Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The role of pancreatic imaging in monogenic diabetes mellitus

Abstract

In neonatal diabetes mellitus resulting from mutations in EIF2AK3, PTF1A, HNF1B, PDX1 or RFX6, pancreatic aplasia or hypoplasia is typical. In maturity-onset diabetes mellitus of the young (MODY), mutations in HNF1B result in aplasia of pancreatic body and tail, and mutations in CEL lead to lipomatosis. The pancreas is not readily accessible for histopathological investigations and pancreatic imaging might, therefore, prove important for diagnosis, treatment, and research into these β-cell diseases. Advanced imaging techniques can identify the pancreatic features that are characteristic of inherited diabetes subtypes, including alterations in organ size (diffuse atrophy and complete or partial pancreatic agenesis), lipomatosis and calcifications. Consequently, in patients with suspected monogenic diabetes mellitus, the results of pancreatic imaging could help guide the molecular and genetic investigation. Imaging findings also highlight the critical roles of specific genes in normal pancreatic development and differentiation and provide new insight into alterations in pancreatic structure that are relevant for β-cell disease.

Key Points

  • Monogenic (caused by a mutation in only one gene) diabetes mellitus accounts for 1–2% of all diabetes cases

  • The mutations associated with monogenic diabetes mellitus usually occur in genes with a regulatory role in pancreatic development and/or β-cell function

  • Pancreatic aplasia or hypoplasia is common in patients with neonatal diabetes mellitus caused by mutations in EIF2AK3, PTF1A, HNF1B, PDX1, or RFX6

  • Mutations in HNF1B or CEL lead to pancreatic body and tail aplasia or lipomatosis, respectively, which both occur in maturity-onset diabetes mellitus of the young (MODY)

  • Alterations in pancreatic structure and size—demonstrated by imaging—might underlie β-cell dysfunction observed in patients with monogenic diabetes mellitus

  • Advanced pancreatic imaging methods could prove important for diagnosis, treatment, and research in all β-cell diseases

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Characteristic pancreatic imaging features in patients with HNF1B mutations.
Figure 2: Comparison of characteristic pancreatic imaging features in control patients without pancreatic pathology, HNF1B mutation carriers and CEL mutation carriers.
Figure 3: Characteristic pancreatic imaging features in CEL mutation carriers versus healthy controls.
Figure 4: A flow chart that relates key pancreatic imaging findings to genes that could potentially harbor mutations in patients with suspected monogenic diabetes mellitus.
Figure 5: Features of focal and diffuse congenital hyperinsulinism of infancy on 18F-DOPA PET imaging.

Similar content being viewed by others

References

  1. Hattersley, A., Bruining, J., Shield, J., Njølstad, P. & Donaghue, K. C. The diagnosis and management of monogenic diabetes in children and adolescents. Pediatr. Diabetes 10 (Suppl. 12), 33–42 (2009).

    Article  PubMed  Google Scholar 

  2. Molven, A. & Njølstad, P. R. Role of molecular genetics in transforming diagnosis of diabetes mellitus. Expert Rev. Mol. Diagn. 11, 313–320 (2011).

    Article  CAS  PubMed  Google Scholar 

  3. Fajans, S. S. & Bell, G. I. MODY: History, genetics, pathophysiology, and clinical decision making. Diabetes Care 34, 1878–1884 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  4. Flechtner, I. et al. Neonatal hyperglycaemia and abnormal development of the pancreas. Best Pract. Res. Clin. Endocrinol. Metab. 22, 17–40 (2008).

    Article  CAS  PubMed  Google Scholar 

  5. Eide, S. A. et al. Prevalence of HNF1A (MODY3) mutations in a Norwegian population (the HUNT2 study). Diabet. Med. 25, 775–781 (2008).

    Article  CAS  PubMed  Google Scholar 

  6. Shields, B. M. et al. Maturity-onset diabetes of the young (MODY): how many cases are we missing? Diabetologia 53, 2504–2508 (2010).

    Article  CAS  PubMed  Google Scholar 

  7. Kropff, J., Selwood, M. P., McCarthy, M. I., Farmer, A. J. & Owen, K. R. Prevalence of monogenic diabetes in young adults: a community-based, cross-sectional study in Oxfordshire, UK. Diabetologia 54, 1261–1263 (2011).

    Article  CAS  PubMed  Google Scholar 

  8. Murphy, R., Ellard, S. & Hattersley, A. T. Clinical implications of a molecular genetic classification of monogenic β-cell diabetes. Nat. Clin. Pract. Endocrinol. Metab. 4, 200–213 (2008).

    Article  CAS  PubMed  Google Scholar 

  9. Haldorsen, I. S. et al. Lack of pancreatic body and tail in HNF1B mutation carriers. Diabet. Med. 25, 782–787 (2008).

    Article  CAS  PubMed  Google Scholar 

  10. Sellick, G. S. et al. Mutations in PTF1A cause pancreatic and cerebellar agenesis. Nat. Genet. 36, 1301–1305 (2004).

    Article  CAS  PubMed  Google Scholar 

  11. Stoffers, D. A., Zinkin, N. T., Stanojevic, V., Clarke, W. L. & Habener, J. F. Pancreatic agenesis attributable to a single nucleotide deletion in the human IPF1 gene coding sequence. Nat. Genet. 15, 106–110 (1997).

    Article  CAS  PubMed  Google Scholar 

  12. Ræder, H. et al. Pancreatic lipomatosis is a structural marker in nondiabetic children with mutations in carboxyl-ester lipase. Diabetes 56, 444–449 (2007).

    Article  CAS  PubMed  Google Scholar 

  13. Ræder, H. et al. Mutations in the CEL VNTR cause a syndrome of diabetes and pancreatic exocrine dysfunction. Nat. Genet. 38, 54–62 (2006).

    Article  CAS  PubMed  Google Scholar 

  14. Kinney, T. P. & Freeman, M. L. Recent advances and novel methods in pancreatic imaging. Minerva Gastroenterol. Dietol. 54, 85–95 (2008).

    CAS  PubMed  Google Scholar 

  15. Nijs, E., Callahan, M. J. & Taylor, G. A. Disorders of the pediatric pancreas: imaging features. Pediatr. Radiol. 35, 358–373 (2005).

    Article  PubMed  Google Scholar 

  16. Wallace, M. B. Imaging the pancreas: into the deep. Gastroenterology 132, 484–487 (2007).

    Article  PubMed  Google Scholar 

  17. Saisho, Y. et al. Pancreas volumes in humans from birth to age one hundred taking into account sex, obesity, and presence of type-2 diabetes. Clin. Anat. 20, 933–942 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Stamm, B. H. Incidence and diagnostic significance of minor pathologic changes in the adult pancreas at autopsy: a systematic study of 112 autopsies in patients without known pancreatic disease. Hum. Pathol. 15, 677–683 (1984).

    Article  CAS  PubMed  Google Scholar 

  19. Lohr, M. & Kloppel, G. Residual insulin positivity and pancreatic atrophy in relation to duration of chronic type 1 (insulin-dependent) diabetes mellitus and microangiopathy. Diabetologia 30, 757–762 (1987).

    Article  CAS  PubMed  Google Scholar 

  20. Goda, K. et al. Pancreatic volume in type 1 and type 2 diabetes mellitus. Acta Diabetol. 38, 145–149 (2001).

    Article  CAS  PubMed  Google Scholar 

  21. Altobelli, E. et al. Size of pancreas in children and adolescents with type I (insulin-dependent) diabetes. J. Clin. Ultrasound 26, 391–395 (1998).

    Article  CAS  PubMed  Google Scholar 

  22. Alzaid, A., Aideyan, O. & Nawaz, S. The size of the pancreas in diabetes mellitus. Diabet. Med. 10, 759–763 (1993).

    Article  CAS  PubMed  Google Scholar 

  23. Williams, A. J., Chau, W., Callaway, M. P. & Dayan, C. M. Magnetic resonance imaging: a reliable method for measuring pancreatic volume in type 1 diabetes. Diabet. Med. 24, 35–40 (2007).

    Article  CAS  PubMed  Google Scholar 

  24. Gaglia, J. L. et al. Noninvasive imaging of pancreatic islet inflammation in type 1A diabetes patients. J. Clin. Invest. 121, 442–445 (2011).

    Article  CAS  PubMed  Google Scholar 

  25. Vesterhus, M., Haldorsen, I. S., Raeder, H., Molven, A. & Njølstad, P. R. Reduced pancreatic volume in hepatocyte nuclear factor 1A-maturity-onset diabetes of the young. J. Clin. Endocrinol. Metab. 93, 3505–3509 (2008).

    Article  CAS  PubMed  Google Scholar 

  26. Gilbeau, J. P., Poncelet, V., Libon, E., Derue, G. & Heller, F. R. The density, contour, and thickness of the pancreas in diabetics: CT findings in 57 patients. AJR Am. J. Roentgenol. 159, 527–531 (1992).

    Article  CAS  PubMed  Google Scholar 

  27. Nakamura, Y., Higuchi, S. & Maruyama, K. Pancreatic volume associated with endocrine and exocrine function of the pancreas among Japanese alcoholics. Pancreatology 5, 422–431 (2005).

    Article  CAS  PubMed  Google Scholar 

  28. Bilgin, M. et al. MRI and MRCP findings of the pancreas in patients with diabetes mellitus: compared analysis with pancreatic exocrine function determined by fecal elastase 1. J. Clin. Gastroenterol. 43, 165–170 (2009).

    Article  PubMed  Google Scholar 

  29. Sunnapwar, A. et al. Nonalcoholic, nonbiliary pancreatitis: cross-sectional imaging spectrum. AJR Am. J. Roentgenol. 195, 67–75 (2010).

    Article  PubMed  Google Scholar 

  30. Kim, D. H. & Pickhardt, P. J. Radiologic assessment of acute and chronic pancreatitis. Surg. Clin. North Am. 87, 1341–1358 (2007).

    Article  Google Scholar 

  31. Kovanlikaya, A. et al. Obesity and fat quantification in lean tissues using three-point Dixon MR imaging. Pediatr. Radiol. 35, 601–607 (2005).

    Article  PubMed  Google Scholar 

  32. Tushuizen, M. E. et al. Pancreatic fat content and β-cell function in men with and without type 2 diabetes. Diabetes Care 30, 2916–2921 (2007).

    Article  CAS  PubMed  Google Scholar 

  33. Smits, M. M. & van Geenen, E. J. The clinical significance of pancreatic steatosis. Nat. Rev. Gastroenterol. Hepatol. 8, 169–177 (2011).

    Article  PubMed  Google Scholar 

  34. Lesniak, R. J., Hohenwalter, M. D. & Taylor, A. J. Spectrum of causes of pancreatic calcifications. AJR Am. J. Roentgenol. 178, 79–86 (2002).

    Article  PubMed  Google Scholar 

  35. Ikeda, M. et al. Morphologic changes in the pancreas detected by screening ultrasonography in a mass survey, with special reference to main duct dilatation, cyst formation, and calcification. Pancreas 9, 508–512 (1994).

    Article  CAS  PubMed  Google Scholar 

  36. Glaser, J. & Stienecker, K. Pancreas and aging: a study using ultrasonography. Gerontology 46, 93–96 (2000).

    Article  CAS  PubMed  Google Scholar 

  37. Ellard, S., Bellanné-Chantelot, C. & Hattersley, A. T. Best practice guidelines for the molecular genetic diagnosis of maturity-onset diabetes of the young. Diabetologia 51, 546–553 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Bingham, C. et al. The generalized aminoaciduria seen in patients with hepatocyte nuclear factor-1α mutations is a feature of all patients with diabetes and is associated with glucosuria. Diabetes 50, 2047–2052 (2001).

    Article  CAS  PubMed  Google Scholar 

  39. Osbak, K. K. et al. Update on mutations in glucokinase (GCK), which cause maturity-onset diabetes of the young, permanent neonatal diabetes, and hyperinsulinemic hypoglycemia. Hum. Mutat. 30, 1512–1526 (2009).

    Article  CAS  PubMed  Google Scholar 

  40. Conn, J. J. et al. Neonatal hyperinsulinaemic hypoglycaemia and monogenic diabetes due to a heterozygous mutation of the HNF4A gene. Aust. NZ J. Obstet. Gynaecol. 49, 328–330 (2009).

    Article  Google Scholar 

  41. Pearson, E. R. Recent advances in the genetics of diabetes. Prim. Care Diabetes 2, 67–72 (2008).

    Article  PubMed  Google Scholar 

  42. Edghill, E. L. et al. Hepatocyte nuclear factor-1β mutations cause neonatal diabetes and intrauterine growth retardation: support for a critical role of HNF-1β in human pancreatic development. Diabet. Med. 23, 1301–1306 (2006).

    Article  CAS  PubMed  Google Scholar 

  43. Bellanné-Chantelot, C. et al. Clinical spectrum associated with hepatocyte nuclear factor-1β mutations. Ann. Intern. Med. 140, 510–517 (2004).

    Article  PubMed  Google Scholar 

  44. Yorifuji, T. et al. Neonatal diabetes mellitus and neonatal polycystic, dysplastic kidneys: phenotypically discordant recurrence of a mutation in the hepatocyte nuclear factor-1β gene due to germline mosaicism. J. Clin. Endocrinol. Metab. 89, 2905–2908 (2004).

    Article  CAS  PubMed  Google Scholar 

  45. Gonc, E. N. et al. HNF1B mutation in a Turkish child with renal and exocrine pancreas insufficiency, diabetes and liver disease. Pediatr. Diabetes 10.1111/j.1399-5448.2011.00773.x.

  46. Zuber, J. et al. HNF1B-related diabetes triggered by renal transplantation. Nat. Rev. Nephrol. 5, 480–484 (2009).

    Article  CAS  PubMed  Google Scholar 

  47. Haumaitre, C. et al. Lack of Tcf2/vHnf1 in mice leads to pancreas agenesis. Proc. Natl Acad. Sci. USA 102, 1490–1495 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Bonner-Weir, S. et al. β-cell growth and regeneration: replication is only part of the story. Diabetes 59, 2340–2348 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Kovanlikaya, A., Guclu, C., Desai, C., Becerra, R. & Gilsanz, V. Fat quantification using three-point Dixon technique: in vitro validation. Acad. Radiol. 12, 636–639 (2005).

    Article  PubMed  Google Scholar 

  50. Stoffers, D. A., Ferrer, J., Clarke, W. L. & Habener, J. F. Early-onset type-II diabetes mellitus (MODY4) linked to IPF1. Nat. Genet. 17, 138–139 (1997).

    Article  CAS  PubMed  Google Scholar 

  51. Gonsorcikova, L. et al. Autosomal inheritance of diabetes in two families characterized by obesity and a novel H241Q mutation in NEUROD1. Pediatr. Diabetes 9, 367–372 (2008).

    Article  PubMed  Google Scholar 

  52. Fernandez-Zapico, M. E. et al. MODY7 gene, KLF11, is a novel p300-dependent regulator of Pdx-1 (MODY4) transcription in pancreatic islet β cells. J. Biol. Chem. 284, 36482–36490 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Plengvidhya, N. et al. PAX4 mutations in Thais with maturity onset diabetes of the young. J. Clin. Endocrinol. Metab. 92, 2821–2826 (2007).

    Article  CAS  PubMed  Google Scholar 

  54. Shimajiri, Y. et al. A missense mutation of PAX4 gene (R121W) is associated with type 2 diabetes in Japanese. Diabetes 50, 2864–2869 (2001).

    Article  CAS  PubMed  Google Scholar 

  55. Molven, A. et al. Mutations in the insulin gene can cause MODY and autoantibody-negative type 1 diabetes. Diabetes 57, 1131–1135 (2008).

    Article  CAS  PubMed  Google Scholar 

  56. Borowiec, M. et al. Mutations at the BLK locus linked to maturity onset diabetes of the young and β-cell dysfunction. Proc. Natl Acad. Sci. USA 106, 14460–14465 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  57. von Muhlendahl, K. E. & Herkenhoff, H. Long-term course of neonatal diabetes. N. Engl. J. Med. 333, 704–708 (1995).

    Article  CAS  PubMed  Google Scholar 

  58. Shield, J. P. et al. Aetiopathology and genetic basis of neonatal diabetes. Arch. Dis. Child. Fetal Neonatal Ed. 76, F39–F42 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Edghill, E. L. et al. Origin of de novo KCNJ11 mutations and risk of neonatal diabetes for subsequent siblings. J. Clin. Endocrinol. Metab. 92, 1773–1777 (2007).

    Article  CAS  PubMed  Google Scholar 

  60. Greeley, S. A. et al. Update in neonatal diabetes. Curr. Opin. Endocrinol. Diabetes Obes. 17, 13–19 (2010).

    Article  CAS  PubMed  Google Scholar 

  61. Gloyn, A. L. et al. Activating mutations in the gene encoding the ATP-sensitive potassium-channel subunit Kir6.2 and permanent neonatal diabetes. N. Engl. J. Med. 350, 1838–1849 (2004).

    Article  CAS  PubMed  Google Scholar 

  62. Slingerland, A. S. et al. Referral rates for diagnostic testing support an incidence of permanent neonatal diabetes in three European countries of at least 1 in 260,000 live births. Diabetologia 52, 1683–1685 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Bappal, B., Raghupathy, P., de, S., V & Khusaiby, S. M. Permanent neonatal diabetes mellitus: clinical presentation and epidemiology in Oman. Arch. Dis. Child. Fetal Neonatal Ed. 80, F209–F212 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Støy, J. et al. Insulin gene mutations as a cause of permanent neonatal diabetes. Proc. Natl Acad. Sci. USA 104, 15040–15044 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Edghill, E. L. et al. Insulin mutation screening in 1,044 patients with diabetes: mutations in the INS gene are a common cause of neonatal diabetes but a rare cause of diabetes diagnosed in childhood or adulthood. Diabetes 57, 1034–1042 (2008).

    Article  CAS  PubMed  Google Scholar 

  66. Polak, M. et al. Heterozygous missense mutations in the insulin gene are linked to permanent diabetes appearing in the neonatal period or in early infancy: a report from the French ND (Neonatal Diabetes) Study Group. Diabetes 57, 1115–1119 (2008).

    Article  CAS  PubMed  Google Scholar 

  67. Temple, I. K. & Shield, J. P. Transient neonatal diabetes, a disorder of imprinting. J. Med. Genet. 39, 872–875 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Thomas, I. H. et al. Neonatal diabetes mellitus with pancreatic agenesis in an infant with homozygous IPF-1 Pro63fsX60 mutation. Pediatr. Diabetes 10, 492–496 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Schwitzgebel, V. M. et al. Agenesis of human pancreas due to decreased half-life of insulin promoter factor 1. J. Clin. Endocrinol. Metab. 88, 4398–4406 (2003).

    Article  CAS  PubMed  Google Scholar 

  70. Nicolino, M. et al. A novel hypomorphic PDX1 mutation responsible for permanent neonatal diabetes with subclinical exocrine deficiency. Diabetes 59, 733–740 (2010).

    Article  CAS  PubMed  Google Scholar 

  71. Rubio-Cabezas, O. et al. Wolcott–Rallison syndrome is the most common genetic cause of permanent neonatal diabetes in consanguineous families. J. Clin. Endocrinol. Metab. 94, 4162–4170 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Wildin, R. S., Smyk-Pearson, S. & Filipovich, A. H. Clinical and molecular features of the immunodysregulation, polyendocrinopathy, enteropathy, X linked (IPEX) syndrome. J. Med. Genet. 39, 537–545 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Smith, S. B. et al. Rfx6 directs islet formation and insulin production in mice and humans. Nature 463, 775–780 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Mitchell, J. et al. Neonatal diabetes, with hypoplastic pancreas, intestinal atresia and gall bladder hypoplasia: search for the aetiology of a new autosomal recessive syndrome. Diabetologia 47, 2160–2167 (2004).

    Article  CAS  PubMed  Google Scholar 

  75. Dimitri, P. et al. Novel GLIS3 mutations demonstrate an extended multisystem phenotype. Eur. J. Endocrinol. 164, 437–443 (2011).

    Article  CAS  PubMed  Google Scholar 

  76. Senée, V. et al. Mutations in GLIS3 are responsible for a rare syndrome with neonatal diabetes mellitus and congenital hypothyroidism. Nat. Genet. 38, 682–687 (2006).

    Article  CAS  PubMed  Google Scholar 

  77. Williams, J. A. & Goldfine, I. D. The insulin–pancreatic acinar axis. Diabetes 34, 980–986 (1985).

    Article  CAS  PubMed  Google Scholar 

  78. Henderson, J. R. Why are the islets of Langerhans? Lancet 2, 469–470 (1969).

    Article  CAS  PubMed  Google Scholar 

  79. Johansson, B. B. et al. Diabetes and pancreatic exocrine dysfunction due to mutations in the carboxyl-ester lipase gene (CEL-MODY): a protein misfolding disease. J. Biol. Chem. 286, 34593–34605 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Heni, M. et al. Pancreatic fat is negatively associated with insulin secretion in individuals with impaired fasting glucose and/or impaired glucose tolerance: a nuclear magnetic resonance study. Diabetes Metab. Res. Rev. 26, 200–205 (2010).

    Article  CAS  PubMed  Google Scholar 

  81. Nagashima, K., Yagi, H. & Kuroume, T. A case of Johanson–Blizzard syndrome complicated by diabetes mellitus. Clin. Genet. 43, 98–100 (1993).

    Article  CAS  PubMed  Google Scholar 

  82. Burroughs, L., Woolfrey, A. & Shimamura, A. Shwachman–Diamond syndrome: a review of the clinical presentation, molecular pathogenesis, diagnosis, and treatment. Hematol. Oncol. Clin. North Am. 23, 233–248 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  83. Stecenko, A. A. & Moran, A. Update on cystic fibrosis-related diabetes. Curr. Opin. Pulm. Med. 16, 611–615 (2010).

    Article  PubMed  Google Scholar 

  84. James, C., Kapoor, R. R., Ismail, D. & Hussain, K. The genetic basis of congenital hyperinsulinism. J. Med. Genet. 46, 289–299 (2009).

    Article  CAS  PubMed  Google Scholar 

  85. Palladino, A. A. & Stanley, C. A. A specialized team approach to diagnosis and medical versus surgical treatment of infants with congenital hyperinsulinism. Semin. Pediatr. Surg. 20, 32–37 (2011).

    Article  PubMed  Google Scholar 

  86. Marquard, J., Palladino, A. A., Stanley, C. A., Mayatepek, E. & Meissner, T. Rare forms of congenital hyperinsulinism. Semin. Pediatr. Surg. 20, 38–44 (2011).

    Article  PubMed  Google Scholar 

  87. Sandal, T. et al. The spectrum of ABCC8 mutations in Norwegian patients with congenital hyperinsulinism of infancy. Clin. Genet. 75, 440–448 (2009).

    Article  CAS  PubMed  Google Scholar 

  88. Otonkoski, T. et al. Noninvasive diagnosis of focal hyperinsulinism of infancy with 18F-DOPA positron emission tomography. Diabetes 55, 13–18 (2006).

    Article  CAS  PubMed  Google Scholar 

  89. Ismail, D. & Hussain, K. Role of 18F-DOPA PET/CT imaging in congenital hyperinsulinism. Rev. Endocr. Metab. Disord. 11, 165–169 (2010).

    Article  CAS  PubMed  Google Scholar 

  90. Mohnike, K. et al. 18F-DOPA positron emission tomography for preoperative localization in congenital hyperinsulinism. Horm. Res. 70, 65–72 (2008).

    Article  CAS  PubMed  Google Scholar 

  91. Hardy, O. T. et al. Diagnosis and localization of focal congenital hyperinsulinism by 18F-fluorodopa PET scan. J. Pediatr. 150, 140–145 (2007).

    Article  CAS  PubMed  Google Scholar 

  92. Hardy, O. T. et al. Accuracy of 18F fluorodopa positron emission tomography for diagnosing and localizing focal congenital hyperinsulinism. J. Clin. Endocrinol. Metab. 92, 4706–4711 (2007).

    Article  CAS  PubMed  Google Scholar 

  93. Capito, C. et al. Value of 18F-fluoro-L-dopa PET in the preoperative localization of focal lesions in congenital hyperinsulinism. Radiology 253, 216–222 (2009).

    Article  PubMed  Google Scholar 

  94. Masue, M. et al. Diagnostic accuracy of 18F fluoro-L-DOPA PET scan for persistent congenital hyperinsulinism in Japan. Clin. Endocrinol. (Oxf.) 75, 342–346 (2011).

    Article  Google Scholar 

  95. Mohnike, W., Barthlen, W., Mohnike, K. & Blankenstein, O. Positron emission tomography/computed tomography diagnostics by means of fluorine-18-L-dihydroxyphenylalanine in congenital hyperinsulinism. Semin. Pediatr. Surg. 20, 23–27 (2011).

    Article  PubMed  Google Scholar 

  96. Zani, A. et al. The predictive value of preoperative fluorine-18-L-3, 4-dihydroxyphenylalanine positron emission tomography–computed tomography scans in children with congenital hyperinsulinism of infancy. J. Pediatr. Surg. 46, 204–208 (2011).

    Article  PubMed  Google Scholar 

  97. Otonkoski, T. et al. A point mutation inactivating the sulfonylurea receptor causes the severe form of persistent hyperinsulinemic hypoglycemia of infancy in Finland. Diabetes 48, 408–415 (1999).

    Article  CAS  PubMed  Google Scholar 

  98. Nestorowicz, A. et al. Genetic heterogeneity in familial hyperinsulinism. Hum. Mol. Genet. 7, 1119–1128 (1998).

    Article  CAS  PubMed  Google Scholar 

  99. Verkarre, V. et al. Paternal mutation of the sulfonylurea receptor (SUR1) gene and maternal loss of 11p15 imprinted genes lead to persistent hyperinsulinism in focal adenomatous hyperplasia. J. Clin. Invest. 102, 1286–1291 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. De Lonlay, P. et al. Congenital hyperinsulinism: pancreatic 18F-fluoro-L-dihydroxyphenylalanine (DOPA) positron emission tomography and immunohistochemistry study of DOPA decarboxylase and insulin secretion. J. Clin. Endocrinol. Metab. 91, 933–940 (2006).

    Article  CAS  PubMed  Google Scholar 

  101. Villiger, M., Goulley, J., Martin-Williams, E. J., Grapin-Botton, A. & Lasser, T. Towards high resolution optical imaging of β cells in vivo. Curr. Pharm. Des. 16, 1595–1608 (2010).

    Article  CAS  PubMed  Google Scholar 

  102. Gotthardt, M. β cell imaging—why we need it and what has been achieved. Curr. Pharm. Des. 16, 1545–1546 (2010).

    Article  CAS  PubMed  Google Scholar 

  103. Ahlgren, U. & Gotthardt, M. Approaches for imaging islets: recent advances and future prospects. Adv. Exp. Med. Biol. 654, 39–57 (2010).

    Article  PubMed  Google Scholar 

  104. Leibiger, I. B., Caicedo, A. & Berggren, P. O. Non-invasive in vivo imaging of pancreatic β-cell function and survival—a perspective. Acta Physiol. (Oxf.) 10.1111/j.17481716.2011.02301.x.

  105. Brom, M., Andrałojc, K., Oyen, W. J., Boerman, O. C. & Gotthardt, M. Development of radiotracers for the determination of the β-cell mass in vivo. Curr. Pharm. Des. 16, 1561–1567 (2010).

    Article  CAS  PubMed  Google Scholar 

  106. Toso, C. et al. Clinical magnetic resonance imaging of pancreatic islet grafts after iron nanoparticle labeling. Am. J. Transplant. 8, 701–706 (2008).

    Article  CAS  PubMed  Google Scholar 

  107. Medarova, Z. & Moore, A. MRI as a tool to monitor islet transplantation. Nat. Rev. Endocrinol. 5, 444–452 (2009).

    Article  PubMed  Google Scholar 

  108. Antkowiak, P. F. et al. Noninvasive assessment of pancreatic β-cell function in vivo with manganese-enhanced magnetic resonance imaging. Am. J. Physiol. Endocrinol. Metab. 296, E573–E578 (2009).

    Article  CAS  PubMed  Google Scholar 

  109. Barthlen, W. et al. Evaluation of 18F fluoro-L-DOPA positron emission tomography–computed tomography for surgery in focal congenital hyperinsulinism. J. Clin. Endocrinol. Metab. 93, 869–875 (2008).

    Article  CAS  PubMed  Google Scholar 

  110. Freeby, M. et al. VMAT2 quantitation by PET as a biomarker for β-cell mass in health and disease. Diabetes Obes. Metab. 10 (Suppl. 4), 98–108 (2008).

    Article  PubMed  Google Scholar 

  111. Veluthakal, R. & Harris, P. In vivo β-cell imaging with VMAT 2 ligands—current state-of-the-art and future perspective. Curr. Pharm. Des. 16, 1568–1581 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Medarova, Z. & Moore, A. MRI in diabetes: first results. AJR Am. J. Roentgenol. 193, 295–303 (2009).

    Article  PubMed  Google Scholar 

  113. Hirshberg, B. et al. Pancreatic perfusion of healthy individuals and type 1 diabetic patients as assessed by magnetic resonance perfusion imaging. Diabetologia 52, 1561–1565 (2009).

    Article  CAS  PubMed  Google Scholar 

  114. Balci, N. C. et al. Diffusion-weighted magnetic resonance imaging of the pancreas. Top. Magn. Reson. Imaging 20, 43–47 (2009).

    Article  Google Scholar 

  115. Hu, H. H., Kim, H. W., Nayak, K. S. & Goran, M. I. Comparison of fat-water MRI and single-voxel MRS in the assessment of hepatic and pancreatic fat fractions in humans. Obesity (Silver Spring) 18, 841–847 (2010).

    Article  Google Scholar 

  116. Martínek, A., Klvana, P., Marten, P., Lesková, M. & Dvorácková, J. Are ultrasonic images in diabetics different? [Czech]. Vnitr. Lek. 47, 324–329 (2001).

    PubMed  Google Scholar 

  117. Lindner, T. et al. Hepatic function in a family with a nonsense mutation (R154X) in the hepatocyte nuclear factor-4α/MODY1 gene. J. Clin. Invest. 100, 1400–1405 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Thanabalasingham, G. et al. A large multi-centre European study validates high-sensitivity C-reactive protein (hsCRP) as a clinical biomarker for the diagnosis of diabetes subtypes. Diabetologia 54, 2801–2810 (2011).

    Article  CAS  PubMed  Google Scholar 

  119. McDonald, T. J. et al. High-sensitivity CRP discriminates HNF1A-MODY from other sub-types of diabetes. Diabetes Care 34, 1860–1862 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  120. Støy, J. et al. Diagnosis and treatment of neonatal diabetes: a United States experience. Pediatr. Diabetes 9, 450–459 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Babenko, A. P. et al. Activating mutations in the ABCC8 gene in neonatal diabetes mellitus. N. Engl. J. Med. 355, 456–466 (2006).

    Article  CAS  PubMed  Google Scholar 

  122. Garin, I. et al. Recessive mutations in the INS gene result in neonatal diabetes through reduced insulin biosynthesis. Proc. Natl Acad. Sci. USA 107, 3105–3110 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  123. Russo, L. et al. Permanent diabetes during the first year of life: multiple gene screening in 54 patients. Diabetologia 54, 1693–1701 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Zalloua, P. A. et al. WFS1 mutations are frequent monogenic causes of juvenile-onset diabetes mellitus in Lebanon. Hum. Mol. Genet. 17, 4012–4021 (2008).

    Article  CAS  PubMed  Google Scholar 

  125. Rigoli, L., Lombardo, F. & Di, B. C. Wolfram syndrome and WFS1 gene. Clin. Genet. 79, 103–117 (2011).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors' research is supported in part by funds from the Research Council of Norway, the University of Bergen, Innovest, Bergen Medical Research Foundation and Helse Vest.

Author information

Authors and Affiliations

Authors

Contributions

All authors provided substantial contribution to discussions of the content, and reviewed and/or edited the manuscript before submission. I. Haldorsen, H. Reader, A. Molven and P. Njølstad researched data for the article. I. Haldorsen wrote the article.

Corresponding author

Correspondence to Pål R. Njølstad.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Haldorsen, I., Ræder, H., Vesterhus, M. et al. The role of pancreatic imaging in monogenic diabetes mellitus. Nat Rev Endocrinol 8, 148–159 (2012). https://doi.org/10.1038/nrendo.2011.197

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrendo.2011.197

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing