Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

Rate of neonatal weight gain and effects on adult metabolic health

Abstract

The association of rapid weight gain in early life with increased adiposity and obesity in later life has been established, whereas whether rapid neonatal weight gain predisposes individuals to other risk factors for cardiovascular disease and type 2 diabetes mellitus remains controversial. Gain in weight of >0.5 SD scores in the first 3 months of life (described as rapid weight gain) is associated with an unfavourable health profile in adulthood, and keeping weight gain below this threshold could reduce the risk of cardiovascular and metabolic diseases later in life. Weight gain above this threshold is not necessarily unhealthy if the increase is in proportion with the increase in length. As such, regular measurement of both the weight and length of all infants is important. Preterm infants and those who are born small for gestational age are most likely to have rapid weight gain, and are high-risk populations for unfavourable health profiles in adulthood.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Long-term effects of rapid weight gain in early life.

Similar content being viewed by others

References

  1. World Health Organization. Global atlas on cardiovascular disease prevention and control [online] (2011).

  2. Kraushaar, L. E., Kramer, A. Are we losing the battle against cardiometabolic disease? The case for a paradigm shift in primary prevention. BMC Public Health 9, 64 (2009).

    Article  Google Scholar 

  3. Zylke, J. W. & DeAngelis, C. D. Health promotion and disease prevention in children: it's never too early. JAMA 301, 2270–2271 (2009).

    CAS  PubMed  Google Scholar 

  4. Leunissen, R. W., Kerkhof, G. F., Stijnen, T. & Hokken-Koelega, A. Timing and tempo of first-year rapid growth in relation to cardiovascular and metabolic risk profile in early adulthood. JAMA 301, 2234–2242 (2009).

    Article  CAS  Google Scholar 

  5. Srinivasan, M. & Patel, M. S. Metabolic programming in the immediate postnatal period. Trends Endocrinol. Metab. 19, 146–152 (2008).

    Article  CAS  Google Scholar 

  6. Kerkhof, G. F., Duivenvoorden, H. J., Leunissen, R. W. & Hokken-Koelega, A. C. Pathways leading to atherosclerosis: a structural equation modeling approach in young adults. Hypertension 57, 255–260 (2011).

    Article  CAS  Google Scholar 

  7. Ong, K. K., Ahmed, M. L., Emmett, P. M., Preece, M. A. & Dunger, D. B. Association between postnatal catch-up growth and obesity in childhood: prospective cohort study. BMJ 320, 967–971 (2000).

    Article  CAS  Google Scholar 

  8. Eid, E. E. Follow-up study of physical growth of children who had excessive weight gain in first six months of life. Br. Med. J. 2, 74–76 (1970).

    Article  CAS  Google Scholar 

  9. Stettler, N. et al. Weight gain in the first week of life and overweight in adulthood: a cohort study of European American subjects fed infant formula. Circulation 111, 1897–1903 (2005).

    Article  Google Scholar 

  10. Ekelund, U. et al. Association of weight gain in infancy and early childhood with metabolic risk in young adults. J. Clin. Endocrinol. Metab. 92, 98–103 (2007).

    Article  CAS  Google Scholar 

  11. Chomtho, S. et al. Infant growth and later body composition: evidence from the 4-component model. Am. J. Clin. Nutr. 87, 1776–1784 (2008).

    Article  CAS  Google Scholar 

  12. Larnkjaer, A. et al. Effect of growth in infancy on body composition, insulin resistance, and concentration of appetite hormones in adolescence. Am. J. Clin. Nutr. 91, 1675–1683 (2010).

    Article  CAS  Google Scholar 

  13. Baird, J. et al. Being big or growing fast: systematic review of size and growth in infancy and later obesity. BMJ 331, 929 (2005).

    Article  Google Scholar 

  14. Druet, C. et al. Prediction of childhood obesity by infancy weight gain: an individual-level meta-analysis. Paediatr. Perinat. Epidemiol. 26, 19–26 (2012).

    Article  Google Scholar 

  15. Fabricius-Bjerre, S. et al. Impact of birth weight and early infant weight gain on insulin resistance and associated cardiovascular risk factors in adolescence. PLoS ONE 6, e20595 (2011).

    Article  CAS  Google Scholar 

  16. Eriksson, J. G., Forsen, T. J., Osmond, C. & Barker, D. J. Pathways of infant and childhood growth that lead to type 2 diabetes. Diabetes Care 26, 3006–3010 (2003).

    Article  Google Scholar 

  17. Eriksson, J. G., Osmond, C., Kajantie, E., Forsen, T. J. & Barker, D. J. Patterns of growth among children who later develop type 2 diabetes or its risk factors. Diabetologia 49, 2853–2858 (2006).

    Article  CAS  Google Scholar 

  18. Jarvelin, M. R. et al. Early life factors and blood pressure at age 31 years in the northern Finland birth cohort. Hypertension 44, 838–846 (1966).

    Article  Google Scholar 

  19. Law, C. M. et al. Fetal, infant, and childhood growth and adult blood pressure: a longitudinal study from birth to 22 years of age. Circulation 105, 1088–1092 (2002).

    Article  CAS  Google Scholar 

  20. Kajantie, E., Barker, D. J., Osmond, C., Forsen, T. & Eriksson, J. G. Growth before 2 years of age and serum lipids 60 years later: the Helsinki Birth Cohort study. Int. J. Epidemiol. 37, 280–289 (2008).

    Article  Google Scholar 

  21. Horta, B. L., Victora, C. G., Lima, R. C. & Post, P. Weight gain in childhood and blood lipids in adolescence. Acta Paediatr. 98, 1024–1028 (2009).

    Article  CAS  Google Scholar 

  22. Euser AM, de Wit, C. C., Finken, M. J., Rijken, M. & Wit, J. M. Growth of preterm born children. Horm. Res. 70, 319–328 (2008).

    CAS  PubMed  Google Scholar 

  23. Breukhoven, P. E., Kerkhof, G. F., Willemsen, R. H. & Hokken-Koelega, A. C. Fat mass and lipid profile in young adults born preterm. J. Clin. Endocrinol. Metab. 97, 1294–1302 (2012).

    Article  CAS  Google Scholar 

  24. Barker, D. J., et al. Fetal nutrition and cardiovascular disease in adult life. Lancet 341, 938–941 (1993).

    Article  CAS  Google Scholar 

  25. Leunissen, R. W. et al. Fat mass accumulation during childhood determines insulin sensitivity in early adulthood. J. Clin. Endocrinol. Metab. 93, 445–451 (2008).

    Article  CAS  Google Scholar 

  26. Leunissen, R. W., Stijnen, T. & Hokken-Koelega, A. C. Influence of birth size on body composition in early adulthood: the programming factors for growth and metabolism (PROGRAM)-study. Clin. Endocrinol. (Oxf). 70, 245–251 (2009).

    Article  CAS  Google Scholar 

  27. Leunissen, R. W., Gao, Y., Cianflone, K., Stijnen, T. & Hokken-Koelega, A. C. Growth patterns during childhood and the relationship with acylation-stimulating protein. Clin. Endocrinol. (Oxf). 72, 775–780 (2010).

    Article  CAS  Google Scholar 

  28. Leunissen, R. W., Kerkhof, G. F., Stijnen, T. & Hokken-Koelega, A. C. Fat mass and apolipoprotein E genotype influence serum lipoprotein levels in early adulthood, whereas birth size does not. J. Clin. Endocrinol. Metab. 93, 4307–4314 (2008).

    Article  CAS  Google Scholar 

  29. Leunissen, R. W., Stijnen, T., Boot, A. M. & Hokken-Koelega, A. C. Influence of birth size and body composition on bone mineral density in early adulthood: the PROGRAM study. Clin. Endocrinol. (Oxf). 69, 386–392 (2008).

    Article  CAS  Google Scholar 

  30. Hokken-Koelega, A. C. et al. Children born small for gestational age: do they catch up? Pediatr. Res. 38, 267–271 (1995).

    Article  CAS  Google Scholar 

  31. Levy-Marchal, C. & Czernichow, P. Small for gestational age and the metabolic syndrome: which mechanism is suggested by epidemiological and clinical studies? Horm. Res. 65 (Suppl. 3), 123–130 (2006).

    CAS  PubMed  Google Scholar 

  32. Kerkhof, G. F., Willemsen, R. H., Leunissen, R. W., Breukhoven, P. E. & Hokken-Koelega, A. C. Health profile of young adults born preterm: Negative effects of rapid weight gain in early life. J. Clin. Endocrinol. Metab. (in press).

  33. Singhal, A., Fewtrell, M., Cole, T. J. & Lucas, A. Low nutrient intake and early growth for later insulin resistance in adolescents born preterm. Lancet 361, 1089–1097 (2003).

    Article  CAS  Google Scholar 

  34. Fanaro, S. Which is the ideal target for preterm growth? Minerva Pediatr. 62 (Suppl, 1), 77–82 (2010).

    CAS  PubMed  Google Scholar 

  35. Yeung, M. Y. Postnatal growth, neurodevelopment and altered adiposity after preterm birth--from a clinical nutrition perspective. Acta Paediatr. 95, 909–917 (2006).

    Article  Google Scholar 

  36. Morsing, E., Asard, M., Ley, D., Stjernqvist, K. & Marsal, K. Cognitive function after intrauterine growth restriction and very preterm birth. Pediatrics 127, e874–e882 (2011).

    Article  Google Scholar 

  37. Eriksson, J. G. Early growth, and coronary heart disease and type 2 diabetes: experiences from the Helsinki Birth Cohort Studies. Int. J. Obes. (Lond). 30 (Suppl. 4), S18–S22 (2006).

    Article  Google Scholar 

  38. Li, L., Pinot de Moira, A. & Power, C. Predicting cardiovascular disease risk factors in midadulthood from childhood body mass index: utility of different cutoffs for childhood body mass index. Am. J. Clin. Nutr. 93, 1204–1211 (2011).

    Article  CAS  Google Scholar 

  39. Brisbois, T. D., Farmer, A. P. & McCargar, L. J. Early markers of adult obesity: a review. Obes. Rev. 13, 347–367 (2012).

    Article  CAS  Google Scholar 

  40. Eriksson, J. G. Early growth and coronary heart disease and type 2 diabetes: findings from the Helsinki Birth Cohort Study (HBCS). Am. J. Clin. Nutr. 94 (Suppl. 1), 1799S–1802S (2011).

    Article  CAS  Google Scholar 

  41. Mihrshahi, S., Battistutta, D., Magarey, A. & Daniels, L. A. Determinants of rapid weight gain during infancy: baseline results from the NOURISH randomised controlled trial. BMC Pediatr. 11, 99 (2011).

    Article  Google Scholar 

  42. Herring, S. J., Rose, M. Z., Skouteris, H. & Oken, E. Optimizing weight gain in pregnancy to prevent obesity in women and children. Diabetes Obes. Metab. 14, 195–203 (2012).

    Article  CAS  Google Scholar 

  43. Wijlaars, L. P., Johnson L, van Jaarsveld, C. H. & Wardle, J. Socioeconomic status and weight gain in early infancy. Int. J. Obes. (Lond). 35, 963–970 (2011).

    Article  CAS  Google Scholar 

  44. Oyama, M., Nakamura, K., Tsuchiya, Y. & Yamamoto, M. Unhealthy maternal lifestyle leads to rapid infant weight gain: prevention of future chronic diseases. Tohoku J. Exp. Med. 217, 67–72 (2009).

    Article  Google Scholar 

  45. Barker, D. J. Fetal origins of coronary heart disease. BMJ 311, 171–174 (1995).

    Article  CAS  Google Scholar 

  46. Hattersley, A. T. & Tooke, J. E. The fetal insulin hypothesis: an alternative explanation of the association of low birthweight with diabetes and vascular disease. Lancet 353, 1789–1792 (1999).

    Article  CAS  Google Scholar 

  47. Singhal, A. & Lucas, A. Early origins of cardiovascular disease: is there a unifying hypothesis? Lancet 363, 1642–1645 (2004).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gerthe F. Kerkhof.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kerkhof, G., Hokken-Koelega, A. Rate of neonatal weight gain and effects on adult metabolic health. Nat Rev Endocrinol 8, 689–692 (2012). https://doi.org/10.1038/nrendo.2012.168

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrendo.2012.168

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing