Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Anti-Müllerian hormone: an ovarian reserve marker in primary ovarian insufficiency

Abstract

Primary ovarian insufficiency (POI), also known as premature ovarian failure, is a disorder of infertility characterized by amenorrhoea, low estrogen levels and increased gonadotropin levels in women aged <40 years. POI is the result of premature exhaustion of the follicle pool or can be attributed to follicular dysfunction, for example, owing to mutations in the follicle-stimulating hormone receptor or steroidogenic cell autoimmunity. Moreover, advances in cancer therapeutics over the past decades have led to increasing survival rates for both paediatric and adult malignancies. Given the gonadotoxic effect of many cancer treatments, more women develop POI. A marker that predicts whether women are at risk of POI would, therefore, aid in early diagnosis and fertility counselling. Anti-Müllerian hormone (AMH), a growth factor produced solely by small, growing follicles in the ovary, might constitute such a marker, as serum levels of this hormone correlate strongly with the number of growing follicles. In addition, AMH could potentially help assess the progression of ovarian senescence, as serum AMH levels are independent of hypothalamic–pituitary–gonadal axis function and decrease to undetectable levels at menopause. In cancer survivors, serum AMH levels correlate with the extent of gonadal damage. In this Review, we provide an overview of the current studies that have measured AMH in women with POI of various aetiologies and discuss its possible application as a marker to determine ovarian reserve.

Key Points

  • Primary ovarian insufficiency (POI) is a disorder of infertility caused by cessation of ovarian function before the age of 40 years

  • The number of women that develop POI is growing owing to the increased success of cancer treatments

  • Anti-Müllerian hormone (AMH) is an ovary-specific growth factor, the expression of which is independent of hypothalamic–pituitary–gonadal axis function

  • Serum AMH levels correlate with the size of the primordial follicle pool and can be used in the early assessment of a diminished ovarian reserve, which most patients with POI are affected by

  • Serum AMH levels correlate with the degree of ovarian damage—induced by the gonadotoxic effect of cancer treatment—in cancer survivors and might aid in fertility counselling of these patients

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Folliculogenesis—the process of follicle maturation from the primordial follicle to the ovulatory follicle.
Figure 2: Serum AMH levels and follicle numbers in aging mice.
Figure 3: Schematic model for induced POI.
Figure 4: Serum AMH levels in adult childhood cancer survivors.

Similar content being viewed by others

Layal Chaker, Salman Razvi, … Robin P. Peeters

References

  1. Conway, G. S. Premature ovarian failure. Br. Med. Bull. 56, 643–649 (2000).

    Article  CAS  PubMed  Google Scholar 

  2. Albright, F., Smith, P. H. & Fraser, R. A syndrome characterized by primary ovarian insufficiency and decreased stature: Report of 11 cases with a digression on hormonal control of axillary and pubic hair. Am. J. Med. Sci. 204, 625–648 (1942).

    Article  Google Scholar 

  3. Welt, C. K. Primary ovarian insufficiency: a more accurate term for premature ovarian failure. Clin. Endocrinol. (Oxf.) 68, 499–509 (2008).

    Article  Google Scholar 

  4. Nelson, L. M. Clinical practice. Primary ovarian insufficiency. N. Engl. J. Med. 360, 606–614 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. De Vos, M., Devroey, P. & Fauser, B. C. Primary ovarian insufficiency. Lancet 376, 911–921 (2010).

    Article  PubMed  Google Scholar 

  6. te Velde, E. R. & Pearson, P. L. The variability of female reproductive ageing. Hum. Reprod. Update 8, 141–154 (2002).

    Article  PubMed  Google Scholar 

  7. Coulam, C. B., Adamson, S. C. & Annegers, J. F. Incidence of premature ovarian failure. Obstet. Gynecol. 67, 604–606 (1986).

    CAS  PubMed  Google Scholar 

  8. Anasti, J. N. Premature ovarian failure: an update. Fertil. Steril. 70, 1–15 (1998).

    Article  CAS  PubMed  Google Scholar 

  9. Persani, L., Rossetti, R. & Cacciatore, C. Genes involved in human premature ovarian failure. J. Mol. Endocrinol. 45, 257–279 (2010).

    Article  CAS  PubMed  Google Scholar 

  10. Matzuk, M. M. & Lamb, D. J. The biology of infertility: research advances and clinical challenges. Nat. Med. 14, 1197–1213 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Bakalov, V. K. et al. Autoimmune oophoritis as a mechanism of follicular dysfunction in women with 46,XX spontaneous premature ovarian failure. Fertil. Steril. 84, 958–965 (2005).

    Article  PubMed  Google Scholar 

  12. Aittomäki, K. et al. Mutation in the follicle-stimulating hormone receptor gene causes hereditary hypergonadotropic ovarian failure. Cell 82, 959–968 (1995).

    Article  PubMed  Google Scholar 

  13. Latronico, A. C. et al. Brief report: testicular and ovarian resistance to luteinizing hormone caused by inactivating mutations of the luteinizing hormone-receptor gene. N. Engl. J. Med. 334, 507–512 (1996).

    Article  CAS  PubMed  Google Scholar 

  14. Araki, S. et al. Arrest of follicular development in a patient with 17 alpha-hydroxylase deficiency: folliculogenesis in association with a lack of estrogen synthesis in the ovaries. Fertil. Steril. 47, 169–172 (1987).

    Article  CAS  PubMed  Google Scholar 

  15. Conte, F. A., Grumbach, M. M., Ito, Y., Fisher, C. R. & Simpson, E. R. A syndrome of female pseudohermaphrodism, hypergonadotropic hypogonadism, and multicystic ovaries associated with missense mutations in the gene encoding aromatase (P450arom). J. Clin. Endocrinol. Metab. 78, 1287–1292 (1994).

    CAS  PubMed  Google Scholar 

  16. Nelson, L. M. et al. Development of luteinized graafian follicles in patients with karyotypically normal spontaneous premature ovarian failure. J. Clin. Endocrinol. Metab. 79, 1470–1475 (1994).

    CAS  PubMed  Google Scholar 

  17. Nelson, L. M., Covington, S. N. & Rebar, R. W. An update: spontaneous premature ovarian failure is not an early menopause. Fertil. Steril. 83, 1327–1332 (2005).

    Article  PubMed  Google Scholar 

  18. Hubayter, Z. R. et al. A prospective evaluation of antral follicle function in women with 46, XX spontaneous primary ovarian insufficiency. Fertil. Steril. 94, 1769–1774 (2010).

    Article  PubMed  Google Scholar 

  19. Karimov, C. B. et al. Increased frequency of occult fragile X-associated primary ovarian insufficiency in infertile women with evidence of impaired ovarian function. Hum. Reprod. 26, 2077–2083 (2011).

    Article  CAS  PubMed  Google Scholar 

  20. Goswami, D. & Conway, G. S. Premature ovarian failure. Hum. Reprod. Update 11, 391–410 (2005).

    Article  CAS  PubMed  Google Scholar 

  21. Skillern, A. & Rajkovic, A. Recent developments in identifying genetic determinants of premature ovarian failure. Sex. Dev. 2, 228–243 (2008).

    Article  CAS  PubMed  Google Scholar 

  22. Knauff, E. A. et al. Genome-wide association study in premature ovarian failure patients suggests ADAMTS19 as a possible candidate gene. Hum. Reprod. 24, 2372–2378 (2009).

    Article  CAS  PubMed  Google Scholar 

  23. van Dooren, M. F., Bertoli-Avellab, A. M. & Oldenburg, R. A. Premature ovarian failure and gene polymorphisms. Curr. Opin. Obstet. Gynecol. 21, 313–317 (2009).

    Article  PubMed  Google Scholar 

  24. Oldenburg, R. A. et al. A genome-wide linkage scan in a Dutch family identifies a premature ovarian failure susceptibility locus. Hum. Reprod. 23, 2835–2841 (2008).

    Article  CAS  PubMed  Google Scholar 

  25. Christin-Maitre, S. & Tachdjian, G. Genome-wide association study and premature ovarian failure. Ann. Endocrinol. (Paris) 71, 218–221 (2010).

    Article  CAS  Google Scholar 

  26. Bondy, C. A. Care of girls and women with Turner syndrome: a guideline of the Turner Syndrome Study Group. J. Clin. Endocrinol. Metab. 92, 10–25 (2007).

    Article  CAS  PubMed  Google Scholar 

  27. Saenger, P. et al. Recommendations for the diagnosis and management of Turner syndrome. J. Clin. Endocrinol. Metab. 86, 3061–3069 (2001).

    CAS  PubMed  Google Scholar 

  28. Sherman, S. L. Premature ovarian failure in the fragile X syndrome. Am. J. Med. Genet. 97, 189–194 (2000).

    Article  CAS  PubMed  Google Scholar 

  29. Verkerk, A. J. et al. Identification of a gene (FMR-1) containing a CGG repeat coincident with a breakpoint cluster region exhibiting length variation in fragile X syndrome. Cell 65, 905–914 (1991).

    Article  CAS  PubMed  Google Scholar 

  30. Fu, Y. H. et al. Variation of the CGG repeat at the fragile X site results in genetic instability: resolution of the Sherman paradox. Cell 67, 1047–1058 (1991).

    Article  CAS  PubMed  Google Scholar 

  31. Allingham-Hawkins, D. J. et al. Fragile X premutation is a significant risk factor for premature ovarian failure: the International Collaborative POF in Fragile X study—preliminary data. Am. J. Med. Genet. 83, 322–325 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Conway, G. S., Payne, N. N., Webb, J., Murray, A. & Jacobs, P. A. Fragile X premutation screening in women with premature ovarian failure. Hum. Reprod. 13, 1184–1187 (1998).

    Article  CAS  PubMed  Google Scholar 

  33. Conway, G. S., Kaltsas, G., Patel, A., Davies, M. C. & Jacobs, H. S. Characterization of idiopathic premature ovarian failure. Fertil. Steril. 65, 337–341 (1996).

    Article  CAS  PubMed  Google Scholar 

  34. Novosad, J. A., Kalantaridou, S. N., Tong, Z. B. & Nelson, L. M. Ovarian antibodies as detected by indirect immunofluorescence are unreliable in the diagnosis of autoimmune premature ovarian failure: a controlled evaluation. BMC Womens Health 3, 2 (2003).

    Article  PubMed  PubMed Central  Google Scholar 

  35. La Marca, A. et al. Primary ovarian insufficiency: autoimmune causes. Curr. Opin. Obstet. Gynecol. 22, 277–282 (2010).

    PubMed  Google Scholar 

  36. Gatta, G., Capocaccia, R., Coleman, M. P., Ries, L. A. & Berrino, F. Childhood cancer survival in Europe and the United States. Cancer 95, 1767–1772 (2002).

    Article  PubMed  Google Scholar 

  37. Gatta, G. et al. Childhood cancer survival trends in Europe: a EUROCARE Working Group study. J. Clin. Oncol. 23, 3742–3751 (2005).

    Article  PubMed  Google Scholar 

  38. Edgar, A. B., Morris, E. M., Kelnar, C. J. & Wallace, W. H. Long-term follow-up of survivors of childhood cancer. Endocr. Dev. 15, 159–180 (2009).

    Article  PubMed  Google Scholar 

  39. Bath, L. E., Wallace, W. H. & Critchley, H. O. Late effects of the treatment of childhood cancer on the female reproductive system and the potential for fertility preservation. BJOG 109, 107–114 (2002).

    Article  PubMed  Google Scholar 

  40. van Dorp, W. et al. Long-term endocrine side effects of childhood Hodgkin's lymphoma treatment: a review. Hum. Reprod. Update http://dx.doi.org/10.1093/humupd/dmr038.

  41. Brougham, M. F. & Wallace, W. H. Subfertility in children and young people treated for solid and haematological malignancies. Br. J. Haematol. 131, 143–155 (2005).

    PubMed  Google Scholar 

  42. Shelling, A. N. Premature ovarian failure. Reproduction 140, 633–641 (2010).

    Article  CAS  PubMed  Google Scholar 

  43. Josso, N. et al. Anti-müllerian hormone: the Jost factor. Recent Prog. Horm. Res. 48, 1–59 (1993).

    CAS  PubMed  Google Scholar 

  44. Lee, M. M. & Donahoe, P. K. Müllerian inhibiting substance: a gonadal hormone with multiple functions. Endocr. Rev. 14, 152–164 (1993).

    CAS  PubMed  Google Scholar 

  45. Josso, N., Picard, J. Y. & Tran, D. The anti-Müllerian hormone. Birth Defects Orig. Artic. Ser. 13, 59–84 (1977).

    CAS  PubMed  Google Scholar 

  46. Durlinger, A. L., Visser, J. A. & Themmen, A. P. Regulation of ovarian function: the role of anti-Müllerian hormone. Reproduction 124, 601–609 (2002).

    Article  CAS  PubMed  Google Scholar 

  47. Rajpert-De Meyts, E. et al. Expression of anti-Müllerian hormone during normal and pathological gonadal development: association with differentiation of Sertoli and granulosa cells. J. Clin. Endocrinol. Metab. 84, 3836–3844 (1999).

    PubMed  Google Scholar 

  48. Weenen, C. et al. Anti-Müllerian hormone expression pattern in the human ovary: potential implications for initial and cyclic follicle recruitment. Mol. Hum. Reprod. 10, 77–83 (2004).

    Article  CAS  PubMed  Google Scholar 

  49. Shi, J. et al. Bone morphogenetic protein-6 stimulates gene expression of follicle-stimulating hormone receptor, inhibin/activin beta subunits, and anti-Müllerian hormone in human granulosa cells. Fertil. Steril. 92, 1794–1798 (2009).

    Article  PubMed  Google Scholar 

  50. Salmon, N. A., Handyside, A. H. & Joyce, I. M. Oocyte regulation of anti-Müllerian hormone expression in granulosa cells during ovarian follicle development in mice. Dev. Biol. 266, 201–208 (2004).

    Article  CAS  PubMed  Google Scholar 

  51. Grøndahl, M. L. et al. Anti-Müllerian hormone remains highly expressed in human cumulus cells during the final stages of folliculogenesis. Reprod. Biomed. Online 22, 389–398 (2011).

    Article  CAS  PubMed  Google Scholar 

  52. McGee, E. A. & Hsueh, A. J. Initial and cyclic recruitment of ovarian follicles. Endocr. Rev. 21, 200–214 (2000).

    CAS  PubMed  Google Scholar 

  53. Durlinger, A. L. L. et al. Control of primordial follicle recruitment by anti-Müllerian hormone in the mouse ovary. Endocrinology 140, 5789–5796 (1999).

    Article  CAS  PubMed  Google Scholar 

  54. Carlsson, I. B. et al. Anti-Müllerian hormone inhibits initiation of growth of human primordial ovarian follicles in vitro. Hum. Reprod. 21, 2223–2227 (2006).

    Article  CAS  PubMed  Google Scholar 

  55. Durlinger, A. L. L. et al. Anti-Müllerian hormone inhibits initiation of primordial follicle growth in the mouse ovary. Endocrinology 143, 1076–1084 (2002).

    Article  CAS  PubMed  Google Scholar 

  56. Gigli, I., Cushman, R. A., Wahl, C. M. & Fortune, J. E. Evidence for a role for anti-Müllerian hormone in the suppression of follicle activation in mouse ovaries and bovine ovarian cortex grafted beneath the chick chorioallantoic membrane. Mol. Reprod. Dev. 71, 480–488 (2005).

    Article  CAS  PubMed  Google Scholar 

  57. Kevenaar, M. E. et al. A polymorphism in the AMH type II receptor gene is associated with age at menopause in interaction with parity. Hum. Reprod. 22, 2382–2388 (2007).

    Article  CAS  PubMed  Google Scholar 

  58. Durlinger, A. L. L. et al. Anti-Müllerian hormone attenuates the effects of FSH on follicle development in the mouse ovary. Endocrinology 142, 4891–4899 (2001).

    Article  CAS  PubMed  Google Scholar 

  59. Visser, J. A. et al. Increased oocyte degeneration and follicular atresia during the estrous cycle in anti-Müllerian hormone null mice. Endocrinology 148, 2301–2308 (2007).

    Article  CAS  PubMed  Google Scholar 

  60. di Clemente, N. et al. Inhibitory effect of AMH upon the expression of aromatase and LH receptors of granulosa cells of rat and porcine immature ovaries. Endocrine 2, 553–558 (1994).

    CAS  Google Scholar 

  61. Grossman, M. P., Nakajima, S. T., Fallat, M. E. & Siow, Y. Müllerian-inhibiting substance inhibits cytochrome P450 aromatase activity in human granulosa lutein cell culture. Fertil. Steril. 89, 1364–1370 (2008).

    Article  CAS  PubMed  Google Scholar 

  62. Andersen, C. Y. & Byskov, A. G. Estradiol and regulation of anti-Müllerian hormone, inhibin-A, and inhibin-B secretion: analysis of small antral and preovulatory human follicles' fluid. J. Clin. Endocrinol. Metab. 91, 4064–4069 (2006).

    Article  CAS  PubMed  Google Scholar 

  63. Kevenaar, M. E. et al. Anti-Müllerian hormone and anti-Müllerian hormone type II receptor polymorphisms are associated with follicular phase estradiol levels in normo-ovulatory women. Hum. Reprod. 22, 1547–1554 (2007).

    Article  CAS  PubMed  Google Scholar 

  64. te Velde, E. R., Scheffer, G. J., Dorland, M., Broekmans, F. J. & Fauser, B. C. Developmental and endocrine aspects of normal ovarian aging. Mol. Cell. Endocrinol. 145, 67–73 (1998).

    Article  CAS  PubMed  Google Scholar 

  65. Scheffer, G. J. et al. Antral follicle counts by transvaginal ultrasonography are related to age in women with proven natural fertility. Fertil. Steril. 72, 845–851 (1999).

    Article  CAS  PubMed  Google Scholar 

  66. Bergada, I. et al. Time course of the serum gonadotropin surge, inhibins, and anti-Müllerian hormone in normal newborn males during the first month of life. J. Clin. Endocrinol. Metab. 91, 4092–4098 (2006).

    Article  CAS  PubMed  Google Scholar 

  67. Guibourdenche, J. et al. Anti-Müllerian hormone levels in serum from human foetuses and children: pattern and clinical interest. Mol. Cell. Endocrinol. 211, 55–63 (2003).

    Article  CAS  PubMed  Google Scholar 

  68. Hagen, C. P. et al. Serum levels of anti-Müllerian hormone as a marker of ovarian function in 926 healthy females from birth to adulthood and in 172 Turner syndrome patients. J. Clin. Endocrinol. Metab. 95, 5003–5010 (2010).

    Article  CAS  PubMed  Google Scholar 

  69. Lee, M. M. et al. Mullerian inhibiting substance in humans: normal levels from infancy to adulthood. J. Clin. Endocrinol. Metab. 81, 571–576 (1996).

    CAS  PubMed  Google Scholar 

  70. van Rooij, I. A. et al. Anti-müllerian hormone is a promising predictor for the occurrence of the menopausal transition. Menopause 11, 601–606 (2004).

    Article  PubMed  Google Scholar 

  71. van Rooij, I. A. et al. Serum antimullerian hormone levels best reflect the reproductive decline with age in normal women with proven fertility: A longitudinal study. Fertil. Steril. 83, 979–987 (2005).

    Article  CAS  PubMed  Google Scholar 

  72. de Vet, A., Laven, J. S., de Jong, F. H., Themmen, A. P. N. & Fauser, B. C. Antimüllerian hormone serum levels: a putative marker for ovarian aging. Fertil. Steril. 77, 357–362 (2002).

    Article  PubMed  Google Scholar 

  73. Fanchin, R. et al. Serum anti-Müllerian hormone is more strongly related to ovarian follicular status than serum inhibin B, estradiol, FSH and LH on day 3. Hum. Reprod. 18, 323–327 (2003).

    Article  CAS  PubMed  Google Scholar 

  74. van Rooij, I. A. et al. Serum anti-Müllerian hormone levels: a novel measure of ovarian reserve. Hum. Reprod. 17, 3065–3071 (2002).

    Article  CAS  PubMed  Google Scholar 

  75. Hansen, K. R., Hodnett, G. M., Knowlton, N. & Craig, L. B. Correlation of ovarian reserve tests with histologically determined primordial follicle number. Fertil. Steril. 95, 170–175 (2011).

    Article  PubMed  Google Scholar 

  76. Kevenaar, M. E. et al. Serum anti-mullerian hormone levels reflect the size of the primordial follicle pool in mice. Endocrinology 147, 3228–3234 (2006).

    Article  CAS  PubMed  Google Scholar 

  77. Seifer, D. B., Baker, V. L. & Leader, B. Age-specific serum anti-Müllerian hormone values for 17,120 women presenting to fertility centers within the United States. Fertil. Steril. 95, 747–750 (2011).

    Article  CAS  PubMed  Google Scholar 

  78. Kelsey, T. W., Wright, P., Nelson, S. M., Anderson, R. A. & Wallace, W. H. A validated model of serum anti-müllerian hormone from conception to menopause. PLoS ONE 6, e22024 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Nelson, S. M. et al. External validation of nomogram for the decline in serum anti-Müllerian hormone in women: a population study of 15,834 infertility patients. Reprod. Biomed. Online 23, 204–206 (2011).

    Article  PubMed  Google Scholar 

  80. Hehenkamp, W. J. et al. Anti-Müllerian hormone levels in the spontaneous menstrual cycle do not show substantial fluctuation. J. Clin. Endocrinol. Metab. 91, 4057–4063 (2006).

    Article  CAS  PubMed  Google Scholar 

  81. La Marca, A., Stabile, G., Artenisio, A. C. & Volpe, A. Serum anti-Müllerian hormone throughout the human menstrual cycle. Hum. Reprod. 21, 3103–3107 (2006).

    Article  CAS  PubMed  Google Scholar 

  82. Streuli, I. et al. Serum antimüllerian hormone levels remain stable throughout the menstrual cycle and after oral or vaginal administration of synthetic sex steroids. Fertil. Steril. 90, 395–400 (2008).

    Article  CAS  PubMed  Google Scholar 

  83. Tsepelidis, S. et al. Stable serum levels of anti-Müllerian hormone during the menstrual cycle: a prospective study in normo-ovulatory women. Hum. Reprod. 22, 1837–1840 (2007).

    Article  CAS  PubMed  Google Scholar 

  84. Robertson, D. M., Hale, G. E., Fraser, I. S., Hughes, C. L. & Burger, H. G. Changes in serum antimüllerian hormone levels across the ovulatory menstrual cycle in late reproductive age. Menopause 18, 521–524 (2011).

    Article  PubMed  Google Scholar 

  85. Sowers, M. et al. Anti-Müllerian hormone and inhibin B variability during normal menstrual cycles. Fertil. Steril. 94, 1482–1486 (2010).

    Article  CAS  PubMed  Google Scholar 

  86. Streuli, I. et al. Clinical uses of anti-Müllerian hormone assays: pitfalls and promises. Fertil. Steril. 91, 226–230 (2009).

    Article  CAS  PubMed  Google Scholar 

  87. Wunder, D. M., Bersinger, N. A., Yared, M., Kretschmer, R. & Birkhäuser, M. H. Statistically significant changes of antimüllerian hormone and inhibin levels during the physiologic menstrual cycle in reproductive age women. Fertil. Steril. 89, 927–933 (2008).

    Article  CAS  PubMed  Google Scholar 

  88. Fanchin, R. et al. High reproducibility of serum anti-Mullerian hormone measurements suggests a multi-staged follicular secretion and strengthens its role in the assessment of ovarian follicular status. Hum. Reprod. 20, 923–927 (2005).

    Article  CAS  PubMed  Google Scholar 

  89. Sowers, M. R. et al. Anti-mullerian hormone and inhibin B in the definition of ovarian aging and the menopause transition. J. Clin. Endocrinol. Metab. 93, 3478–3483 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. van Disseldorp, J. et al. Relationship of serum antimüllerian hormone concentration to age at menopause. J. Clin. Endocrinol. Metab. 93, 2129–2134 (2008).

    Article  CAS  PubMed  Google Scholar 

  91. Broer, S. L. et al. Anti-mullerian hormone predicts menopause: a long-term follow-up study in normoovulatory women. J. Clin. Endocrinol. Metab. 96, 2532–2539 (2011).

    Article  CAS  PubMed  Google Scholar 

  92. Tehrani, F. R., Shakeri, N., Solaymani-Dodaran, M. & Azizi, F. Predicting age at menopause from serum antimüllerian hormone concentration. Menopause 18, 766–770 (2011).

    Article  PubMed  Google Scholar 

  93. Tehrani, F. R., Solaymani-Dodaran, M. & Azizi, F. A single test of antimullerian hormone in late reproductive-aged women is a good predictor of menopause. Menopause 16, 797–802 (2009).

    Article  PubMed  Google Scholar 

  94. Hendriks, D. J., Mol, B. W., Bancsi, L. F., Te Velde, E. R. & Broekmans, F. J. Antral follicle count in the prediction of poor ovarian response and pregnancy after in vitro fertilization: a meta-analysis and comparison with basal follicle-stimulating hormone level. Fertil. Steril. 83, 291–301 (2005).

    Article  PubMed  Google Scholar 

  95. Seifer, D. B., MacLaughlin, D. T., Christian, B. P., Feng, B. & Shelden, R. M. Early follicular serum müllerian-inhibiting substance levels are associated with ovarian response during assisted reproductive technology cycles. Fertil. Steril. 77, 468–471 (2002).

    Article  PubMed  Google Scholar 

  96. La Marca, A. et al. Anti-Müllerian hormone measurement on any day of the menstrual cycle strongly predicts ovarian response in assisted reproductive technology. Hum. Reprod. 22, 766–771 (2007).

    Article  CAS  PubMed  Google Scholar 

  97. Nelson, S. M., Yates, R. W. & Fleming, R. Serum anti-Müllerian hormone and FSH: prediction of live birth and extremes of response in stimulated cycles—implications for individualization of therapy. Hum. Reprod. 22, 2414–2421 (2007).

    Article  CAS  PubMed  Google Scholar 

  98. Nelson, S. M. et al. Anti-Müllerian hormone-based approach to controlled ovarian stimulation for assisted conception. Hum. Reprod. 24, 867–875 (2009).

    Article  CAS  PubMed  Google Scholar 

  99. Broer, S. L. et al. AMH and AFC as predictors of excessive response in controlled ovarian hyperstimulation: a meta-analysis. Hum. Reprod. Update 17, 46–54 (2011).

    Article  CAS  PubMed  Google Scholar 

  100. Broer, S. L., Mol, B., Dolleman, M., Fauser, B. C. & Broekmans, F. J. The role of anti-Müllerian hormone assessment in assisted reproductive technology outcome. Curr. Opin. Obstet. Gynecol. 22, 193–201 (2010).

    Article  PubMed  Google Scholar 

  101. Broer, S. L., Mol, B. W., Hendriks, D. & Broekmans, F. J. The role of antimüllerian hormone in prediction of outcome after IVF: comparison with the antral follicle count. Fertil. Steril. 91, 705–714 (2009).

    Article  CAS  PubMed  Google Scholar 

  102. Fadini, R. et al. Anti-mullerian hormone as a predictive marker for the selection of women for oocyte in vitro maturation treatment. J. Assist. Reprod. Genet. 28, 501–508 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  103. Gnoth, C. et al. Relevance of anti-Müllerian hormone measurement in a routine IVF program. Hum. Reprod. 23, 1359–1365 (2008).

    Article  CAS  PubMed  Google Scholar 

  104. Lie Fong, S. et al. Anti-Müllerian hormone: a marker for oocyte quantity, oocyte quality and embryo quality? Reprod. Biomed. Online 16, 664–670 (2008).

    Article  CAS  PubMed  Google Scholar 

  105. Smeenk, J. M. et al. Antimüllerian hormone predicts ovarian responsiveness, but not embryo quality or pregnancy, after in vitro fertilization or intracyoplasmic sperm injection. Fertil. Steril. 87, 223–226 (2007).

    Article  CAS  PubMed  Google Scholar 

  106. La Marca, A. et al. Serum anti-müllerian hormone levels in women with secondary amenorrhea. Fertil. Steril. 85, 1547–1549 (2006).

    Article  CAS  PubMed  Google Scholar 

  107. Méduri, G. et al. Serum anti-Müllerian hormone expression in women with premature ovarian failure. Hum. Reprod. 22, 117–123 (2007).

    Article  CAS  PubMed  Google Scholar 

  108. Bachelot, A. et al. Phenotyping and genetic studies of 357 consecutive patients presenting with premature ovarian failure. Eur. J. Endocrinol. 161, 179–187 (2009).

    Article  CAS  PubMed  Google Scholar 

  109. Knauff, E. A. et al. Anti-Müllerian hormone, inhibin B, and antral follicle count in young women with ovarian failure. J. Clin. Endocrinol. Metab. 94, 786–792 (2009).

    Article  CAS  PubMed  Google Scholar 

  110. Sullivan, A. K. et al. Association of FMR1 repeat size with ovarian dysfunction. Hum. Reprod. 20, 402–412 (2005).

    Article  CAS  PubMed  Google Scholar 

  111. Rohr, J. et al. Anti-Mullerian hormone indicates early ovarian decline in fragile X mental retardation (FMR1) premutation carriers: a preliminary study. Hum. Reprod. 23, 1220–1225 (2008).

    Article  CAS  PubMed  Google Scholar 

  112. Spath, M. A. et al. Intra-individual stability over time of standardized anti-Müllerian hormone in FMR1 premutation carriers. Hum. Reprod. 26, 2185–2191 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Gleicher, N., Weghofer, A., Oktay, K. & Barad, D. H. Correlation of triple repeats on the FMR1 (fragile X) gene to ovarian reserve: a new infertility test? Acta Obstet. Gynecol. Scand. 88, 1024–1030 (2009).

    Article  CAS  PubMed  Google Scholar 

  114. Gleicher, N., Weghofer, A., Oktay, K. & Barad, D. Relevance of triple CGG repeats in the FMR1 gene to ovarian reserve. Reprod. Biomed. Online 19, 385–390 (2009).

    Article  CAS  PubMed  Google Scholar 

  115. Gleicher, N., Weghofer, A. & Barad, D. H. A pilot study of premature ovarian senescence: I. Correlation of triple CGG repeats on the FMR1 gene to ovarian reserve parameters FSH and anti-Müllerian hormone. Fertil. Steril. 91, 1700–1706 (2009).

    Article  CAS  PubMed  Google Scholar 

  116. Bennett, C. E., Conway, G. S., Macpherson, J. N., Jacobs, P. A. & Murray, A. Intermediate sized CGG repeats are not a common cause of idiopathic premature ovarian failure. Hum. Reprod. 25, 1335–1338 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Abir, R. et al. Turner's syndrome and fertility: current status and possible putative prospects. Hum. Reprod. Update 7, 603–610 (2001).

    Article  CAS  PubMed  Google Scholar 

  118. Toniolo, D. & Rizzolio, F. X chromosome and ovarian failure. Semin. Reprod. Med. 25, 264–271 (2007).

    Article  CAS  PubMed  Google Scholar 

  119. Borgström, B. et al. Fertility preservation in girls with turner syndrome: prognostic signs of the presence of ovarian follicles. J. Clin. Endocrinol. Metab. 94, 74–80 (2009).

    Article  CAS  PubMed  Google Scholar 

  120. Purushothaman, R., Lazareva, O., Oktay, K. & Ten, S. Markers of ovarian reserve in young girls with Turner's syndrome. Fertil. Steril. 94, 1557–1559 (2010).

    Article  PubMed  Google Scholar 

  121. Tsigkou, A. et al. High serum inhibin concentration discriminates autoimmune oophoritis from other forms of primary ovarian insufficiency. J. Clin. Endocrinol. Metab. 93, 1263–1269 (2008).

    Article  CAS  PubMed  Google Scholar 

  122. La Marca, A. et al. Primary ovarian insufficiency due to steroidogenic cell autoimmunity is associated with a preserved pool of functioning follicles. J. Clin. Endocrinol. Metab. 94, 3816–3823 (2009).

    Article  CAS  PubMed  Google Scholar 

  123. Gleicher, N., Weghofer, A. & Barad, D. H. A pilot study of premature ovarian senescence: II. Different genotype and phenotype for genetic and autoimmune etiologies. Fertil. Steril. 91, 1707–1711 (2009).

    Article  CAS  PubMed  Google Scholar 

  124. Clowse, M. E. et al. Ovarian preservation by GnRH agonists during chemotherapy: a meta-analysis. J. Womens Health 18, 311–319 (2009).

    Article  Google Scholar 

  125. Nitzschke, M. et al. GnRH analogs do not protect ovaries from chemotherapy-induced ultrastructural injury in Hodgkin's lymphoma patients. Arch. Gynecol. Obstet. 282, 83–88 (2010).

    Article  CAS  PubMed  Google Scholar 

  126. Sánchez-Serrano, M. et al. Twins born after transplantation of ovarian cortical tissue and oocyte vitrification. Fertil. Steril. 93, 268.e11–268.e13 (2010).

    Article  Google Scholar 

  127. Meirow, D. et al. Monitoring the ovaries after autotransplantation of cryopreserved ovarian tissue: endocrine studies, in vitro fertilization cycles, and live birth. Fertil. Steril. 87, 418.e7–418.e15 (2007).

    Article  Google Scholar 

  128. Janse, F. et al. Limited value of ovarian function markers following orthotopic transplantation of ovarian tissue after gonadotoxic treatment. J. Clin. Endocrinol. Metab. 96, 1136–1144 (2011).

    Article  CAS  PubMed  Google Scholar 

  129. Schmidt, K. T. et al. Autotransplantation of cryopreserved ovarian tissue in 12 women with chemotherapy-induced premature ovarian failure: the Danish experience. Fertil. Steril. 95, 695–701 (2011).

    Article  PubMed  Google Scholar 

  130. Lie Fong, S. et al. Assessment of ovarian reserve in adult childhood cancer survivors using anti-Müllerian hormone. Hum. Reprod. 24, 982–990 (2009).

    Article  CAS  PubMed  Google Scholar 

  131. Rosendahl, M. et al. Ovarian function after removal of an entire ovary for cryopreservation of pieces of cortex prior to gonadotoxic treatment: a follow-up study. Hum. Reprod. 23, 2475–2483 (2008).

    Article  PubMed  Google Scholar 

  132. van Beek, R. D. et al. Anti-Mullerian hormone is a sensitive serum marker for gonadal function in women treated for Hodgkin's lymphoma during childhood. J. Clin. Endocrinol. Metab. 92, 3869–3874 (2007).

    Article  CAS  PubMed  Google Scholar 

  133. Bath, L. E., Wallace, W. H., Shaw, M. P., Fitzpatrick, C. & Anderson, R. A. Depletion of ovarian reserve in young women after treatment for cancer in childhood: detection by anti-Müllerian hormone, inhibin B and ovarian ultrasound. Hum. Reprod. 18, 2368–2374 (2003).

    Article  CAS  PubMed  Google Scholar 

  134. Lie Fong, S. et al. Anti-müllerian hormone as a marker of ovarian function in women after chemotherapy and radiotherapy for haematological malignancies. Hum. Reprod. 23, 674–678 (2008).

    Article  CAS  PubMed  Google Scholar 

  135. Su, H. I. et al. Antimullerian hormone and inhibin B are hormone measures of ovarian function in late reproductive-aged breast cancer survivors. Cancer 116, 592–599 (2010).

    Article  CAS  PubMed  Google Scholar 

  136. Partridge, A. H. et al. Ovarian reserve in women who remain premenopausal after chemotherapy for early stage breast cancer. Fertil. Steril. 94, 638–644 (2010).

    Article  PubMed  Google Scholar 

  137. Lutchman Singh, K. et al. Predictors of ovarian reserve in young women with breast cancer. Br. J. Cancer 96, 1808–1816 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Anderson, R. A., Themmen, A. P., Al-Qahtani, A., Groome, N. P. & Cameron, D. A. The effects of chemotherapy and long-term gonadotrophin suppression on the ovarian reserve in premenopausal women with breast cancer. Hum. Reprod. 21, 2583–2592 (2006).

    Article  CAS  PubMed  Google Scholar 

  139. Yu, B. et al. Changes in markers of ovarian reserve and endocrine function in young women with breast cancer undergoing adjuvant chemotherapy. Cancer 116, 2099–2105 (2010).

    CAS  PubMed  Google Scholar 

  140. Rosendahl, M. et al. Dynamics and mechanisms of chemotherapy-induced ovarian follicular depletion in women of fertile age. Fertil. Steril. 94, 156–166 (2010).

    Article  CAS  PubMed  Google Scholar 

  141. Anders, C. et al. A pilot study of predictive markers of chemotherapy-related amenorrhea among premenopausal women with early stage breast cancer. Cancer Invest. 26, 286–295 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Anderson, R. A. & Cameron, D. A. Pretreatment serum anti-müllerian hormone predicts long-term ovarian function and bone mass after chemotherapy for early breast cancer. J. Clin. Endocrinol. Metab. 96, 1336–1343 (2011).

    Article  CAS  PubMed  Google Scholar 

  143. Kaipia, A. & Hsueh, A. J. Regulation of ovarian follicle atresia. Annu. Rev. Physiol. 59, 349–363 (1997).

    Article  CAS  PubMed  Google Scholar 

  144. Massagué, J. TGF-β signal transduction. Annu. Rev. Biochem. 67, 753–791 (1998).

    Article  PubMed  Google Scholar 

  145. Massagué, J. & Wotton, D. Transcriptional control by the TGF-beta/Smad signaling system. Embo. J. 19, 1745–1754 (2000).

    Article  PubMed  PubMed Central  Google Scholar 

  146. Visser, J. A. AMH signaling: from receptor to target gene. Mol. Cell. Endocrinol. 211, 65–73 (2003).

    Article  CAS  PubMed  Google Scholar 

  147. Erickson, G. F. & Shimasaki, S. The spatiotemporal expression pattern of the bone morphogenetic protein family in rat ovary cell types during the estrous cycle. Reprod. Biol. Endocrinol. 1, 9 (2003).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

J. A. Visser researched the data and wrote the article. All authors provided a substantial contribution to discussions of the content and reviewed and/or edited the manuscript before submission.

Corresponding author

Correspondence to Jenny A. Visser.

Ethics declarations

Competing interests

J. A. Visser declares an association with the following company: MSD (speakers bureau/honoraria). J. S. E. Laven declares an association with the following companies: Genovum (grant/research support; stockholder/director), Merck-Serono (grant/research support), MSD (grant/research support). A. P. N. Themmen declares an association with the following company: ANSH Labs (consultant). I. Schipper declares no competing interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Visser, J., Schipper, I., Laven, J. et al. Anti-Müllerian hormone: an ovarian reserve marker in primary ovarian insufficiency. Nat Rev Endocrinol 8, 331–341 (2012). https://doi.org/10.1038/nrendo.2011.224

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrendo.2011.224

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research