Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Fetal microchimerism as an explanation of disease

Abstract

Fetal cell microchimerism is defined as the persistence of fetal cells in the mother after birth without any apparent rejection. Fetal microchimeric cells (FMCs) engraft into the maternal bone marrow for decades after delivery and are able to migrate to blood and tissues. This phenomenon was hypothesized to have a detrimental role in autoimmune diseases, but data are still controversial and debated. In malignant tumors, fetal cell microchimerism has been postulated to have a positive effect on tumor burden, although some evidence suggests that FMCs may be involved in neoplastic progression. At the peripheral level, circulating FMCs are less frequently detected in patients with thyroid cancer, breast cancer or other solid, hematologic malignancies than in healthy individuals, which suggests a protective role for fetal cell microchimerism. In tissues, FMCs have been found in tumor sections from malignancies such as thyroid, breast, cervix, lung cancers and melanomas and have been shown to differentiate into epithelial, hematopoietic, endothelial and mesenchymal cells. FMCs with hematopoietic differentiation have been postulated to have a role in destroying the tumor, whereas mesenchymal and epithelial cells could participate in repair processes. Endothelial cells, on the other hand, are believed to play a part in tumor progression. This Review provides an overview of the role of fetal cell microchimerism in autoimmune and benign or malignant nonautoimmune diseases. Moreover, the mechanisms by which fetal cell microchimerism is believed to modulate the protection against cancer or tumor progression will be discussed, together with future research directions.

Key Points

  • Fetal microchimeric cells (FMCs) can engraft into maternal bone marrow and provide a renewing source of fetal cells in maternal blood for decades after delivery

  • Three hypotheses have been put forward concerning microchimerism and human health: a chronic inflammatory response that causes tissue damage; a protective role in repair of tissues; or a physiologic event without biological significance

  • In systemic and nonsystemic autoimmune diseases, a pathogenic role of fetal cell microchimerism remains controversial, as study results comparing the number of FMCs in patients and healthy controls are conflicting

  • FMCs are more frequent in the blood of healthy women compared with patients with neoplasms, which indicates that FMCs have the potential to participate in immune surveillance

  • At the tissue level, FMCs are preferentially located in tumoral tissues rather than nontumoral areas and are morphologically undistinguishable from the surrounding maternal cells

  • Some FMCs are CD45-positive, possibly for tumor destruction, whereas others can differentiate into epithelial or mesenchymal cells to regenerate tissue or endothelial cells to participate in vessel formation

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Methods to detect male fetal cells.
Figure 2: Schematic representation of the organs involved in autoimmune diseases (left) and in neoplastic processes (right) in which fetal cell microchimerism has been studied.
Figure 3: Possible roles of microchimeric male cells.
Figure 4: Immunophenotypic characterization of papillary thyroid cancer.

Similar content being viewed by others

References

  1. Adams Waldorf, K. M. et al. Dynamic changes in fetal microchimerism in maternal peripheral blood mononuclear cells, CD4+ and CD8+ cells in normal pregnancy. Placenta 31, 589–594 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Fujiki, Y., Johnson, K. L., Tighiouart, H., Peter, I. & Bianchi, D. W. Fetomaternal trafficking in the mouse increases as delivery approaches and is highest in the maternal lung. Biol. Reprod. 79, 841–848 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Fujiki, Y., Johnson, K. L., Peter, I., Tighiouart, H. & Bianchi, D. W. Fetal cells in the pregnant mouse are diverse and express a variety of progenitor and differentiated cell markers. Biol. Reprod. 81, 26–32 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Nguyen Huu, S., Dubernard, G., Aractingi, S. & Khosrotehrani, K. Feto-maternal cell trafficking: a transfer of pregnancy associated progenitor cells. Stem Cell Rev. 2, 111–116 (2006).

    PubMed  Google Scholar 

  5. Bianchi, D. W., Zickwolf, G. K., Sylvester, S. & DeMaria, M. A. Male fetal progenitor cells persist in maternal blood for as long as 27 years postpartum. Proc. Natl Acad. Sci. USA 93, 705–708 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. O'Donoghue, K. et al. Microchimerism in female bone marrow and bone decades after fetal mesenchymal stem-cell trafficking in pregnancy. Lancet 364, 179–182 (2004).

    Article  PubMed  Google Scholar 

  7. Khosrotehrani, K. et al. Pregnancy allows the transfer and differentiation of fetal lymphoid progenitors into functional T and B cells in mothers. J. Immunol. 180, 889–897 (2008).

    Article  CAS  PubMed  Google Scholar 

  8. Leduc, M. et al. Limited functional capacity of microchimeric fetal hematopoietic progenitors acquired by mothers during pregnancy. Exp. Hematol. 38, 852–853 (2010).

    Article  PubMed  Google Scholar 

  9. Evans, P. C. et al. Long-term fetal microchimerism in peripheral blood mononuclear cell subsets in healthy women and women with scleroderma. Blood 93, 2033–2037 (1999).

    CAS  PubMed  Google Scholar 

  10. Khosrotehrani, K., Johnson, K. L., Cha, D. H., Salomon, R. N. & Bianchi, D. W. Transfer of fetal cells with multilineage potential to maternal tissue. JAMA 292, 75–80 (2004).

    Article  CAS  PubMed  Google Scholar 

  11. Srivatsa, B., Srivatsa, S., Johnson, K. L. & Bianchi, D. W. Maternal cell microchimerism in newborn tissues. J. Pediatr. 142, 31–35 (2003).

    Article  PubMed  Google Scholar 

  12. Johnson, K. L., Zhen, D. K. & Bianchi, D. W. The use of fluorescence in situ hybridization (FISH) on paraffin-embedded tissue sections for the study of microchimerism. Biotechniques 29, 1220–1224 (2000).

    Article  CAS  PubMed  Google Scholar 

  13. Lambert, N. C. et al. Quantification of maternal microchimerism by HLA-specific real-time polymerase chain reaction: studies of healthy women and women with scleroderma. Arthritis Rheum. 50, 906–914 (2004).

    Article  CAS  PubMed  Google Scholar 

  14. Artlett, C. M., Smith, J. B. & Jimenez, S. A. Identification of fetal DNA and cells in skin lesions from women with systemic sclerosis. N. Engl. J. Med. 338, 1186–1191 (1998).

    Article  CAS  PubMed  Google Scholar 

  15. Lambert, N. C. et al. Male microchimerism in healthy women and women with scleroderma: cells or circulating DNA? A quantitative answer. Blood 100, 2845–2851 (2002).

    Article  CAS  PubMed  Google Scholar 

  16. Nelson, J. L. et al. Microchimerism and HLA-compatible relationships of pregnancy in scleroderma. Lancet 351, 559–562 (1998).

    Article  CAS  PubMed  Google Scholar 

  17. Selva-O'Callaghan, A. et al. Lack of evidence of foetal microchimerism in female Spanish patients with systemic sclerosis. Lupus 12, 15–20 (2003).

    Article  CAS  PubMed  Google Scholar 

  18. Murata, H., Nakauchi, H. & Sumida, T. Microchimerism in Japanese women patients with systemic sclerosis. Lancet 354, 220 (1999).

    Article  CAS  PubMed  Google Scholar 

  19. Gannagé, M., Amoura, Z., Lantz, O., Piette, J. C. & Caillat-Zucman, S. Feto-maternal microchimerism in connective tissue diseases. Eur. J. Immunol. 32, 3405–3413 (2002).

    Article  PubMed  Google Scholar 

  20. Corpechot, C., Barbu, V., Chazouillères, O. & Poupon, R. Fetal microchimerism in primary biliary cirrhosis. J. Hepatol. 33, 696–700 (2000).

    Article  CAS  PubMed  Google Scholar 

  21. Invernizzi, P. et al. Blood fetal microchimerism in primary biliary cirrhosis. Clin. Exp. Immunol. 122, 418–422 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Endo, Y., Negishi, I. & Ishikawa, O. Possible contribution of microchimerism to the pathogenesis of Sjögren's syndrome. Rheumatology (Oxford) 41, 490–495 (2002).

    Article  CAS  Google Scholar 

  23. Stevens, A. M. Microchimeric cells in systemic lupus erythematosus: targets or innocent bystanders? Lupus 15, 820–826 (2006).

    Article  CAS  PubMed  Google Scholar 

  24. Johnson, K. L., McAlindon, T. E., Mulcahy, E. & Bianchi, D. W. Microchimerism in a female patient with systemic lupus erythematosus. Arthritis Rheum. 44, 2107–2111 (2001).

    Article  CAS  PubMed  Google Scholar 

  25. Mosca, M. et al. Correlations of Y chromosome microchimerism with disease activity in patients with SLE: analysis of preliminary data. Ann. Rheum. Dis. 62, 651–654 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Rak, J. M. et al. Transfer of the shared epitope through microchimerism in women with rheumatoid arthritis. Arthritis Rheum. 60, 73–80 (2009).

    Article  CAS  PubMed  Google Scholar 

  27. Yan, Z. et al. Male microchimerism in women without sons: quantitative assessment and correlation with pregnancy history. Am. J. Med. 118, 899–906 (2005).

    Article  PubMed  Google Scholar 

  28. Ando, T., Imaizumi, M., Graves, P. N., Unger, P. & Davies, T. F. Intrathyroidal fetal microchimerism in Graves' disease. J. Clin. Endocrinol. Metab. 87, 3315–3320 (2002).

    CAS  PubMed  Google Scholar 

  29. Badenhoop, K. Intrathyroidal microchimerism in Graves' disease or Hashimoto's thyroiditis: regulation of tolerance or alloimmunity by fetal–maternal immune interactions? Eur. J. Endocrinol. 150, 421–423 (2004).

    Article  CAS  PubMed  Google Scholar 

  30. Imaizumi, M., Pritsker, A., Unger, P. & Davies, T. F. Intrathyroidal fetal microchimerism in pregnancy and postpartum. Endocrinology 143, 247–253 (2002).

    Article  CAS  PubMed  Google Scholar 

  31. Klintschar, M., Schwaiger, P., Mannweiler, S., Regauer, S. & Kleiber, M. Evidence of fetal microchimerism in Hashimoto's thyroiditis. J. Clin. Endocrinol. Metab. 86, 2494–2498 (2001).

    CAS  PubMed  Google Scholar 

  32. Klintschar, M. et al. Fetal microchimerism in Hashimoto's thyroiditis: a quantitative approach. Eur. J. Endocrinol. 154, 237–241 (2006).

    Article  CAS  PubMed  Google Scholar 

  33. Renné, C. et al. Thyroid fetal male microchimerisms in mothers with thyroid disorders: presence of Y-chromosomal immunofluorescence in thyroid-infiltrating lymphocytes is more prevalent in Hashimoto's thyroiditis and Graves' disease than in follicular adenomas. J. Clin. Endocrinol. Metab. 89, 5810–5814 (2004).

    Article  PubMed  Google Scholar 

  34. Sarkar, K. & Miller, F. W. Possibile roles and determinants of microchimerism in autoimmune and other disorders. Autoimmun. Rev. 3, 454–463 (2004).

    Article  CAS  PubMed  Google Scholar 

  35. Leduc, M., Aractingi, S. & Khosrotehrani, K. Fetal-cell microchimerism, lymphopoiesis, and autoimmunity. Arch. Immunol. Ther. Exp. (Warsz) 57, 325–329 (2009).

    Article  CAS  Google Scholar 

  36. Abbud Filho, M. et al. Systemic lupus erythematosus and microchimerism in autoimmunity. Transplant. Proc. 34, 2951–2952 (2002).

    Article  CAS  PubMed  Google Scholar 

  37. Imaizumi, M. et al. Pregnancy and murine thyroiditis: thyroglobulin immunization leads to fetal loss in specific allogeneic pregnancies. Endocrinology 142, 823–829 (2001).

    Article  CAS  PubMed  Google Scholar 

  38. Rust, D. W. & Bianchi, D. W. Microchimerism in endocrine pathology. Endocr. Pathol. 20, 11–16 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  39. Weetman, A. P. Immunity, thyroid function and pregnancy: molecular mechanisms. Nat. Rev. Endocrinol. 6, 311–318 (2010).

    Article  CAS  PubMed  Google Scholar 

  40. Miech, R. P. The role of fetal microchimerism in autoimmune disease. Int. J. Clin. Exp. Med. 3, 164–168 (2010).

    PubMed  PubMed Central  Google Scholar 

  41. Klonisch, T. & Drouin, R. Fetal-maternal exchange of multipotent stem/progenitor cells: microchimerism in diagnosis and disease. Trends Mol. Med. 15, 510–518 (2009).

    Article  CAS  PubMed  Google Scholar 

  42. Johnson, K. L., Samura, O., Nelson, J. L., McDonnell, W. M. & Bianchi, D. W. Significant fetal cell microchimerism in a nontransfused woman with hepatitis C: evidence of long-term survival and expansion. Hepatology 36, 1295–1297 (2002).

    Article  PubMed  Google Scholar 

  43. Wang, Y. et al. Fetal cells in mother rats contribute to the remodeling of liver and kidney after injury. Biochem. Biophys. Res. Commun. 325, 961–967 (2004).

    Article  CAS  PubMed  Google Scholar 

  44. Srivatsa, B. et al. Microchimerism of presumed fetal origin in thyroid specimens from women: a case–control study. Lancet 358, 2034–2038 (2001).

    Article  CAS  PubMed  Google Scholar 

  45. Cirello, V. et al. Fetal cell microchimerism in papillary thyroid cancer: studies in peripheral blood and tissues. Int. J. Cancer 126, 2874–2878 (2010).

    CAS  PubMed  Google Scholar 

  46. Gadi, V. K., Malone, K. E., Guthrie, K. A., Porter, P. L. & Nelson, J. L. Case-control study of fetal microchimerism and breast cancer. PLoS ONE 3, e1706 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  47. Gilmore, G. L., Haq, B., Shadduck, R. K., Jasthy, S. L. & Lister, J. Fetal–maternal microchimerism in normal parous females and parous female cancer patients. Exp. Hematol. 36, 1073–1077 (2008).

    Article  CAS  PubMed  Google Scholar 

  48. Cirello, V. et al. Fetal cell microchimerism in papillary thyroid cancer: a possible role in tumor damage and tissue repair. Cancer Res. 15, 8482–8488 (2008).

    Article  Google Scholar 

  49. Dubernard, G. et al. Breast cancer stroma frequently recruits fetal derived cells during pregnancy. Breast Cancer Res. 10, R14 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  50. Dubernard, G. et al. Increased fetal cell microchimerism in high grade breast carcinomas occurring during pregnancy. Int. J. Cancer 124, 1054–1059 (2009).

    Article  CAS  PubMed  Google Scholar 

  51. Gadi, V. K. Fetal microchimerism in breast from women with and without breast cancer. Breast Cancer Res. Treat. 121, 241–244 (2010).

    Article  PubMed  Google Scholar 

  52. O'Donoghue, K. et al. Microchimeric fetal cells cluster at sites of tissue injury in lung decades after pregnancy. Reprod. Biomed. Online 16, 382–390 (2008).

    Article  PubMed  Google Scholar 

  53. Cha, D. et al. Cervical cancer and microchimerism. Obstet. Gynecol. 102, 774–781 (2003).

    PubMed  Google Scholar 

  54. Nguyen Huu, S. et al. Fetal microchimeric cells participate in tumour angiogenesis in melanomas occurring during pregnancy. Am. J. Pathol. 174, 630–637 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  55. Nguyen Huu, S. et al. Early phase of maternal skin carcinogenesis recruits long-term engrafted fetal cells. Int. J. Cancer 123, 2512–2517 (2008).

    Article  PubMed  Google Scholar 

  56. Khosrotehrani, K., Stroh, H., Bianchi, D. W. & Johnson, K. L. Combined FISH and immunolabeling on paraffin-embedded tissue sections for the study of microchimerism. Biotechniques 34, 242–244 (2003).

    Article  CAS  PubMed  Google Scholar 

  57. Gadi, V. K. Fetal microchimerism and cancer. Cancer Lett. 276, 8–13 (2009).

    Article  CAS  PubMed  Google Scholar 

  58. Jo, Y. S. et al. Significance of the expression of major histocompatibility complex class II antigen, HLA-DR and -DQ, with recurrence of papillary thyroid cancer. Int. J. Cancer 122, 785–790 (2008).

    Article  CAS  PubMed  Google Scholar 

  59. Ryder, M., Ghossein, R. A., Ricarte-Filho, J. C., Knauf, J. A. & Fagin, J. A. Increased density of tumor-associated macrophages is associated with decreased survival in advanced thyroid cancer. Endocr. Relat. Cancer 15, 1069–1074 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

L. Fugazzola and V. Cirello researched the data for the article. P. Beck-Peccoz provided a substantial contribution to discussions of the content. L. Fugazzola wrote the review. All authors reviewed and edited the manuscript before submission.

Corresponding author

Correspondence to Laura Fugazzola.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fugazzola, L., Cirello, V. & Beck-Peccoz, P. Fetal microchimerism as an explanation of disease. Nat Rev Endocrinol 7, 89–97 (2011). https://doi.org/10.1038/nrendo.2010.216

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrendo.2010.216

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer