Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Personalized weight loss strategies—the role of macronutrient distribution

Key Points

  • The relative contributions of different aetiological factors to obesity remain to be fully defined, although the importance of different dietary macronutrients, physical activity patterns and genetics is acknowledged

  • Improved understanding of the mechanisms of weight gain and obesity might lead to comprehensive and efficient strategies to prevent and ameliorate this global epidemic

  • Studies of the roles of individual macronutrients in weight management are needed to define whether diets of similar calorific content but different composition differentially affect energy yield and utilization

  • Experts generally agree that weight-loss strategies should aim to not only reduce body fat in the short term, but also achieve long-term maintenance of healthy body weight

  • The study of gene–nutrient interactions and the differential effects of genotype on macronutrient utilization might identify personalized strategies for effective weight loss and maintenance of healthy body weight

Abstract

A large number of different dietary approaches have been studied in an attempt to achieve healthy, sustainable weight loss among individuals with overweight and obesity. Restriction of energy intake is the primary method of producing a negative energy balance leading to weight loss. However, owing to the different metabolic roles of proteins, carbohydrates and lipids in energy homeostasis, diets of similar overall energy content but with different macronutrient distribution can differentially affect metabolism, appetite and thermogenesis. Evidence increasingly suggests that the fuel values of calories provided by distinct macronutrients should be considered separately, as metabolism of specific molecular components generates differences in energy yield. The causes of variation in individual responses to various diets are currently under debate, and some evidence suggests that differences are associated with specific genotypes. This Review discusses all available systematic reviews and meta-analyses, and summarizes the results of relevant randomized controlled intervention trials assessing the influence of macronutrient composition on weight management. The initial findings of research into personalized nutrition, based on the interactions of macronutrient intake and genetic background and its potential influence on dietary intervention strategies, are also discussed.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Martinez, J. A. Body-weight regulation: causes of obesity. Proc. Nutr. Soc. 59, 337–345 (2000).

    Article  CAS  PubMed  Google Scholar 

  2. Galgani, J. & Ravussin, E. Energy metabolism, fuel selection and body weight regulation. Int. J. Obes. (Lond.) 32, S109–S119 (2008).

    Article  CAS  Google Scholar 

  3. Ng, M. et al. Global, regional, and national prevalence of overweight and obesity in children and adults during 1980–2013: a systematic analysis for the Global Burden of Disease Study 2013. Lancet 384, 766–781 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  4. Berrington de Gonzalez, A. et al. Body-mass index and mortality among 1.46 million white adults. N. Engl. J. Med. 363, 2211–2219 (2010).

    Article  CAS  PubMed  Google Scholar 

  5. Greenberg, J. A. The obesity paradox in the US population. Am. J. Clin. Nutr. 97, 1195–1200 (2013).

    Article  CAS  PubMed  Google Scholar 

  6. Flegal, K. M., Kit, B. K. & Graubard, B. I. Overweight, obesity, and all-cause mortality—reply. JAMA 309, 1681–1682 (2013).

    Article  CAS  PubMed  Google Scholar 

  7. Marti, A. et al. Methodological approaches to assess body-weight regulation and aetiology of obesity. Proc. Nutr. Soc. 59, 405–411 (2000).

    Article  CAS  PubMed  Google Scholar 

  8. Ho, M. et al. Effectiveness of lifestyle interventions in child obesity: systematic review with meta-analysis. Pediatrics 130, e1647–e1671 (2012).

    Article  PubMed  Google Scholar 

  9. Astrup, A. & Brand-Miller, J. Have new guidelines overlooked the role of diet composition? Nat. Rev. Endocrinol. 10, 132–133 (2014).

    Article  PubMed  Google Scholar 

  10. Sparling, P. B., Franklin, B. A. & Hill, J. O. Energy balance: the key to a unified message on diet and physical activity. J. Cardiopulm. Rehabil. Prev. 33, 12–15 (2013).

    Article  PubMed  Google Scholar 

  11. McAllister, E. J. et al. Ten putative contributors to the obesity epidemic. Crit. Rev. Food Sci. Nutr. 49, 868–913 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Malik, V. S., Willett, W. C. & Hu, F. B. Global obesity: trends, risk factors and policy implications. Nat. Rev. Endocrinol. 9, 13–27 (2013).

    Article  PubMed  Google Scholar 

  13. Galani, C. & Schneider, H. Prevention and treatment of obesity with lifestyle interventions: review and meta-analysis. Int. J. Public Health 52, 348–359 (2007).

    Article  PubMed  Google Scholar 

  14. Abete, I., Goyenechea, E., Zulet, M. A. & Martinez, J. A. Obesity and metabolic syndrome: potential benefit from specific nutritional components. Nutr. Metab. Cardiovasc. Dis. 21, B1–B15 (2011).

    Article  CAS  PubMed  Google Scholar 

  15. Lepor, N. E., Fouchia, D. D. & McCullough, P. A. New vistas for the treatment of obesity: turning the tide against the leading cause of morbidity and cardiovascular mortality in the developed world. Rev. Cardiovasc. Med. 14, 20–39 (2013).

    PubMed  Google Scholar 

  16. Heath, V. Benefits of intensive lifestyle modification programs in the spotlight. Nat. Rev. Endocrinol. 7, 1 (2011).

    Article  PubMed  Google Scholar 

  17. Purnell, J. Q. Calories or content: what is the best weight-loss diet? Nat. Rev. Endocrinol. 5, 419–420 (2009).

    Article  PubMed  Google Scholar 

  18. Buchholz, A. C. & Schoeller, D. A. Is a calorie a calorie? Am. J. Clin. Nutr. 79, 899S–906S (2004).

    Article  CAS  PubMed  Google Scholar 

  19. Foreyt, J. P. et al. Weight-reducing diets: are there any differences? Nutr. Rev. 67, S99–S101 (2009).

    Article  PubMed  Google Scholar 

  20. Zulet, M. A. et al. The reduction of the metabolyc syndrome in Navarra-Spain (RESMENA-S) study: a multidisciplinary strategy based on chrononutrition and nutritional education, together with dietetic and psychological control. Nutr. Hosp. 26, 16–26 (2011).

    CAS  PubMed  Google Scholar 

  21. Spring, B. et al. Integrating technology into standard weight loss treatment: a randomized controlled trial. JAMA Intern. Med. 123, 105–111 (2013)

    Article  Google Scholar 

  22. Abete, I., Astrup, A., Martinez, J. A., Thorsdottir, I. & Zulet, M. A. Obesity and the metabolic syndrome: role of different dietary macronutrient distribution patterns and specific nutritional components on weight loss and maintenance. Nutr. Rev. 68, 214–231 (2010).

    Article  PubMed  Google Scholar 

  23. Turk, M. W. et al. Randomized clinical trials of weight loss maintenance: a review. J. Cardiovasc. Nurs. 24, 58–80 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  24. Martinez, J. A., Enriquez, L., Moreno-Aliaga, M. J. & Marti, A. Genetics of obesity. Public Health Nutr. 10, 1138–1144 (2007).

    Article  Google Scholar 

  25. Abete, I., Navas-Carretero, S., Marti, A. & Martinez, J. A. Nutrigenetics and nutrigenomics of caloric restriction. Prog. Mol. Biol. Transl. Sci. 108, 323–346 (2012).

    Article  CAS  PubMed  Google Scholar 

  26. Fenech, M. et al. Nutrigenetics and nutrigenomics: viewpoints on the current status and applications in nutrition research and practice. J. Nutrigenet. Nutrigenomics 4, 69–89 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. de Roos, B. Personalised nutrition: ready for practice? Proc. Nutr. Soc. 72, 48–52 (2013).

    Article  PubMed  Google Scholar 

  28. De Caterina, R. Opportunities and challenges in nutrigenetics/nutrigenomics and health. World Rev. Nutr. Diet. 101, 1–7 (2010).

    Article  PubMed  Google Scholar 

  29. Westerterp-Plantenga, M. S., Nieuwenhuizen, A., Tome, D., Soenen, S. & Westerterp, K. R. Dietary protein, weight loss, and weight maintenance. Annu. Rev. Nutr. 29, 21–41 (2009).

    Article  CAS  PubMed  Google Scholar 

  30. de Souza, R. J., Swain, J. F., Appel, L. J. & Sacks, F. M. Alternatives for macronutrient intake and chronic disease: a comparison of the OmniHeart diets with popular diets and with dietary recommendations. Am. J. Clin. Nutr. 88, 1–11 (2008).

    Article  CAS  PubMed  Google Scholar 

  31. Te Morenga, L., Mallard, S. & Mann, J. Dietary sugars and body weight: systematic review and meta-analyses of randomised controlled trials and cohort studies. BMJ 346, e7492 (2013).

    Article  Google Scholar 

  32. Hu, F. B. Resolved: there is sufficient scientific evidence that decreasing sugar-sweetened beverage consumption will reduce the prevalence of obesity and obesity-related diseases. Obes. Rev. 14, 606–619 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Thomas, D. E., Elliott, E. J. & Baur, L. Low glycaemic index or low glycaemic load diets for overweight and obesity. Cochrane Database Syst. Rev., Issue 3. Art no.: CD005105 http://dx.doi.org/10.1002/14651858.CD005105.pub2 (2007).

  34. Esfahani, A., Wong, J. M., Mirrahimi, A., Villa, C. R. & Kendall, C. W. The application of the glycemic index and glycemic load in weight loss: A review of the clinical evidence. IUBMB Life 63, 7–13 (2011).

    Article  CAS  PubMed  Google Scholar 

  35. Bravata, D. M. et al. Efficacy and safety of low-carbohydrate diets: a systematic review. JAMA 289, 1837–1850 (2003).

    Article  CAS  PubMed  Google Scholar 

  36. Saris, W. H. et al. Randomized controlled trial of changes in dietary carbohydrate/fat ratio and simple vs complex carbohydrates on body weight and blood lipids: the CARMEN study. The Carbohydrate Ratio Management in European National diets. Int. J. Obes. Relat. Metab. Disord. 24, 1310–1318 (2000).

    Article  CAS  PubMed  Google Scholar 

  37. McMillan-Price, J. et al. Comparison of 4 diets of varying glycemic load on weight loss and cardiovascular risk reduction in overweight and obese young adults: a randomized controlled trial. Arch. Intern. Med. 166, 1466–1475 (2006).

    Article  PubMed  Google Scholar 

  38. Das, S. K. et al. Long-term effects of 2 energy-restricted diets differing in glycemic load on dietary adherence, body composition, and metabolism in CALERIE: a 1-y randomized controlled trial. Am. J. Clin. Nutr. 85, 1023–1030 (2007).

    Article  CAS  PubMed  Google Scholar 

  39. Abete, I., Parra, D. & Martinez, J. A. Energy-restricted diets based on a distinct food selection affecting the glycemic index induce different weight loss and oxidative response. Clin. Nutr. 27, 545–551 (2008).

    Article  CAS  PubMed  Google Scholar 

  40. Gardner, C. D. et al. Comparison of the Atkins, Zone, Ornish, and LEARN diets for change in weight and related risk factors among overweight premenopausal women: the A TO Z Weight Loss Study: a randomized trial. JAMA 297, 969–977 (2007).

    Article  CAS  PubMed  Google Scholar 

  41. Hu, T. et al. Effects of low-carbohydrate diets versus low-fat diets on metabolic risk factors: a meta-analysis of randomized controlled clinical trials. Am. J. Epidemiol. 176, S44–S54 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  42. Yancy, W. S. Jr, Olsen, M. K., Guyton, J. R., Bakst, R. P. & Westman, E. C. A low-carbohydrate, ketogenic diet versus a low-fat diet to treat obesity and hyperlipidemia: a randomized, controlled trial. Ann. Intern. Med. 140, 769–777 (2004).

    Article  PubMed  Google Scholar 

  43. Hooper, L. et al. Effect of reducing total fat intake on body weight: systematic review and meta-analysis of randomised controlled trials and cohort studies. BMJ 345, e7666 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Astrup, A., Grunwald, G. K., Melanson, E. L., Saris, W. H. & Hill, J. O. The role of low-fat diets in body weight control: a meta-analysis of ad libitum dietary intervention studies. Int. J. Obes. Relat. Metab. Disord. 24, 1545–1552 (2000).

    Article  CAS  PubMed  Google Scholar 

  45. Handjieva-Darlenska, T. et al. Clinical correlates of weight loss and attrition during a 10-week dietary intervention study: results from the NUGENOB project. Obes. Facts 5, 928–936 (2012).

    Article  PubMed  Google Scholar 

  46. Salas-Salvado, J. et al. Effect of a Mediterranean diet supplemented with nuts on metabolic syndrome status: one-year results of the PREDIMED randomized trial. Arch. Intern. Med. 168, 2449–2458 (2008).

    Article  CAS  PubMed  Google Scholar 

  47. Ades, P. A. & Savage, P. D. Potential benefits of weight loss in coronary heart disease. Prog. Cardiovasc. Dis. 56, 448–456 (2014).

    Article  PubMed  Google Scholar 

  48. Halton, T. L. & Hu, F. B. The effects of high protein diets on thermogenesis, satiety and weight loss: a critical review. J. Am. Coll. Nutr. 23, 373–385 (2004).

    Article  PubMed  Google Scholar 

  49. Larsen, T. M. et al. Diets with high or low protein content and glycemic index for weight-loss maintenance. N. Engl. J. Med. 363, 2102–2113 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Bueno, N. B., de Melo, I. S., de Oliveira, S. L. & da Rocha Ataide, T. Very-low-carbohydrate ketogenic diet v. low-fat diet for long-term weight loss: a meta-analysis of randomised controlled trials. Br. J. Nutr. 110, 1178–1187 (2013).

    Article  CAS  PubMed  Google Scholar 

  51. Martinez, J. A. & Dolores Parra, M. Life-threatening complications of the Atkins diet? Lancet 368, 23 (2006).

    Article  PubMed  Google Scholar 

  52. Nordmann, A. J. et al. Effects of low-carbohydrate vs low-fat diets on weight loss and cardiovascular risk factors: a meta-analysis of randomized controlled trials. Arch. Intern. Med. 166, 285–293 (2006).

    Article  CAS  PubMed  Google Scholar 

  53. Ajala, O., English, P. & Pinkney, J. Systematic review and meta-analysis of different dietary approaches to the management of type 2 diabetes. Am. J. Clin. Nutr. 97, 505–516 (2013).

    Article  CAS  PubMed  Google Scholar 

  54. Wycherley, T. P., Moran, L. J., Clifton, P. M., Noakes, M. & Brinkworth, G. D. Effects of energy-restricted high-protein, low-fat compared with standard-protein, low-fat diets: a meta-analysis of randomized controlled trials. Am. J. Clin. Nutr. 96, 1281–1298 (2012).

    Article  CAS  PubMed  Google Scholar 

  55. Clifton, P. M., Condo, D. & Keogh, J. B. Long term weight maintenance after advice to consume low carbohydrate, higher protein diets—A systematic review and meta-analysis. Nutr. Metab. Cardiovasc. Dis. 24, 224–235 (2014).

    Article  CAS  PubMed  Google Scholar 

  56. Sacks, F. M. et al. Comparison of weight-loss diets with different compositions of fat, protein, and carbohydrates. N. Engl. J. Med. 360, 859–873 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Shai, I. et al. Weight loss with a low-carbohydrate, Mediterranean, or low-fat diet. N. Engl. J. Med. 359, 229–241 (2008).

    Article  CAS  PubMed  Google Scholar 

  58. Noto, H., Goto, A., Tsujimoto, T. & Noda, M. Low-carbohydrate diets and all-cause mortality: a systematic review and meta-analysis of observational studies. PLoS ONE 8, e55030 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Schwingshackl, L. & Hoffmann, G. Low-carbohydrate diets impair flow-mediated dilatation: evidence from a systematic review and meta-analysis. Br. J. Nutr. 110, 969–970 (2013).

    Article  CAS  PubMed  Google Scholar 

  60. Pagoto, S. L. & Appelhans, B. M. A call for an end to the diet debates. JAMA 310, 687–688 (2013).

    Article  CAS  PubMed  Google Scholar 

  61. Martinez, J. A. (Ed) Nutricion saludable frente a la Obesidad. Bases científicas y aspectos dietéticos [Spanish] (Editorial médica Panamericana, 2013).

  62. Marti, A., Goyenechea, E. & Martinez, J. A. Nutrigenetics: a tool to provide personalized nutritional therapy to the obese. J. Nutrigenet. Nutrigenomics 3, 157–169 (2010).

    Article  PubMed  Google Scholar 

  63. Schwingshackl, L. & Hoffmann, G. Long-term effects of low glycemic index/load vs. high glycemic index/load diets on parameters of obesity and obesity-associated risks: a systematic review and meta-analysis. Nutr. Metab. Cardiovasc. Dis. 23, 699–706 (2013).

    Article  CAS  PubMed  Google Scholar 

  64. Schwingshackl, L. & Hoffmann, G. Comparison of effects of long-term low-fat vs high-fat diets on blood lipid levels in overweight or obese patients: a systematic review and meta-analysis. J. Acad. Nutr. Diet. 113, 1640–1661 (2013).

    Article  PubMed  Google Scholar 

  65. Schwingshackl, L. & Hoffmann, G. Long-term effects of low-fat diets either low or high in protein on cardiovascular and metabolic risk factors: a systematic review and meta-analysis. Nutr. J. 12, 48 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Santos, F. L., Esteves, S. S., da Costa Pereira, A., Yancy, W. S. Jr & Nunes, J. P. Systematic review and meta-analysis of clinical trials of the effects of low carbohydrate diets on cardiovascular risk factors. Obes. Rev. 13, 1048–1066 (2012).

    Article  CAS  PubMed  Google Scholar 

  67. Labayen, I., Diez, N., Gonzalez, A., Parra, D. & Martinez, J. A. Effects of protein vs. carbohydrate-rich diets on fuel utilisation in obese women during weight loss. Forum Nutr. 56, 168–170 (2003).

    CAS  PubMed  Google Scholar 

  68. Meckling, K. A. & Sherfey, R. A randomized trial of a hypocaloric high-protein diet, with and without exercise, on weight loss, fitness, and markers of the Metabolic Syndrome in overweight and obese women. Appl. Physiol. Nutr. Metab. 32, 743–752 (2007).

    Article  CAS  PubMed  Google Scholar 

  69. Swift, D. L., Johannsen, N. M., Lavie, C. J., Earnest, C. P. & Church, T. S. The role of exercise and physical activity in weight loss and maintenance. Prog. Cardiovasc. Dis. 56, 441–447 (2014).

    Article  PubMed  Google Scholar 

  70. Johansson, K., Neovius, M. & Hemmingsson, E. Effects of anti-obesity drugs, diet, and exercise on weight-loss maintenance after a very-low-calorie diet or low-calorie diet: a systematic review and meta-analysis of randomized controlled trials. Am. J. Clin. Nutr. 99, 14–23 (2014).

    Article  CAS  PubMed  Google Scholar 

  71. Vanhees, L. et al. Importance of characteristics and modalities of physical activity and exercise in defining the benefits to cardiovascular health within the general population: recommendations from the EACPR (Part I). Eur. J. Prev. Cardiol. 19, 670–686 (2012).

    Article  CAS  PubMed  Google Scholar 

  72. Vanhees, L. et al. Importance of characteristics and modalities of physical activity and exercise in the management of cardiovascular health in individuals with cardiovascular risk factors: recommendations from the EACPR. Part II. Eur. J. Prev. Cardiol. 19, 1005–1033 (2012).

    Article  CAS  PubMed  Google Scholar 

  73. Vanhees, L. et al. Importance of characteristics and modalities of physical activity and exercise in the management of cardiovascular health in individuals with cardiovascular disease (Part III). Eur. J. Prev. Cardiol. 19, 1333–1356 (2012).

    Article  CAS  PubMed  Google Scholar 

  74. Wing, R. R. et al. Cardiovascular effects of intensive lifestyle intervention in type 2 diabetes. N. Engl. J. Med. 369, 145–154 (2013).

    Article  CAS  PubMed  Google Scholar 

  75. Hollis, J. F. et al. Weight loss during the intensive intervention phase of the weight-loss maintenance trial. Am. J. Prev. Med. 35, 118–126 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  76. Jensen, M. D. et al. 2013 AHA/ACC/TOS guideline for the management of overweight and obesity in adults: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines and The Obesity Society. J. Am. Coll. Cardiol. 63, 2985–3023 (2014).

    Article  PubMed  Google Scholar 

  77. Rankinen, T. et al. The human obesity gene map: the 2005 update. Obesity (Silver Spring) 14, 529–644 (2006).

    Article  Google Scholar 

  78. Bell, C. G., Walley, A. J. & Froguel, P. The genetics of human obesity. Nat. Rev. Genet. 6, 221–234 (2005).

    Article  CAS  PubMed  Google Scholar 

  79. Montague, C. T. et al. Congenital leptin deficiency is associated with severe early-onset obesity in humans. Nature 387, 903–908 (1997).

    Article  CAS  PubMed  Google Scholar 

  80. Clement, K. et al. A mutation in the human leptin receptor gene causes obesity and pituitary dysfunction. Nature 392, 398–401 (1998).

    Article  CAS  PubMed  Google Scholar 

  81. Vaisse, C., Clement, K., Guy-Grand, B. & Froguel, P. A frameshift mutation in human MC4R is associated with a dominant form of obesity. Nat. Genet. 20, 113–114 (1998).

    Article  CAS  PubMed  Google Scholar 

  82. Yeo, G. S. et al. A frameshift mutation in MC4R associated with dominantly inherited human obesity. Nat. Genet. 20, 111–112 (1998).

    Article  CAS  PubMed  Google Scholar 

  83. El-Sayed Moustafa, J. S. & Froguel, P. From obesity genetics to the future of personalized obesity therapy. Nat. Rev. Endocrinol. 9, 402–413 (2013).

    Article  CAS  PubMed  Google Scholar 

  84. Subbiah, M. T. Nutrigenetics and nutraceuticals: the next wave riding on personalized medicine. Transl. Res. 149, 55–61 (2007).

    Article  CAS  PubMed  Google Scholar 

  85. San-Cristobal, R., Milagro, F. I. & Martinez, J. A. Future challenges and present ethical considerations in the use of personalized nutrition based on genetic advice. J. Acad. Nutr. Diet. 113, 1447–1454 (2013).

    Article  PubMed  Google Scholar 

  86. Kang, J. X. The coming of age of nutrigenetics and nutrigenomics. J. Nutrigenet. Nutrigenomics 5, I-II (2012).

    PubMed  Google Scholar 

  87. Imai, K., Kricka, L. J. & Fortina, P. Concordance study of 3 direct-to-consumer genetic-testing services. Clin. Chem. 57, 518–521 (2011).

    Article  CAS  PubMed  Google Scholar 

  88. Campion, J., Milagro, F. I. & Martinez, J. A. Genetic manipulation in nutrition, metabolism, and obesity research. Nutr. Rev. 62, 321–330 (2004).

    Article  PubMed  Google Scholar 

  89. Phillips, C. M. Nutrigenetics and metabolic disease: current status and implications for personalised nutrition. Nutrients 5, 32–57 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Lovegrove, J. A. & Gitau, R. Nutrigenetics and CVD: what does the future hold? Proc. Nutr. Soc. 67, 206–213 (2008).

    Article  CAS  PubMed  Google Scholar 

  91. Moreno-Aliaga, M. J., Santos, J. L., Marti, A. & Martinez, J. A. Does weight loss prognosis depend on genetic make-up? Obes. Rev. 6, 155–168 (2005).

    Article  CAS  PubMed  Google Scholar 

  92. Qi, Q. et al. Sugar-sweetened beverages and genetic risk of obesity. N. Engl. J. Med. 367, 1387–1396 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Qi, Q. et al. Fried food consumption, genetic risk, and body mass index: gene-diet interaction analysis in three US cohort studies. BMJ 348, g1610 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  94. Zhang, X. et al. FTO genotype and 2-year change in body composition and fat distribution in response to weight-loss diets: the POUNDS LOST Trial. Diabetes 61, 3005–3011 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Qi, Q., Bray, G. A., Hu, F. B., Sacks, F. M. & Qi, L. Weight-loss diets modify glucose-dependent insulinotropic polypeptide receptor rs2287019 genotype effects on changes in body weight, fasting glucose, and insulin resistance: the Preventing Overweight Using Novel Dietary Strategies trial. Am. J. Clin. Nutr. 95, 506–513 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Mattei, J., Qi, Q., Hu, F. B., Sacks, F. M. & Qi, L. TCF7L2 genetic variants modulate the effect of dietary fat intake on changes in body composition during a weight-loss intervention. Am. J. Clin. Nutr. 96, 1129–1136 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Stocks, T. et al. TFAP2B influences the effect of dietary fat on weight loss under energy restriction. PLoS One 7, e43212 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Grau, K. et al. TCF7L2 rs7903146-macronutrient interaction in obese individuals' responses to a 10-wk randomized hypoenergetic diet. Am. J. Clin. Nutr. 91, 472–479 (2010).

    Article  CAS  PubMed  Google Scholar 

  99. Haupt, A. et al. Gene variants of TCF7L2 influence weight loss and body composition during lifestyle intervention in a population at risk for type 2 diabetes. Diabetes 59, 747–750 (2010).

    Article  CAS  PubMed  Google Scholar 

  100. Kim, J. Y. & Lee, S. S. The effects of uncoupling protein 1 and β3-adrenergic receptor gene polymorphisms on weight loss and lipid profiles in obese women. Int. J. Vitam. Nutr. Res. 80, 87–96 (2010).

    Article  CAS  PubMed  Google Scholar 

  101. Cameron, J. D. et al. The TaqIA RFLP is associated with attenuated intervention-induced body weight loss and increased carbohydrate intake in post-menopausal obese women. Appetite 60, 111–116 (2013).

    Article  CAS  PubMed  Google Scholar 

  102. Vakili, S. & Caudill, M. A. Personalized nutrition: nutritional genomics as a potential tool for targeted medical nutrition therapy. Nutr. Rev. 65, 301–315 (2007).

    Article  PubMed  Google Scholar 

  103. Milagro, F. I., Mansego, M. L., De Miguel, C. & Martinez, J. A. Dietary factors, epigenetic modifications and obesity outcomes: progresses and perspectives. Mol. Aspects Med. 34, 782–812 (2013).

    Article  CAS  PubMed  Google Scholar 

  104. Campion, J., Milagro, F. I. & Martinez, J. A. Individuality and epigenetics in obesity. Obes. Rev. 10, 383–392 (2009).

    Article  CAS  PubMed  Google Scholar 

  105. Burdge, G. C., Hoile, S. P. & Lillycrop, K. A. Epigenetics: are there implications for personalised nutrition? Curr. Opin. Clin. Nutr. Metab. Care 15, 442–447 (2012).

    Article  CAS  PubMed  Google Scholar 

  106. Corella, D. & Ordovas, J. M. Can genotype be used to tailor treatment of obesity? State of the art and guidelines for future studies and applications. Minerva Endocrinol. 38, 219–235 (2013).

    CAS  PubMed  Google Scholar 

  107. Fallaize, R., Macready, A. L., Butler, L. T., Ellis, J. A. & Lovegrove, J. A. An insight into the public acceptance of nutrigenomic-based personalised nutrition. Nutr. Res. Rev. 26, 39–48 (2013).

    Article  CAS  PubMed  Google Scholar 

  108. Castle, D. & DeBusk, R. The electronic health record, genetic information, and patient privacy. J. Am. Diet. Assoc. 108, 1372–1374 (2008).

    Article  PubMed  Google Scholar 

  109. Goldsmith, L., Jackson, L., O'Connor, A. & Skirton, H. Direct-to-consumer genomic testing from the perspective of the health professional: a systematic review of the literature. J. Community Genet. 4, 169–180 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  110. Bouwman, L., Te Molder, H. & Hiddink, G. Patients, evidence and genes: an exploration of GPs' perspectives on gene-based personalized nutrition advice. Fam. Pract. 25, i116–i122 (2008).

    Article  PubMed  Google Scholar 

  111. Jackson, L., Goldsmith, L. & Skirton, H. Guidance for patients considering direct-to-consumer genetic testing and health professionals involved in their care: development of a practical decision tool. Fam. Pract. 31, 341–348 (2014).

    Article  PubMed  Google Scholar 

  112. Rubio-Aliaga, I., Kochhar, S. & Silva-Zolezzi, I. Biomarkers of nutrient bioactivity and efficacy: a route toward personalized nutrition. J. Clin. Gastroenterol. 46, 545–554 (2012).

    Article  CAS  PubMed  Google Scholar 

  113. Hendriks, H. F. Use of nutrigenomics endpoints in dietary interventions. Proc. Nutr. Soc. 72, 348–351 (2013).

    Article  CAS  PubMed  Google Scholar 

  114. Hesketh, J. Personalised nutrition: how far has nutrigenomics progressed? Eur. J. Clin. Nutr. 67, 430–435 (2013).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

J.A.M. and S.N.-C. are grateful to CIBERobn (CIBER of Physiopathology of Obesity, Instituto de Salud Carlos III, 28,029 Madrid, Spain) for financial support of their research.

Author information

Authors and Affiliations

Authors

Contributions

J.A.M. and S.N.-C. researched data for the article and wrote the manuscript; J.A.M, S.N.-C., W.H.M.S. and A.A. provided substantial contributions to discussions of the content, and reviewed or edited the manuscript before submission.

Corresponding author

Correspondence to J. Alfredo Martinez.

Ethics declarations

Competing interests

W.H.M.S. declares that he has acted as a consultant for Nutrition and Santé, is a member of the advisory boards of Food for Health and International Life Sciences Institute Research Foundation, is a member of review panels for INRA (French National Institute for Agricultural Research), MRC (Medical Research Council) and NordForsk, and that he is employed part-time as Corporate Scientist in Nutrition at Dutch States Mines. A.A. declares that he has acted as a consultant or member of the advisory boards for the following companies and organizations: Beer Knowledge Institute, Global Dairy Platform, McCain, McDonalds and Pathway Genomics, and he has received lecture fees from Arla Foods and Campina. W.H.M.S. declares that his institution (Maastricht University Medical Centre) receives research support from the Dutch Dairy Foundation and Novo Nordisk and A.A. declares that his department at the University of Copenhagen has received research support from more than 100 food companies. J.A.M. and S.N.-C. declare no competing interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Martinez, J., Navas-Carretero, S., Saris, W. et al. Personalized weight loss strategies—the role of macronutrient distribution. Nat Rev Endocrinol 10, 749–760 (2014). https://doi.org/10.1038/nrendo.2014.175

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrendo.2014.175

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing