isolated pituitary adenomas: from genetics to therapy. Clin. Transl. Sci. 4, 55–62 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  36. Georgitsi, M. et al. Molecular diagnosis of pituitary adenoma predisposition caused by aryl hydrocarbon receptor-interacting protein gene mutations. Proc. Natl Acad. Sci. USA 104, 4101–4105 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Georgitsi, M. et al. Mutation analysis of aryl hydrocarbon receptor interacting protein (AIP) gene in colorectal, breast, and prostate cancers. Br. J. Cancer 96, 352–356 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Zatelli, M. C. et al. Should AIP gene screening be recommended in family members of FIPA patients with R16H variant? Pituitary 16, 238–244 (2012).

    Article  Google Scholar 

  39. Naves, L. A. et al. Variable pathological and clinical features of a large Brazilian family harboring a mutation in the aryl hydrocarbon receptor-interacting protein gene. Eur. J. Endocrinol. 157, 383–391 (2007).

    Article  CAS  PubMed  Google Scholar 

  40. Beckers, A. & Daly, A. F. The clinical, pathological, and genetic features of familial isolated pituitary adenomas. Eur. J. Endocrinol. 157, 371–382 (2007).

    Article  CAS  PubMed  Google Scholar 

  41. Leontiou, C. A. et al. The role of the aryl hydrocarbon receptor-interacting protein gene in familial and sporadic pituitary adenomas. J. Clin. Endocrinol. Metab. 93, 2390–2401 (2008).

    Article  CAS  PubMed  Google Scholar 

  42. Jennings, J. E. et al. Aggressive pituitary adenomas occurring in young patients in a large Polynesian kindred with a germline R271W mutation in the AIP gene. Eur. J. Endocrinol. 161, 799–804 (2009).

    Article  CAS  PubMed  Google Scholar 

  43. Igreja, S. et al. Characterization of aryl hydrocarbon receptor interacting protein (AIP) mutations in familial isolated pituitary adenoma families. Hum. Mutat. 31, 950–960 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Williams, F. et al. Clinical experience in the screening and management of a large kindred with familial isolated pituitary adenoma due to an aryl hydrocarbon receptor interacting protein (AIP) mutation. J. Clin. Endocrinol. Metab. 99, 1122–1131 (2014).

    Article  CAS  PubMed  Google Scholar 

  45. Stratakis, C. A. et al. The role of germline, AIP, MEN1, PRKAR1A, CDKN1B and CDKN2C mutations in causing pituitary adenomas in a large cohort of children, adolescents, and patients with genetic syndromes. Clin. Genet. 78, 457–463 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Georgitsi, M. et al. Aryl hydrocarbon receptor interacting protein (AIP) gene mutation analysis in children and adolescents with sporadic pituitary adenomas. Clin. Endocrinol. (Oxf.) 69, 621–627 (2008).

    Article  CAS  Google Scholar 

  47. Cuny, T. et al. Genetic analysis in young patients with sporadic pituitary macroadenomas: besides AIP don't forget MEN1 genetic analysis. Eur. J. Endocrinol. 168, 533–541 (2013).

    Article  CAS  PubMed  Google Scholar 

  48. Thakker, R. V. et al. Clinical practice guidelines for multiple endocrine neoplasia type 1 (MEN1). J. Clin. Endocrinol. Metab. 97, 2990–3011 (2012).

    Article  CAS  PubMed  Google Scholar 

  49. Thakker, R. V. Multiple endocrine neoplasia type 1 (MEN1). Best Pract. Res. Clin. Endocrinol. Metab. 24, 355–370 (2010).

    Article  CAS  PubMed  Google Scholar 

  50. Chandrasekharappa, S. C. et al. Positional cloning of the gene for multiple endocrine neoplasia type 1. Science 276, 404–407 (1997).

    Article  CAS  PubMed  Google Scholar 

  51. Vergès, B. et al. Pituitary disease in MEN type 1 (MEN1): data from the France–Belgium MEN1 multicenter study. J. Clin. Endocrinol. Metab. 87, 457–465 (2002).

    Article  PubMed  Google Scholar 

  52. Trouillas, J. et al. Pituitary tumors and hyperplasia in multiple endocrine neoplasia type 1 syndrome (MEN1): a case–control study in a series of 77 patients versus 2,509 non-MEN1 patients. Am. J. Surg. Pathol. 32, 534–543 (2008).

    Article  PubMed  Google Scholar 

  53. Roijers, J. F. et al. Criteria for mutation analysis in MEN 1-suspected patients: MEN 1 case-finding. Eur. J. Clin. Invest. 30, 487–492 (2000).

    Article  CAS  PubMed  Google Scholar 

  54. Drori-Herishanu, L. et al. An Intronic mutation is associated with prolactinoma in a young boy, decreased penetrance in his large family, and variable effects on MEN1 mRNA and protein. Horm. Metab. Res. 41, 630–634 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Agarwal, S. K. et al. Germline mutations of the MEN1 gene in familial multiple endocrine neoplasia type 1 and related states. Hum. Mol. Genet. 6, 1169–1175 (1997).

    Article  CAS  PubMed  Google Scholar 

  56. Bassett, J. H. et al. Characterization of mutations in patients with multiple endocrine neoplasia type 1. Am. J. Hum. Genet. 62, 232–244 (1998).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. Teh, B. T. et al. Mutation analysis of the MEN1 gene in multiple endocrine neoplasia type 1, familial acromegaly and familial isolated hyperparathyroidism. J. Clin. Endocrinol. Metab. 83, 2621–2626 (1998).

    CAS  PubMed  Google Scholar 

  58. Nakayama, K. et al. Mice lacking p27Kip1 display increased body size, multiple organ hyperplasia, retinal dysplasia, and pituitary tumors. Cell 85, 707–720 (1996).

    Article  CAS  PubMed  Google Scholar 

  59. Pellegata, N. S. et al. Germ-line mutations in p27Kip1 cause a multiple endocrine neoplasia syndrome in rats and humans. Proc. Natl Acad. Sci. USA 103, 15558–15563 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Georgitsi, M. et al. Germline CDKN1B/p27Kip1 mutation in multiple endocrine neoplasia. J. Clin. Endocrinol. Metab. 92, 3321–3325 (2007).

    Article  CAS  PubMed  Google Scholar 

  61. Molatore, S. et al. A novel germline CDKN1B mutation causing multiple endocrine tumors: clinical, genetic and functional characterization. Hum. Mutat. 31, E1825–E1835 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  62. Occhi, G. et al. A novel mutation in the upstream open reading frame of the CDKN1B gene causes a MEN4 phenotype. PLoS Genet. 9, e1003350 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  63. Tichomirowa, M. A. et al. Cyclin-dependent kinase inhibitor 1B (CDKN1B) gene variants in AIP mutation-negative familial isolated pituitary adenoma kindreds. Endocr. Relat. Cancer 19, 233–241 (2012).

    Article  CAS  PubMed  Google Scholar 

  64. Ozawa, A. et al. The parathyroid/pituitary variant of multiple endocrine neoplasia type 1 usually has causes other than p27Kip1 mutations. J. Clin. Endocrinol. Metab. 92, 1948–1951 (2007).

    Article  CAS  PubMed  Google Scholar 

  65. Agarwal, S. K., Mateo, C. M. & Marx, S. J. Rare germline mutations in cyclin-dependent kinase inhibitor genes in multiple endocrine neoplasia type 1 and related states. J. Clin. Endocrinol. Metab. 94, 1826–1834 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  66. Stergiopoulos, S. G., Abu-Asab, M. S., Tsokos, M. & Stratakis, C. A. Pituitary pathology in Carney complex patients. Pituitary 7, 73–82 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  67. Bertherat, J. et al. Mutations in regulatory subunit type 1A of cyclic adenosine 5′-monophosphate-dependent protein kinase (PRKAR1A): phenotype analysis in 353 patients and 80 different genotypes. J. Clin. Endocrinol. Metab. 94, 2085–2091 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  68. Sandrini, F. et al. PRKAR1A, one of the Carney complex genes, and its locus (17q22–24) are rarely altered in pituitary tumours outside the Carney complex. J. Med. Genet. 39, e78 (2002).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  69. Kaltsas, G. A. et al. Sequence analysis of the PRKAR1A gene in sporadic somatotroph and other pituitary tumours. Clin. Endocrinol. (Oxf.) 57, 443–448 (2002).

    Article  CAS  Google Scholar 

  70. Yamasaki, H. et al. GH-secreting pituitary adenomas infrequently contain inactivating mutations of PRKAR1A and LOH of 17q23–24. Clin. Endocrinol. (Oxf.) 58, 464–470 (2003).

    Article  CAS  Google Scholar 

  71. Forlino, A. et al. PRKACB and Carney complex. N. Engl. J. Med. 370, 1065–1067 (2014).

    Article  CAS  PubMed  Google Scholar 

  72. Horvath, A. et al. A genome-wide scan identifies mutations in the gene encoding phosphodiesterase 11A4 (PDE11A) in individuals with adrenocortical hyperplasia. Nat. Genet. 38, 794–800 (2006).

    Article  CAS  PubMed  Google Scholar 

  73. Horvath, A., Mericq, V. & Stratakis, C. A. Mutation in PDE8B, a cyclic AMP-specific phosphodiesterase in adrenal hyperplasia. N. Engl. J. Med. 358, 750–752 (2008).

    Article  CAS  PubMed  Google Scholar 

  74. Beuschlein, F. et al. Constitutive activation of PKA catalytic subunit in adrenal Cushing's syndrome. N. Engl. J. Med. 370, 1019–1028 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  75. Cao, Y. et al. Activating hotspot L205R mutation in PRKACA and adrenal Cushing's syndrome. Science 344, 913–917 (2014).

    Article  CAS  PubMed  Google Scholar 

  76. Goh, G. et al. Recurrent activating mutation in PRKACA in cortisol-producing adrenal tumors. Nat. Genet. 46, 613–617 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  77. Salenave, S., Boyce, A. M., Collins, M. T. & Chanson, P. Acromegaly and McCune–Albright syndrome. J. Clin. Endocrinol. Metab. 99, 1955–1969 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  78. Dumitrescu, C. E. & Collins, M. T. McCune–Albright syndrome. Orphanet J. Rare Dis. 3, 12 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  79. Chanson, P., Salenave, S. & Orcel, P. McCune–Albright syndrome in adulthood. Pediatr. Endocr. Rev. 4 (Suppl. 4), 453–463 (2007).

    Google Scholar 

  80. Vortmeyer, A. O. et al. Somatic GNAS mutation causes widespread and diffuse pituitary disease in acromegalic patients with McCune–Albright syndrome. J. Clin. Endocrinol. Metab. 97, 2404–2413 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  81. Weinstein, L. S. et al. Activating mutations of the stimulatory G protein in the McCune–Albright syndrome. N. Engl. J. Med. 325, 1688–1695 (1991).

    Article  CAS  PubMed  Google Scholar 

  82. Zhou, Y., Zhang, X. & Klibanski, A. Genetic and epigenetic mutations of tumor suppressive genes in sporadic pituitary adenoma. Mol. Cell. Endocrinol. 386, 16–33 (2014).

    Article  CAS  PubMed  Google Scholar 

  83. Ma, Q. & Whitlock, J. P. Jr. A novel cytoplasmic protein that interacts with the Ah receptor, contains tetratricopeptide repeat motifs, and augments the transcriptional response to 2,3,7,8-tetrachlorodibenzo-p-dioxin. J. Biol. Chem. 272, 8878–8884 (1997).

    Article  CAS  PubMed  Google Scholar 

  84. Carver, L. A., LaPres, J. J., Jain, S., Dunham, E. E. & Bradfield, C. A. Characterization of the Ah receptor-associated protein, ARA9. J. Biol. Chem. 273, 33580–33587 (1998).

    Article  CAS  PubMed  Google Scholar 

  85. Puga, A., Ma, C. & Marlowe, J. L. The aryl hydrocarbon receptor cross-talks with multiple signal transduction pathways. Biochem. Pharmacol. 77, 713–722 (2009).

    Article  CAS  PubMed  Google Scholar 

  86. Bell, D. R. & Poland, A. Binding of aryl hydrocarbon receptor (AhR) to AhR-interacting protein. The role of hsp90. J. Biol. Chem. 275, 36407–36414 (2000).

    Article  CAS  PubMed  Google Scholar 

  87. LaPres, J. J., Glover, E., Dunham, E. E., Bunger, M. K. & Bradfield, C. A. ARA9 modifies agonist signaling through an increase in cytosolic aryl hydrocarbon receptor. J. Biol. Chem. 275, 6153–6159 (2000).

    Article  CAS  PubMed  Google Scholar 

  88. Kazlauskas, A., Poellinger, L. & Pongratz, I. The immunophilin-like protein XAP2 regulates ubiquitination and subcellular localization of the dioxin receptor. J. Biol. Chem. 275, 41317–41324 (2000).

    Article  CAS  PubMed  Google Scholar 

  89. Lees, M. J., Peet, D. J. & Whitelaw, M. L. Defining the role for XAP2 in stabilization of the dioxin receptor. J. Biol. Chem. 278, 35878–35888 (2003).

    Article  CAS  PubMed  Google Scholar 

  90. Hollingshead, B. D., Petrulis, J. R. & Perdew, G. H. The aryl hydrocarbon (Ah) receptor transcriptional regulator hepatitis B virus X-associated protein 2 antagonizes p23 binding to Ah receptor-Hsp90 complexes and is dispensable for receptor function. J. Biol. Chem. 279, 45652–45661 (2004).

    Article  CAS  PubMed  Google Scholar 

  91. Bolger, G. B. et al. Attenuation of the activity of the cAMP-specific phosphodiesterase PDE4A5 by interaction with the immunophilin XAP2. J. Biol. Chem. 278, 33351–33363 (2003).

    Article  CAS  PubMed  Google Scholar 

  92. De Oliveira, S. K. et al. Phosphodiesterase 2A forms a complex with the co-chaperone XAP2 and regulates nuclear translocation of the aryl hydrocarbon receptor. J. Biol. Chem. 282, 13656–13663 (2007).

    Article  CAS  PubMed  Google Scholar 

  93. Formosa, R., Xuereb-Anastasi, A. & Vassallo, J. AIP regulates cAMP signalling and GH secretion in GH3 cells. Endocr. Relat. Cancer 20, 495–505 (2013).

    Article  CAS  PubMed  Google Scholar 

  94. Tuominen, I. et al. AIP inactivation leads to pituitary tumorigenesis through defective Gαi–cAMP signaling. Oncogene http://dx.doi.org/10.1038/onc.2014.50.

  95. Nakata, A. et al. G-protein signalling negatively regulates the stability of aryl hydrocarbon receptor. EMBO Rep. 10, 622–628 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  96. Oesch-Bartlomowicz, B. et al. Aryl hydrocarbon receptor activation by cAMP vs. dioxin: divergent signaling pathways. Proc. Natl Acad. Sci. USA 102, 9218–9223 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Lemos, M. C. & Thakker, R. V. Multiple endocrine neoplasia type 1 (MEN1): analysis of 1,336 mutations reported in the first decade following identification of the gene. Hum. Mutat. 29, 22–32 (2008).

    Article  CAS  PubMed  Google Scholar 

  98. Agarwal, S. K. et al. Menin interacts with the AP1 transcription factor JunD and represses JunD-activated transcription. Cell 96, 143–152 (1999).

    Article  CAS  PubMed  Google Scholar 

  99. Heppner, C. et al. The tumor suppressor protein menin interacts with NF-κB proteins and inhibits NF-κB-mediated transactivation. Oncogene 20, 4917–4925 (2001).

    Article  CAS  PubMed  Google Scholar 

  100. Kaji, H., Canaff, L., Lebrun, J. J., Goltzman, D. & Hendy, G. N. Inactivation of menin, a Smad3-interacting protein, blocks transforming growth factor type β signaling. Proc. Natl Acad. Sci. USA 98, 3837–3842 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Sowa, H. et al. Menin is required for bone morphogenetic protein 2- and transforming growth factor β-regulated osteoblastic differentiation through interaction with Smads and Runx2. J. Biol. Chem. 279, 40267–40275 (2004).

    Article  CAS  PubMed  Google Scholar 

  102. Karnik, S. K. et al. Menin regulates pancreatic islet growth by promoting histone methylation and expression of genes encoding p27Kip1 and p18INK4c. Proc. Natl Acad. Sci. USA 102, 14659–14664 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Milne, T. A. et al. Menin and MLL cooperatively regulate expression of cyclin-dependent kinase inhibitors. Proc. Natl Acad. Sci. USA 102, 749–754 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Scacheri, P. C. et al. Genome-wide analysis of menin binding provides insights into MEN1 tumorigenesis. PLoS Genet. 2, e51 (2006).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  105. Raitila, A. et al. No evidence of somatic aryl hydrocarbon receptor interacting protein mutations in sporadic endocrine neoplasia. Endocr. Relat. Cancer 14, 901–906 (2007).

    Article  CAS  PubMed  Google Scholar 

  106. Jaffrain-Rea, M.-L. et al. Expression of aryl hydrocarbon receptor (AHR) and AHR-interacting protein in pituitary adenomas: pathological and clinical implications. Endocr. Relat. Cancer 16, 1029–1043 (2009).

    Article  CAS  PubMed  Google Scholar 

  107. Villa, C. et al. Hyperplasia-adenoma sequence in pituitary tumorigenesis related to aryl hydrocarbon receptor interacting protein gene mutation. Endocr. Relat. Cancer 18, 347–356 (2011).

    Article  CAS  PubMed  Google Scholar 

  108. García-Arnés, J. A. et al. Familial isolated pituitary adenoma caused by a Aip gene mutation not described before in a family context. Endocr. Pathol. 24, 234–238 (2013).

    Article  PubMed  Google Scholar 

  109. Thakker, R. V. et al. Association of parathyroid tumors in multiple endocrine neoplasia type 1 with loss of alleles on chromosome 11. N. Engl. J. Med. 321, 218–224 (1989).

    Article  CAS  PubMed  Google Scholar 

  110. Larsson, C., Skogseid, B., Oberg, K., Nakamura, Y. & Nordenskjöld, M. Multiple endocrine neoplasia type 1 gene maps to chromosome 11 and is lost in insulinoma. Nature 332, 85–87 (1988).

    Article  CAS  PubMed  Google Scholar 

  111. Dong, Q. et al. Loss of heterozygosity at 11q13: analysis of pituitary tumors, lung carcinoids, lipomas, and other uncommon tumors in subjects with familial multiple endocrine neoplasia type 1. J. Clin. Endocrinol. Metab. 82, 1416–1420 (1997).

    Article  CAS  PubMed  Google Scholar 

  112. Emmert-Buck, M. R. et al. Localization of the multiple endocrine neoplasia type I (MEN1) gene based on tumor loss of heterozygosity analysis. Cancer Res. 57, 1855–1858 (1997).

    CAS  PubMed  Google Scholar 

  113. Stratakis, C. A. et al. Pituitary macroadenoma in a 5-year-old: an early expression of multiple endocrine neoplasia type 1. J. Clin. Endocrinol. Metab. 85, 4776–4780 (2000).

    CAS  PubMed  Google Scholar 

  114. Zhuang, Z. et al. Mutations of the MEN1 tumor suppressor gene in pituitary tumors. Cancer Res. 57, 5446–5451 (1997).

    CAS  PubMed  Google Scholar 

  115. Knudson, A. G. Jr. Mutation and cancer: statistical study of retinoblastoma. Proc. Natl Acad. Sci. USA 68, 820–823 (1971).

    Article  PubMed  PubMed Central  Google Scholar 

  116. Pannett, A. A. & Thakker, R. V. Somatic mutations in MEN type 1 tumors, consistent with the Knudson 'two-hit' hypothesis. J. Clin. Endocrinol. Metab. 86, 4371–4374 (2001).

    CAS  PubMed  Google Scholar 

  117. Tanaka, C. et al. Analysis of loss of heterozygosity on chromosome 11 and infrequent inactivation of the MEN1 gene in sporadic pituitary adenomas. J. Clin. Endocrinol. Metab. 83, 2631–2634 (1998).

    CAS  PubMed  Google Scholar 

  118. Prezant, T. R., Levine, J. & Melmed, S. Molecular characterization of the Men1 tumor suppressor gene in sporadic pituitary tumors. J. Clin. Endocrinol. Metab. 83, 1388–1391 (1998).

    Article  CAS  PubMed  Google Scholar 

  119. Schmidt, M. C. et al. Analysis of the MEN1 gene in sporadic pituitary adenomas. J. Pathol. 188, 168–173 (1999).

    Article  CAS  PubMed  Google Scholar 

  120. Poncin, J., Stevenaert, A. & Beckers, A. Somatic MEN1 gene mutation does not contribute significantly to sporadic pituitary tumorigenesis. Eur. J. Endocrinol. 140, 573–576 (1999).

    Article  CAS  PubMed  Google Scholar 

  121. Farrell, W. E. et al. Sequence analysis and transcript expression of the MEN1 gene in sporadic pituitary tumours. Br. J. Cancer 80, 44–50 (1999).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  122. Evans, C. O., Brown, M. R., Parks, J. S. & Oyesiku, N. M. Screening for MEN1 tumor suppressor gene mutations in sporadic pituitary tumors. J. Endocrinol. Invest. 23, 304–309 (2000).

    Article  CAS  PubMed  Google Scholar 

  123. Asteria, C., Anagni, M., Persani, L. & Beck-Peccoz, P. Loss of heterozygosity of the MEN1 gene in a large series of TSH-secreting pituitary adenomas. J. Endocrinol. Invest. 24, 796–801 (2001).

    Article  CAS  PubMed  Google Scholar 

  124. Luzi, E. et al. The negative feedback-loop between the oncomir Mir-24-1 and menin modulates the Men1 tumorigenesis by mimicking the 'Knudson's second hit'. PLoS ONE 7, e39767 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  125. Boggild, M. D. et al. Molecular genetic studies of sporadic pituitary tumors. J. Clin. Endocrinol. Metab. 78, 387–392 (1994).

    CAS  PubMed  Google Scholar 

  126. Raitila, A. et al. Mice with inactivation of aryl hydrocarbon receptor-interacting protein (Aip) display complete penetrance of pituitary adenomas with aberrant ARNT expression. Am. J. Pathol. 177, 1969–1976 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  127. Harding, B. et al. Multiple endocrine neoplasia type 1 knockout mice develop parathyroid, pancreatic, pituitary and adrenal tumours with hypercalcaemia, hypophosphataemia and hypercorticosteronaemia. Endocr. Relat. Cancer 16, 1313–1327 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  128. Crabtree, J. S. et al. A mouse model of multiple endocrine neoplasia, type 1, develops multiple endocrine tumors. Proc. Natl Acad. Sci. USA 98, 1118–1123 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Bertolino, P., Tong, W.-M., Galendo, D., Wang, Z.-Q. & Zhang, C.-X. Heterozygous Men1 mutant mice develop a range of endocrine tumors mimicking multiple endocrine neoplasia type 1. Mol. Endocrinol. 17, 1880–1892 (2003).

    Article  CAS  PubMed  Google Scholar 

  130. Heliövaara, E. et al. The expression of AIP-related molecules in elucidation of cellular pathways in pituitary adenomas. Am. J. Pathol. 175, 2501–2507 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  131. Walls, G. V. et al. MEN1 gene replacement therapy reduces proliferation rates in a mouse model of pituitary adenomas. Cancer Res. 72, 5060–5068 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  132. Vallar, L., Spada, A. & Giannattasio, G. Altered Gs and adenylate cyclase activity in human GH-secreting pituitary adenomas. Nature 330, 566–568 (1987).

    Article  CAS  PubMed  Google Scholar 

  133. Kirschner, L. S. et al. Mutations of the gene encoding the protein kinase A type I-α regulatory subunit in patients with the Carney complex. Nat. Genet. 26, 89–92 (2000).

    Article  CAS  PubMed  Google Scholar 

  134. Robinson-White, A. et al. Protein kinase-A activity in PRKAR1A-mutant cells, and regulation of mitogen-activated protein kinases ERK1/2. Hum. Mol. Genet. 12, 1475–1484 (2003).

    Article  CAS  PubMed  Google Scholar 

  135. Groussin, L. et al. Molecular analysis of the cyclic AMP-dependent protein kinase A (PKA) regulatory subunit 1A (PRKAR1A) gene in patients with Carney complex and primary pigmented nodular adrenocortical disease (PPNAD) reveals novel mutations and clues for pathophysiology: augmented PKA signaling is associated with adrenal tumorigenesis in PPNAD. Am. J. Hum. Genet. 71, 1433–1442 (2002).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  136. Farrell, W. E. et al. Unique gene expression profile associated with an early-onset multiple endocrine neoplasia (MEN1)-associated pituitary adenoma. J. Clin. Endocrinol. Metab. 96, E1905–E1914 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  137. Alamut Visual version 2.4 (®Interactive Biosoftware, Rouen, France).

  138. J. Craig Venter Institute. SIFT dbSNP [online], (2009).

  139. Adzhubei, I. A. et al. A method and server for predicting damaging missense mutations. Nat. Methods 7, 248–249 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  140. Tavtigian, S. V. et al. Comprehensive statistical study of 452 BRCA1 missense substitutions with classification of eight recurrent substitutions as neutral. J. Med. Genet. 43, 295–305 (2006).

    Article  CAS  PubMed  Google Scholar 

  141. Mathe, E. et al. Computational approaches for predicting the biological effect of p53 missense mutations: a comparison of three sequence analysis based methods. Nucleic Acids Res. 34, 1317–1325 (2006).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  142. Sherry, S. T. et al. dbSNP: the NCBI database of genetic variation. Nucleic Acids Res. 29, 308–311 (2001).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  143. NHLBI Exome Sequencing Project (ESP). Exome variant server [online], (2014).

Download references

Acknowledgements

We are grateful to J. Bouligand and J. Young for their continuous support in gene analysis and always very pertinent advice. We also thank L. Cazabat who actively participated in the collection of samples and phenotype–genotype analysis of some of our patients of the Bicêtre Hospital cohort.

Author information

Authors and Affiliations

Authors

Contributions

A.-L.L., P.K. and P.C. researched data for the article, provided substantial contributions to discussion of content and reviewed and edited the manuscript before submission. A.-L.L. wrote the article. A.G.-M. reviewed and edited the manuscript before submission.

Corresponding author

Correspondence to Philippe Chanson.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Table 1

AIP mutations and clinical presentation at diagnosis of patients with sporadic pituitary adenomas (DOC 131 kb)

Supplementary Table 2

MEN1 mutations and clinical characteristics of patients with sporadic pituitary adenomas (DOC 46 kb)

Supplementary Table 3

Germline mutations, somatic mutation and epigenetic modifications associated with 'apparently' sporadic pituitary adenomas (DOC 127 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lecoq, AL., Kamenický, P., Guiochon-Mantel, A. et al. Genetic mutations in sporadic pituitary adenomas—what to screen for?. Nat Rev Endocrinol 11, 43–54 (2015). https://doi.org/10.1038/nrendo.2014.181

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrendo.2014.181

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing