Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Osteoporosis in men

Abstract

Osteoporotic fractures in older men (>50 years of age) are common and associated with considerable mortality and morbidity, but osteoporosis in men is under-recognized and undertreated. Secondary osteoporosis is also common in men, and causes include androgen deprivation therapy for prostate cancer, glucocorticoid treatment and alcohol excess. Clinical trials have demonstrated the efficacy of pharmacological osteoporosis treatments in men in terms of increasing BMD and decreasing levels of bone turnover markers; however, few trials have included fracture reduction end points. This Review will consider the pathophysiology of osteoporosis in men and the evidence for testing and treatment. The aims of the Review are to inform clinical practice, to discuss the current evidence base and to highlight the 2012 Endocrine Society clinical practice guidelines on osteoporosis in men.

Key Points

  • Fractures in men contribute considerably to the global morbidity and mortality of osteoporosis

  • Osteoporosis in men is currently under-recognized and undertreated

  • Current controversies include whether the male or female BMD reference range should be used for diagnosis of osteoporosis in men and the value of population screening for osteoporosis in men

  • Most osteoporosis treatments are licensed for use in men on the basis of BMD data rather than fracture data

  • The 2012 Endocrine Society guidelines on osteoporosis in men make recommendations on BMD testing and treatments, including advice on the use of testosterone in hypogonadal men at risk of fracture

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Fracture incidence rises with increasing age in men and women.
Figure 2: Bone changes with ageing.

Similar content being viewed by others

References

  1. NIH Consensus Development Panel on Osteoporosis Prevention, Diagnosis and Therapy. Osteoporosis prevention, diagnosis, and therapy. JAMA 285, 785–795 (2001).

  2. Sambrook, P. & Cooper, C. Osteoporosis. Lancet 367, 2010–2018 (2006).

    Article  CAS  PubMed  Google Scholar 

  3. Johnell, O. & Kanis, J. A. An estimate of the worldwide prevalence and disability associated with osteoporotic fractures. Osteoporos. Int. 17, 1726–1733 (2006).

    Article  CAS  PubMed  Google Scholar 

  4. Haentjens, P. et al. Meta-analysis: excess mortality after hip fracture among older women and men. Ann. Intern. Med. 152, 380–390 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  5. Bliuc, D., Nguyen, N. D., Nguyen, T. V., Eisman, J. A. & Center, J. R. Compound risk of high mortality following osteoporotic fracture and re-fracture in elderly women and men. J. Bone Miner. Res. http://dx.doi.org/10.1002/jbmr.1968.

  6. Looker, A. C. et al. Prevalence of low femoral bone density in older U. S. adults from NHANES III. J. Bone Miner. Res. 12, 1761–1768 (1997).

    Article  CAS  PubMed  Google Scholar 

  7. Kiebzak, G. M. et al. Undertreatment of osteoporosis in men with hip fracture. Arch. Intern. Med. 162, 2217–2222 (2002).

    Article  PubMed  Google Scholar 

  8. Feldstein, A. C. et al. The near absence of osteoporosis treatment in older men with fractures. Osteoporos. Int. 16, 953–962 (2005).

    Article  PubMed  Google Scholar 

  9. Bours, S. P. et al. Contributors to secondary osteoporosis and metabolic bone diseases in patients presenting with a clinical fracture. J. Clin. Endocrinol. Metab. 96, 1360–1367 (2011).

    Article  CAS  PubMed  Google Scholar 

  10. Ryan, C. S., Petkov, V. I. & Adler, R. A. Osteoporosis in men: the value of laboratory testing. Osteoporos. Int. 22, 1845–1853 (2011).

    Article  CAS  PubMed  Google Scholar 

  11. Nelson, R. E., Nebeker, J. R., Sauer, B. C. & LaFleur, J. Factors associated with screening or treatment initiation among male United States veterans at risk for osteoporosis fracture. Bone 50, 983–988 (2012).

    Article  PubMed  Google Scholar 

  12. Watts, N. B. et al. Osteoporosis in men: an Endocrine Society clinical practice guideline. J. Clin. Endocrinol. Metab. 97, 1802–1822 (2012).

    Article  CAS  PubMed  Google Scholar 

  13. Walsh, J. S., Paggiosi, M. A. & Eastell, R. Cortical consolidation of the radius and tibia in young men and women. J. Clin. Endocrinol. Metab. 97, 3342–3348 (2012).

    Article  CAS  PubMed  Google Scholar 

  14. Berger, C. et al. Peak bone mass from longitudinal data: implications for the prevalence, pathophysiology, and diagnosis of osteoporosis. J. Bone Miner. Res. 25, 1948–1957 (2010).

    Article  PubMed  Google Scholar 

  15. Cohen-Solal, M. E., Baudoin, C., Omouri, M., Kuntz, D. & De Vernejoul, M. C. Bone mass in middle-aged osteoporotic men and their relatives: familial effect. J. Bone Miner. Res. 13, 1909–1914 (1998).

    Article  CAS  PubMed  Google Scholar 

  16. Estrada, K. et al. Genome-wide meta-analysis identifies 56 bone mineral density loci and reveals 14 loci associated with risk of fracture. Nat. Genet. 44, 491–501 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Russell, M., Breggia, A., Mendes, N., Klibanski, A. & Misra, M. Growth hormone is positively associated with surrogate markers of bone turnover during puberty. Clin. Endocrinol. (Oxf.) 75, 482–488 (2011).

    Article  CAS  Google Scholar 

  18. Kindblom, J. M. et al. Pubertal timing predicts previous fractures and BMD in young adult men: the GOOD study. J. Bone Miner. Res. 21, 790–795 (2006).

    Article  PubMed  Google Scholar 

  19. Lorentzon, M., Swanson, C., Andersson, N., Mellstrom, D. & Ohlsson, C. Free testosterone is a positive, whereas free estradiol is a negative, predictor of cortical bone size in young Swedish men: the GOOD study. J. Bone Miner. Res. 20, 1334–1341 (2005).

    Article  CAS  PubMed  Google Scholar 

  20. Gilsanz, V. et al. Gender differences in vertebral sizes in adults: biomechanical implications. Radiology 190, 678–682 (1994).

    Article  CAS  PubMed  Google Scholar 

  21. Gilsanz, V. et al. Gender differences in vertebral body sizes in children and adolescents. Radiology 190, 673–677 (1994).

    Article  CAS  PubMed  Google Scholar 

  22. Eleftheriou, K. I. et al. Bone structure and geometry in young men: the influence of smoking, alcohol intake and physical activity. Bone 52, 17–26 (2013).

    Article  PubMed  Google Scholar 

  23. Bonjour, J. P., Chevalley, T., Ferrari, S. & Rizzoli, R. The importance and relevance of peak bone mass in the prevalence of osteoporosis. Salud Publica Mex. 51 (Suppl. 1), S5–S17 (2009).

    PubMed  Google Scholar 

  24. Fatayerji, D. & Eastell, R. Age-related changes in bone turnover in men. J. Bone Miner. Res. 14, 1203–1210 (1999).

    Article  CAS  PubMed  Google Scholar 

  25. Clarke, B. L. et al. Predictors of bone mineral density in aging healthy men varies by skeletal site. Calcif. Tissue Int. 70, 137–145 (2002).

    Article  CAS  PubMed  Google Scholar 

  26. Riggs, B. L. et al. A population-based assessment of rates of bone loss at multiple skeletal sites: evidence for substantial trabecular bone loss in young adult women and men. J. Bone Miner. Res. 23, 205–214 (2008).

    Article  PubMed  Google Scholar 

  27. Riggs, B. L. et al. Population-based study of age and sex differences in bone volumetric density, size, geometry, and structure at different skeletal sites. J. Bone Miner. Res. 19, 1945–1954 (2004).

    Article  PubMed  Google Scholar 

  28. Seeman, E. Structural basis of growth-related gain and age-related loss of bone strength. Rheumatology (Oxford) 47 (Suppl. 4), iv2–iv8 (2008).

    Google Scholar 

  29. Khosla, S. et al. Effects of sex and age on bone microstructure at the ultradistal radius: a population-based noninvasive in vivo assessment. J. Bone Miner. Res. 21, 124–131 (2006).

    Article  PubMed  Google Scholar 

  30. Burghardt, A. J., Kazakia, G. J., Ramachandran, S., Link, T. M. & Majumdar, S. Age- and gender-related differences in the geometric properties and biomechanical significance of intracortical porosity in the distal radius and tibia. J. Bone Miner. Res. 25, 983–993 (2010).

    Article  CAS  PubMed  Google Scholar 

  31. Aaron, J. E., Makins, N. B. & Sagreiya, K. The microanatomy of trabecular bone loss in normal aging men and women. Clin. Orthop. Relat. Res. 215, 260–271 (1987).

    Google Scholar 

  32. Falahati-Nini, A. et al. Relative contributions of testosterone and estrogen in regulating bone resorption and formation in normal elderly men. J. Clin. Invest. 106, 1553–1560 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Orwoll, E. et al. Testosterone and estradiol among older men. J. Clin. Endocrinol. Metab. 91, 1336–1344 (2006).

    Article  CAS  PubMed  Google Scholar 

  34. Khosla, S., Melton, L. J. 3rd, Atkinson, E. J. & O'Fallon, W. M. Relationship of serum sex steroid levels to longitudinal changes in bone density in young versus elderly men. J. Clin. Endocrinol. Metab. 86, 3555–3561 (2001).

    Article  CAS  PubMed  Google Scholar 

  35. Mellstrom, D. et al. Older men with low serum estradiol and high serum SHBG have an increased risk of fractures. J. Bone Miner. Res. 23, 1552–1560 (2008).

    Article  PubMed  Google Scholar 

  36. Nair, K. S. et al. DHEA in elderly women and DHEA or testosterone in elderly men. N. Engl. J. Med. 355, 1647–1659 (2006).

    Article  CAS  PubMed  Google Scholar 

  37. von Mühlen, D., Laughlin, G. A., Kritz-Silverstein, D., Bergstrom, J. & Bettencourt, R. Effect of dehydroepiandrosterone supplementation on bone mineral density, bone markers, and body composition in older adults: the DAWN trial. Osteoporos. Int. 19, 699–707 (2008).

    Article  CAS  PubMed  Google Scholar 

  38. Ho, K. Y. et al. Effects of sex and age on the 24-hour profile of growth hormone secretion in man: importance of endogenous estradiol concentrations. J. Clin. Endocrinol. Metab. 64, 51–58 (1987).

    Article  CAS  PubMed  Google Scholar 

  39. Tobias, J. H., Chow, J. W. & Chambers, T. J. Opposite effects of insulin-like growth factor-I on the formation of trabecular and cortical bone in adult female rats. Endocrinology 131, 2387–2392 (1992).

    Article  CAS  PubMed  Google Scholar 

  40. Szulc, P., Joly-Pharaboz, M. O., Marchand, F. & Delmas, P. D. Insulin-like growth factor I is a determinant of hip bone mineral density in men less than 60 years of age: MINOS study. Calcif. Tissue Int. 74, 322–329 (2004).

    Article  CAS  PubMed  Google Scholar 

  41. Pfeilschifter, J. et al. Relationship between circulating insulin-like growth factor components and sex hormones in a population-based sample of 50- to 80-year-old men and women. J. Clin. Endocrinol. Metab. 81, 2534–2540 (1996).

    CAS  PubMed  Google Scholar 

  42. Epstein, S. et al. The influence of age on bone mineral regulating hormones. Bone 7, 421–425 (1986).

    Article  CAS  PubMed  Google Scholar 

  43. Boonen, S., Vanderschueren, D., Geusens, P. & Bouillon, R. Age-associated endocrine deficiencies as potential determinants of femoral neck (type II) osteoporotic fracture occurrence in elderly men. Int. J. Androl. 20, 134–143 (1997).

    Article  CAS  PubMed  Google Scholar 

  44. Cooper, C. et al. Frailty and sarcopenia: definitions and outcome parameters. Osteoporos. Int. 23, 1839–1848 (2012).

    Article  CAS  PubMed  Google Scholar 

  45. Verschueren, S. et al. Sarcopenia and its relationship with bone mineral density in middle-aged and elderly European men. Osteoporos. Int. 24, 87–98 (2013).

    Article  CAS  PubMed  Google Scholar 

  46. Digirolamo, D. J., Kiel, D. P. & Esser, K. A. Bone and skeletal muscle: neighbors with close ties. J. Bone Miner. Res. 28, 1509–1518 (2013).

    Article  PubMed  Google Scholar 

  47. Drake, M. T. et al. Clinical review. Risk factors for low bone mass-related fractures in men: a systematic review and meta-analysis. J. Clin. Endocrinol. Metab. 97, 1861–1870 (2012).

    Article  CAS  PubMed  Google Scholar 

  48. Edwards, M. H. et al. Clinical risk factors, bone density and fall history in the prediction of incident fracture among men and women. Bone 52, 541–547 (2013).

    Article  CAS  PubMed  Google Scholar 

  49. Smith, M. R. Androgen deprivation therapy for prostate cancer: new concepts and concerns. Curr. Opin. Endocrinol. Diabetes Obes. 14, 247–254 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  50. Maillefert, J. F. et al. Bone mineral density in men treated with synthetic gonadotropin-releasing hormone agonists for prostatic carcinoma. J. Urol. 161, 1219–1222 (1999).

    Article  CAS  PubMed  Google Scholar 

  51. Mittan, D. et al. Bone loss following hypogonadism in men with prostate cancer treated with GnRH analogs. J. Clin. Endocrinol. Metab. 87, 3656–3661 (2002).

    Article  CAS  PubMed  Google Scholar 

  52. Shahinian, V. B., Kuo, Y. F., Freeman, J. L. & Goodwin, J. S. Risk of fracture after androgen deprivation for prostate cancer. N. Engl. J. Med. 352, 154–164 (2005).

    Article  CAS  PubMed  Google Scholar 

  53. Frost, M., Gudex, C., Rubin, K. H., Brixen, K. & Abrahamsen, B. Pattern of use of DXA scans in men: a cross-sectional, population-based study. Osteoporos. Int. 23, 183–191 (2012).

    Article  CAS  PubMed  Google Scholar 

  54. Kanis, J. A., Johnell, O., Oden, A., De Laet, C. & Mellstrom, D. Epidemiology of osteoporosis and fracture in men. Calcif. Tissue Int. 75, 90–99 (2004).

    Article  CAS  PubMed  Google Scholar 

  55. Schousboe, J. T. et al. Cost-effectiveness of bone densitometry followed by treatment of osteoporosis in older men. JAMA 298, 629–637 (2007).

    Article  CAS  PubMed  Google Scholar 

  56. Schuit, S. C. et al. Fracture incidence and association with bone mineral density in elderly men and women: the Rotterdam Study. Bone 34, 195–202 (2004).

    Article  CAS  PubMed  Google Scholar 

  57. Hansen, K. E. et al. Adherence to alendronate in male veterans. Osteoporos. Int. 19, 349–356 (2008).

    Article  CAS  PubMed  Google Scholar 

  58. Ahmed, L. A. et al. Progressively increasing fracture risk with advancing age following initial incident fragility fracture. The Tromsø Study. J. Bone Miner. Res. http://dx.doi.org/10.1002/jbmr.1952.

  59. Langsetmo, L. et al. Geographic variation of bone mineral density and selected risk factors for prediction of incident fracture among Canadians 50 and older. Bone 43, 672–678 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  60. Ettinger, B., Ray, G. T., Pressman, A. R. & Gluck, O. Limb fractures in elderly men as indicators of subsequent fracture risk. Arch. Intern. Med. 163, 2741–2747 (2003).

    Article  PubMed  Google Scholar 

  61. Grossman, J. M. et al. American College of Rheumatology 2010 recommendations for the prevention and treatment of glucocorticoid-induced osteoporosis. Arthritis Care Res. (Hoboken) 62, 1515–1526 (2010).

    Article  Google Scholar 

  62. Lekamwasam, S. et al. A framework for the development of guidelines for the management of glucocorticoid-induced osteoporosis. Osteoporos. Int. 23, 2257–2276 (2012).

    Article  CAS  PubMed  Google Scholar 

  63. Cummings, S. R. et al. BMD and risk of hip and nonvertebral fractures in older men: a prospective study and comparison with older women. J. Bone Miner. Res. 21, 1550–1556 (2006).

    Article  PubMed  Google Scholar 

  64. Liu, G. et al. Effect of osteoarthritis in the lumbar spine and hip on bone mineral density and diagnosis of osteoporosis in elderly men and women. Osteoporos. Int. 7, 564–569 (1997).

    Article  CAS  PubMed  Google Scholar 

  65. Mosekilde, L. Primary hyperparathyroidism and the skeleton. Clin. Endocrinol. (Oxf.) 69, 1–19 (2008).

    Article  CAS  Google Scholar 

  66. Bruder, J. M., Ma, J. Z., Basler, J. W. & Welch, M. D. Prevalence of osteopenia and osteoporosis by central and peripheral bone mineral density in men with prostate cancer during androgen-deprivation therapy. Urology 67, 152–155 (2006).

    Article  PubMed  Google Scholar 

  67. Gärdsell, P., Johnell, O. & Nilsson, B. E. The predictive value of forearm bone mineral content measurements in men. Bone 11, 229–232 (1990).

    Article  PubMed  Google Scholar 

  68. Melton, L. J. 3rd, Atkinson, E. J., O'Connor, M. K., O'Fallon, W. M. & Riggs, B. L. Bone density and fracture risk in men. J. Bone Miner. Res. 13, 1915–1923 (1998).

    Article  PubMed  Google Scholar 

  69. Baim, S. et al. Official Positions of the International Society for Clinical Densitometry and executive summary of the 2007 ISCD Position Development Conference. J. Clin. Densitom. 11, 75–91 (2008).

    Article  PubMed  Google Scholar 

  70. Kanis, J. A. et al. Towards a diagnostic and therapeutic consensus in male osteoporosis. Osteoporos. Int. 22, 2789–2798 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Kanis, J. A. et al. The use of clinical risk factors enhances the performance of BMD in the prediction of hip and osteoporotic fractures in men and women. Osteoporos. Int. 18, 1033–1046 (2007).

    Article  CAS  PubMed  Google Scholar 

  72. Ettinger, B. et al. Performance of FRAX in a cohort of community-dwelling, ambulatory older men: the Osteoporotic Fractures in Men (MrOS) study. Osteoporos. Int. 24, 1185–1193 (2013).

    Article  CAS  PubMed  Google Scholar 

  73. Kuet, K. P., Charlesworth, D. & Peel, N. F. Vertebral fracture assessment scans enhance targeting of investigations and treatment within a fracture risk assessment pathway. Osteoporos. Int. 24, 1007–1014 (2013).

    Article  PubMed  Google Scholar 

  74. Schousboe, J. T. et al. Vertebral Fracture Assessment: the 2007 ISCD Official Positions. J. Clin. Densitom. 11, 92–108 (2008).

    Article  PubMed  Google Scholar 

  75. de Kam, D., Smulders, E., Weerdesteyn, V. & Smits-Engelsman, B. C. Exercise interventions to reduce fall-related fractures and their risk factors in individuals with low bone density: a systematic review of randomized controlled trials. Osteoporos. Int. 20, 2111–2125 (2009).

    Article  CAS  PubMed  Google Scholar 

  76. Michaëlsson, K. et al. Leisure physical activity and the risk of fracture in men. PLoS Med. 4, e199 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  77. Kukuljan, S. et al. Independent and combined effects of calcium-vitamin D3 and exercise on bone structure and strength in older men: an 18-month factorial design randomized controlled trial. J. Clin. Endocrinol. Metab. 96, 955–963 (2011).

    Article  CAS  PubMed  Google Scholar 

  78. Chang, J. T. et al. Interventions for the prevention of falls in older adults: systematic review and meta-analysis of randomised clinical trials. BMJ 328, 680 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  79. Cawthon, P. M. et al. Alcohol intake and its relationship with bone mineral density, falls, and fracture risk in older men. J. Am. Geriatr. Soc. 54, 1649–1657 (2006).

    Article  PubMed  Google Scholar 

  80. Kanis, J. A. et al. Alcohol intake as a risk factor for fracture. Osteoporos. Int. 16, 737–742 (2005).

    Article  PubMed  Google Scholar 

  81. Kanis, J. A. et al. Smoking and fracture risk: a meta-analysis. Osteoporos. Int. 16, 155–162 (2005).

    Article  CAS  PubMed  Google Scholar 

  82. Hannan, M. T. et al. Risk factors for longitudinal bone loss in elderly men and women: the Framingham Osteoporosis Study. J. Bone Miner. Res. 15, 710–720 (2000).

    Article  CAS  PubMed  Google Scholar 

  83. Dawson-Hughes, B., Harris, S. S., Krall, E. A. & Dallal, G. E. Effect of calcium and vitamin D supplementation on bone density in men and women 65 years of age or older. N. Engl. J. Med. 337, 670–676 (1997).

    Article  CAS  PubMed  Google Scholar 

  84. Daly, R. M., Brown, M., Bass, S., Kukuljan, S. & Nowson, C. Calcium- and vitamin D3-fortified milk reduces bone loss at clinically relevant skeletal sites in older men: a 2-year randomized controlled trial. J. Bone Miner. Res. 21, 397–405 (2006).

    Article  CAS  PubMed  Google Scholar 

  85. Wang, L., Manson, J. E. & Sesso, H. D. Calcium intake and risk of cardiovascular disease: a review of prospective studies and randomized clinical trials. Am. J. Cardiovasc. Drugs 12, 105–116 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Ross, A. C. et al. The 2011 report on dietary reference intakes for calcium and vitamin D from the Institute of Medicine: what clinicians need to know. J. Clin. Endocrinol. Metab. 96, 53–58 (2011).

    Article  CAS  PubMed  Google Scholar 

  87. Holick, M. F. et al. Evaluation, treatment, and prevention of vitamin D deficiency: an Endocrine Society clinical practice guideline. J. Clin. Endocrinol. Metab. 96, 1911–1930 (2011).

    Article  CAS  PubMed  Google Scholar 

  88. Bischoff-Ferrari, H. A. et al. Prevention of nonvertebral fractures with oral vitamin D and dose dependency: a meta-analysis of randomized controlled trials. Arch. Intern. Med. 169, 551–561 (2009).

    Article  CAS  PubMed  Google Scholar 

  89. Orwoll, E. et al. Alendronate for the treatment of osteoporosis in men. N. Engl. J. Med. 343, 604–610 (2000).

    Article  CAS  PubMed  Google Scholar 

  90. Orwoll, E. S. et al. The effect of teriparatide [human parathyroid hormone (1–34)] therapy on bone density in men with osteoporosis. J. Bone Miner. Res. 18, 9–17 (2003).

    Article  CAS  PubMed  Google Scholar 

  91. Boonen, S. et al. Once-weekly risedronate in men with osteoporosis: results of a 2-year, placebo-controlled, double-blind, multicenter study. J. Bone Miner. Res. 24, 719–725 (2009).

    Article  CAS  PubMed  Google Scholar 

  92. Murad, M. H. et al. Clinical review. Comparative effectiveness of drug treatments to prevent fragility fractures: a systematic review and network meta-analysis. J. Clin. Endocrinol. Metab. 97, 1871–1880 (2012).

    Article  CAS  PubMed  Google Scholar 

  93. Tosteson, A. N. et al. Cost-effective osteoporosis treatment thresholds: the United States perspective. Osteoporos. Int. 19, 437–447 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Saag, K. G. et al. Alendronate for the prevention and treatment of glucocorticoid-induced osteoporosis. Glucocorticoid-Induced Osteoporosis Intervention Study Group. N. Engl. J. Med. 339, 292–299 (1998).

    Article  CAS  PubMed  Google Scholar 

  95. Saag, K. G. et al. Effects of teriparatide versus alendronate for treating glucocorticoid-induced osteoporosis: thirty-six-month results of a randomized, double-blind, controlled trial. Arthritis Rheum. 60, 3346–3355 (2009).

    Article  CAS  PubMed  Google Scholar 

  96. Ringe, J. D., Faber, H., Farahmand, P. & Dorst, A. Efficacy of risedronate in men with primary and secondary osteoporosis: results of a 1-year study. Rheumatol. Int. 26, 427–431 (2006).

    Article  CAS  PubMed  Google Scholar 

  97. Orwoll, E. S. et al. Efficacy and safety of a once-yearly i.v. Infusion of zoledronic acid 5 mg versus a once-weekly 70-mg oral alendronate in the treatment of male osteoporosis: a randomized, multicenter, double-blind, active-controlled study. J. Bone Miner. Res. 25, 2239–2250 (2010).

    Article  CAS  PubMed  Google Scholar 

  98. Boonen, S. et al. Fracture risk and zoledronic acid therapy in men with osteoporosis. N. Engl. J. Med. 367, 1714–1723 (2012).

    Article  CAS  PubMed  Google Scholar 

  99. Lyles, K. W. et al. Zoledronic acid and clinical fractures and mortality after hip fracture. N. Engl. J. Med. 357, 1799–1809 (2007).

    Article  CAS  PubMed  Google Scholar 

  100. Greenspan, S. L., Nelson, J. B., Trump, D. L. & Resnick, N. M. Effect of once-weekly oral alendronate on bone loss in men receiving androgen deprivation therapy for prostate cancer: a randomized trial. Ann. Intern. Med. 146, 416–424 (2007).

    Article  PubMed  Google Scholar 

  101. Smith, M. R. et al. Randomized controlled trial of zoledronic acid to prevent bone loss in men receiving androgen deprivation therapy for nonmetastatic prostate cancer. J. Urol. 169, 2008–2012 (2003).

    Article  CAS  PubMed  Google Scholar 

  102. Saad, F. et al. A randomized, placebo-controlled trial of zoledronic acid in patients with hormone-refractory metastatic prostate carcinoma. J. Natl Cancer Inst. 94, 1458–1468 (2002).

    Article  CAS  PubMed  Google Scholar 

  103. Finkelstein, J. S. et al. The effects of parathyroid hormone, alendronate, or both in men with osteoporosis. N. Engl. J. Med. 349, 1216–1226 (2003).

    Article  CAS  PubMed  Google Scholar 

  104. Smith, M. R. et al. Denosumab in men receiving androgen-deprivation therapy for prostate cancer. N. Engl. J. Med. 361, 745–755 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Smith, M. R. et al. Denosumab and bone-metastasis-free survival in men with castration-resistant prostate cancer: results of a phase 3, randomised, placebo-controlled trial. Lancet 379, 39–46 (2012).

    Article  CAS  PubMed  Google Scholar 

  106. Orwoll, E. et al. A randomized, placebo-controlled study of the effects of denosumab for the treatment of men with low bone mineral density. J. Clin. Endocrinol. Metab. 97, 3161–3169 (2012).

    Article  CAS  PubMed  Google Scholar 

  107. Kaufman, J. M. et al. Efficacy and safety of strontium ranelate in the treatment of osteoporosis in men. J. Clin. Endocrinol. Metab. 98, 592–601 (2013).

    Article  CAS  PubMed  Google Scholar 

  108. Ringe, J. D., Dorst, A. & Farahmand, P. Efficacy of strontium ranelate on bone mineral density in men with osteoporosis. Arzneimittelforschung 60, 267–272 (2010).

    CAS  PubMed  Google Scholar 

  109. Hiligsmann, M., Ben Sedrine, W., Bruyere, O. & Reginster, J. Y. Cost-effectiveness of strontium ranelate in the treatment of male osteoporosis. Osteoporos. Int. 24, 2291–2300 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Bhasin, S. et al. Testosterone therapy in men with androgen deficiency syndromes: an Endocrine Society clinical practice guideline. J. Clin. Endocrinol. Metab. 95, 2536–2559 (2010).

    Article  CAS  PubMed  Google Scholar 

  111. Basaria, S. et al. Adverse events associated with testosterone administration. N. Engl. J. Med. 363, 109–122 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Fink, H. A. et al. Association of testosterone and estradiol deficiency with osteoporosis and rapid bone loss in older men. J. Clin. Endocrinol. Metab. 91, 3908–3915 (2006).

    Article  CAS  PubMed  Google Scholar 

  113. Nguyen, N. D., Ahlborg, H. G., Center, J. R., Eisman, J. A. & Nguyen, T. V. Residual lifetime risk of fractures in women and men. J. Bone Miner. Res. 22, 781–788 (2007).

    Article  PubMed  Google Scholar 

  114. Snyder, P. J. et al. Effect of testosterone treatment on bone mineral density in men over 65 years of age. J. Clin. Endocrinol. Metab. 84, 1966–1972 (1999).

    CAS  PubMed  Google Scholar 

  115. Basurto, L. et al. Effect of testosterone therapy on lumbar spine and hip mineral density in elderly men. Aging Male 11, 140–145 (2008).

    Article  CAS  PubMed  Google Scholar 

  116. Christmas, C. et al. Growth hormone and sex steroid effects on bone metabolism and bone mineral density in healthy aged women and men. J. Gerontol. A Biol. Sci. Med. Sci. 57, M12–M18 (2002).

    Article  PubMed  Google Scholar 

  117. Canalis, E. Update in new anabolic therapies for osteoporosis. J. Clin. Endocrinol. Metab. 95, 1496–1504 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Rachner, T. D., Khosla, S. & Hofbauer, L. C. Osteoporosis: now and the future. Lancet 377, 1276–1287 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Clarke, B. L. & Khosla, S. New selective estrogen and androgen receptor modulators. Curr. Opin. Rheumatol. 21, 374–379 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Both authors contributed equally to all aspects of this manuscript.

Corresponding author

Correspondence to Jennifer S. Walsh.

Ethics declarations

Competing interests

Dr Walsh has received speaker fees from Eli Lilly. R. Eastell declares that he receives or has recently received grant support from the following companies: Amgen, AstraZeneca, Crescent Diagnostics, Eli Lilly, Osteologix, Immunodiagnostic Systems, Nestle Foundation, Nittoboseki, Procter & Gamble, Sanofi-Aventis and Unilever. He has recently received speaker's honoraria and/or travel expenses from the following companies: Amgen, Eli Lilly, Fonterra Brands, GlaxoSmithKline, Medtronics, Novartis, Ono Pharmaceuticals, Procter & Gamble, Roche, Takeda and Unilever. In 2010, he was a consultant for Amgen, AstraZeneca, Chronos, Eli Lilly, Fonterra Brands, GlaxoSmithKline, Immunodiagnostic Systems, Inverness Medical, Johnson & Johnson, Medtronics, Nastech, Nestle, Novartis, Ono Pharmaceuticals, Osteologix, Pfizer, Roche Diagnostics, Sanofi-Aventis, Tethys, Unilever and Unipath. In 2010 he was on the Advisory Board of Procter & Gamble.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Walsh, J., Eastell, R. Osteoporosis in men. Nat Rev Endocrinol 9, 637–645 (2013). https://doi.org/10.1038/nrendo.2013.171

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrendo.2013.171

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing