Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The multiple faces of autoimmune-mediated bone loss

Abstract

Inflammation perturbs normal bone homeostasis and is known to induce bone loss, as it promotes both local cartilage degradation and local and systemic bone destruction by osteoclasts, as well as inhibits bone formation by osteoblasts. Thus, not surprisingly, inflammatory autoimmune diseases often lead to local and/or general bone loss. However, the mechanisms that target the bone in autoimmune disease are complex and diverse, as they range from a direct attack on the bone and cartilage by the immune cells to indirect consequences of disturbances of the systemic control of bone remodeling. This Review discusses current understanding of the mechanisms of autoimmune-mediated bone loss in view of new insight from two new fields of research: osteoimmunology, which analyzes the direct effect of immune cells on bone, and the integrative metabolism approach, which established the existence of neuroendocrine loops that regulate bone remodeling.

Key Points

  • Maintenance of bone homeostasis depends on the coupling between the activity of osteoblasts and osteoclasts that is locally regulated by B cells and T cells

  • Bone remodeling is also dependent on regulation by the hypothalamic–pituitary–thyroid axis and a systemic regulatory system that connects bone, the β cells of the pancreas and adipose tissue

  • In inflammatory arthritis—typically rheumatoid arthritis and psoriatic arthritis—bone-localized inflammation directly triggers bone loss

  • In type 1 diabetes mellitus, destruction of β cells disrupts the neuroendocrine regulation between adipose tissue and bone regulation and abolishes the local positive effect of insulin signaling on bone formation

  • In autoimmune thyroid diseases, while hypothyroidism in Hashimoto thyroiditis leads to decreased bone formation, hyperthyroidism in Graves disease stimulates bone destruction; bone mass decreases in both cases

  • In systemic lupus erythematosus, bone loss may be the consequence of the combined effect of systemic inflammation and pro-osteopenic therapeutic adverse effects

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The coupling between osteoclasts and osteoblasts in bone remodeling.
Figure 2: The immune regulation of bone remodeling.
Figure 3: The neuroendocrine regulation of adipose tissue and bone remodeling.
Figure 4: Rheumatoid arthritis and bone loss.
Figure 5: Type 1 diabetes mellitus and bone loss.

Similar content being viewed by others

References

  1. Moser, K., Tokoyoda, K., Radbruch, A., MacLennan, I. & Manz, R. A. Stromal niches, plasma cell differentiation and survival. Curr. Opin. Immunol. 18, 265–270 (2006).

    Article  CAS  PubMed  Google Scholar 

  2. Tokoyoda, K., Hauser, A. E., Nakayama, T. & Radbruch, A. Organization of immunological memory by bone marrow stroma. Nat. Rev. Immunol. 10, 193–200 (2010).

    Article  CAS  PubMed  Google Scholar 

  3. Takayanagi, H. Osteoimmunology and the effects of the immune system on bone. Nat. Rev. Rheumatol. 5, 667–676 (2009).

    Article  CAS  PubMed  Google Scholar 

  4. Lorenzo, J., Horowitz, M. & Choi, Y. Osteoimmunology: interactions of the bone and immune system. Endocr. Rev. 29, 403–440 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. David, J. P. Osteoimmunology: a view from the bone. Adv. Immunol. 95, 149–165 (2007).

    Article  CAS  PubMed  Google Scholar 

  6. McInnes, I. B. & Schett, G. Cytokines in the pathogenesis of rheumatoid arthritis. Nat. Rev. Immunol. 7, 429–442 (2007).

    Article  CAS  PubMed  Google Scholar 

  7. Hartmann, C. Transcriptional networks controlling skeletal development. Curr. Opin. Genet. Dev. 19, 437–443 (2009).

    Article  CAS  PubMed  Google Scholar 

  8. Karsenty, G., Kronenberg, H. M. & Settembre, C. Genetic control of bone formation. Annu. Rev. Cell Dev. Biol. 25, 629–648 (2009).

    Article  CAS  PubMed  Google Scholar 

  9. Takada, I., Kouzmenko, A. P. & Kato, S. Wnt and PPARgamma signaling in osteoblastogenesis and adipogenesis. Nat. Rev. Rheumatol. 5, 442–447 (2009).

    Article  CAS  PubMed  Google Scholar 

  10. Teitelbaum, S. L. & Ross, F. P. Genetic regulation of osteoclast development and function. Nat. Rev. Genet. 4, 638–649 (2003).

    Article  CAS  PubMed  Google Scholar 

  11. Boyle, W. J., Simonet, W. S. & Lacey, D. L. Osteoclast differentiation and activation. Nature 423, 337–342 (2003).

    Article  CAS  PubMed  Google Scholar 

  12. Matsuo, K. & Irie, N. Osteoclast-osteoblast communication. Arch. Biochem. Biophys. 473, 201–209 (2008).

    Article  CAS  PubMed  Google Scholar 

  13. Wada, T., Nakashima, T., Hiroshi, N. & Penninger, J. M. RANKL-RANK signaling in osteoclastogenesis and bone disease. Trends Mol. Med. 12, 17–25 (2006).

    Article  CAS  PubMed  Google Scholar 

  14. Häusler, K. D. et al. Secreted frizzled-related protein-1 inhibits RANKL-dependent osteoclast formation. J. Bone Miner. Res. 19, 1873–1881 (2004).

    Article  PubMed  CAS  Google Scholar 

  15. Zhao, C. et al. Bidirectional ephrinB2-EphB4 signaling controls bone homeostasis. Cell Metab. 4, 111–121 (2006).

    Article  CAS  PubMed  Google Scholar 

  16. Wong, B. R. et al. TRANCE (tumor necrosis factor [TNF]-related activation-induced cytokine), a new TNF family member predominantly expressed in T cells, is a dendritic cell-specific survival factor. J. Exp. Med. 186, 2075–2080 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Josien, R., Wong, B. R., Li, H. L., Steinman, R. M. & Choi, Y. TRANCE, a TNF family member, is differentially expressed on T cell subsets and induces cytokine production in dendritic cells. J. Immunol. 1 62, 2562–2568 (1999).

    Google Scholar 

  18. Zaiss, M. M. et al. Treg cells suppress osteoclast formation: a new link between the immune system and bone. Arthritis Rheum. 56, 4104–4112 (2007).

    Article  CAS  PubMed  Google Scholar 

  19. Takayanagi, H. et al. T-cell-mediated regulation of osteoclastogenesis by signalling cross-talk between RANKL and IFN-gamma. Nature 408, 600–605 (2000).

    Article  CAS  PubMed  Google Scholar 

  20. Abu-Amer, Y. IL-4 abrogates osteoclastogenesis through STAT6-dependent inhibition of NF-kappaB. J. Clin. Invest. 107, 1375–1385 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Wei, S., Wang, M. W., Teitelbaum, S. L. & Ross, F. P. Interleukin-4 reversibly inhibits osteoclastogenesis via inhibition of NF-kappa B and mitogen-activated protein kinase signaling. J. Biol. Chem. 277, 6622–6630 (2002).

    Article  CAS  PubMed  Google Scholar 

  22. Moreno, J. L., Kaczmarek, M., Keegan, A. D. & Tondravi, M. IL-4 suppresses osteoclast development and mature osteoclast function by a STAT6-dependent mechanism: irreversible inhibition of the differentiation program activated by RANKL. Blood 102, 1078–1086 (2003).

    Article  CAS  PubMed  Google Scholar 

  23. Axmann, R. et al. CTLA-4 directly inhibits osteoclast formation. Ann. Rheum. Dis. 67, 1603–1609 (2008).

    Article  CAS  PubMed  Google Scholar 

  24. Sato, K. et al. Th17 functions as an osteoclastogenic helper T cell subset that links T cell activation and bone destruction. J. Exp. Med. 203, 2673–2682 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Kim, Y. G. et al. Human CD4+CD25+ regulatory T cells inhibit the differentiation of osteoclasts from peripheral blood mononuclear cells. Biochem. Biophys. Res. Commun. 357, 1046–1052 (2007).

    Article  CAS  PubMed  Google Scholar 

  26. Choi, Y. et al. Osteoclastogenesis is enhanced by activated B cells but suppressed by activated CD8(+) T cells. Eur. J. Immunol. 31, 2179–2188 (2001).

    Article  CAS  PubMed  Google Scholar 

  27. Grcevic, D. et al. Activated T lymphocytes suppress osteoclastogenesis by diverting early monocyte/macrophage progenitor lineage commitment towards dendritic cell differentiation through down-regulation of receptor activator of nuclear factor-kappaB and c-Fos. Clin. Exp. Immunol. 1 46, 146–158 (2006).

    Article  CAS  Google Scholar 

  28. Zaiss, M. M. et al. Increased bone density and resistance to ovariectomy-induced bone loss in FoxP3-transgenic mice based on impaired osteoclast differentiation. Arthritis Rheum. 62, 2328–2338 (2010).

    Article  CAS  PubMed  Google Scholar 

  29. Li, Y. et al. B cells and T cells are critical for the preservation of bone homeostasis and attainment of peak bone mass in vivo. Blood 109, 3839–3848 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Gao, Y. et al. T cells potentiate PTH-induced cortical bone loss through CD40L signaling. Cell Metab. 8, 132–145 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Gao, Y. et al. IFN-gamma stimulates osteoclast formation and bone loss in vivo via antigen-driven T cell activation. J. Clin. Invest. 117, 122–132 (2007).

    Article  CAS  PubMed  Google Scholar 

  32. Rosen, C. J. Bone remodeling, energy metabolism, and the molecular clock. Cell Metab. 7, 7–10 (2008).

    Article  CAS  PubMed  Google Scholar 

  33. Lee, N. K. & Karsenty, G. Reciprocal regulation of bone and energy metabolism. J. Musculoskelet. Neuronal Interact. 8, 351 (2008).

    CAS  PubMed  Google Scholar 

  34. Lieben, L., Callewaert, F. & Bouillon, R. Bone and metabolism: a complex crosstalk. Horm. Res. 71 (Suppl. 1), 134–138 (2009).

    CAS  PubMed  Google Scholar 

  35. Hinoi, E. et al. The sympathetic tone mediates leptin's inhibition of insulin secretion by modulating osteocalcin bioactivity. J. Cell Biol. 183, 1235–1242 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Yoshizawa, T. et al. The transcription factor ATF4 regulates glucose metabolism in mice through its expression in osteoblasts. J. Clin. Invest. 119, 2807–2817 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Ferron, M., Hinoi, E., Karsenty, G. & Ducy, P. Osteocalcin differentially regulates beta cell and adipocyte gene expression and affects the development of metabolic diseases in wild-type mice. Proc. Natl Acad. Sci. USA 105, 5266–5270 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Ducy, P. et al. Leptin inhibits bone formation through a hypothalamic relay: a central control of bone mass. Cell 100, 197–207 (2000).

    Article  CAS  PubMed  Google Scholar 

  39. Takeda, S. et al. Leptin regulates bone formation via the sympathetic nervous system. Cell 111, 305–317 (2002).

    Article  CAS  PubMed  Google Scholar 

  40. Fu, L., Patel, M. S., Bradley, A., Wagner, E. F. & Karsenty, G. The molecular clock mediates leptin-regulated bone formation. Cell 122, 803–815 (2005).

    Article  CAS  PubMed  Google Scholar 

  41. Higuchi, H., Hasegawa, A. & Yamaguchi, T. Transcriptional regulation of neuronal genes and its effect on neural functions: transcriptional regulation of neuropeptide Y gene by leptin and its effect on feeding. J. Pharmacol. Sci. 98, 225–231 (2005).

    Article  CAS  PubMed  Google Scholar 

  42. Erickson, J. C., Hollopeter, G. & Palmiter, R. D. Attenuation of the obesity syndrome of ob/ob mice by the loss of neuropeptide Y. Science 274, 1704–1707 (1996).

    Article  CAS  PubMed  Google Scholar 

  43. Baldock, P. A. et al. Hypothalamic Y2 receptors regulate bone formation. J. Clin. Invest. 109, 915–921 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Baldock, P. A. et al. Novel role of Y1 receptors in the coordinated regulation of bone and energy homeostasis. J. Biol. Chem. 282, 19092–19102 (2007).

    Article  CAS  PubMed  Google Scholar 

  45. Baldock, P. A. et al. Neuropeptide Y knockout mice reveal a central role of NPY in the coordination of bone mass to body weight. PLoS ONE 4, e8415 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Kuo, L. E. et al. Neuropeptide Y acts directly in the periphery on fat tissue and mediates stress-induced obesity and metabolic syndrome. Nat. Med. 13, 803–811 (2007).

    Article  CAS  PubMed  Google Scholar 

  47. Baldock, P. A. et al. Hypothalamic control of bone formation: distinct actions of leptin and y2 receptor pathways. J. Bone Miner. Res. 20, 1851–1857 (2005).

    Article  CAS  PubMed  Google Scholar 

  48. Baldock, P. A. et al. Hypothalamic regulation of cortical bone mass: opposing activity of Y2 receptor and leptin pathways. J. Bone Miner. Res. 21, 1600–1607 (2006).

    Article  CAS  PubMed  Google Scholar 

  49. Hanada, R. et al. Neuromedin U has a novel anorexigenic effect independent of the leptin signaling pathway. Nat. Med. 10, 1067–1073 (2004).

    Article  CAS  PubMed  Google Scholar 

  50. Sato, S. et al. Central control of bone remodeling by neuromedin U. Nat. Med. 13, 1234–1240 (2007).

    Article  CAS  PubMed  Google Scholar 

  51. Scheller, E. L. et al. Leptin functions peripherally to regulate differentiation of mesenchymal progenitor cells. Stem Cells 28, 1071–1080 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Bassett, J. H. & Williams, G. R. Critical role of the hypothalamic-pituitary-thyroid axis in bone. Bone 43, 418–426 (2008).

    Article  CAS  PubMed  Google Scholar 

  53. Kunz, M. & Ibrahim, S. M. Cytokines and cytokine profiles in human autoimmune diseases and animal models of autoimmunity. Mediators Inflamm. 2009, 979258 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Padmos, R. C. et al. Distinct monocyte gene-expression profiles in autoimmune diabetes. Diabetes 57, 2768–2773 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Devaraj, S. et al. Increased monocytic activity and biomarkers of inflammation in patients with type 1 diabetes. Diabetes 55, 774–779 (2006).

    Article  CAS  PubMed  Google Scholar 

  56. van der Heul-Nieuwenhuijsen, L. et al. An inflammatory gene-expression fingerprint in monocytes of autoimmune thyroid disease patients. J. Clin. Endocrinol. Metab. 95, 1962–1971 (2010).

    Article  CAS  PubMed  Google Scholar 

  57. Riches, P. L. et al. Osteoporosis associated with neutralizing autoantibodies against osteoprotegerin. N. Engl. J. Med. 361, 1459–1465 (2009).

    Article  CAS  PubMed  Google Scholar 

  58. Motyl, K. J. et al. Bone inflammation and altered gene expression with type I diabetes early onset. J. Cell Physiol. 218, 575–583 (2009).

    Article  CAS  PubMed  Google Scholar 

  59. Hueber, A. J. & McInnes, I. B. Immune regulation in psoriasis and psoriatic arthritis—recent developments. Immunol. Lett. 114, 59–65 (2007).

    Article  CAS  PubMed  Google Scholar 

  60. Zenz, R. et al. Psoriasis-like skin disease and arthritis caused by inducible epidermal deletion of Jun proteins. Nature 437, 369–375 (2005).

    Article  CAS  PubMed  Google Scholar 

  61. Boissier, M. C., Assier, E., Falgarone, G. & Bessis, N. Shifting the imbalance from Th1/Th2 to Th17/treg: the changing rheumatoid arthritis paradigm. Joint Bone Spine 7 5, 373–375 (2008).

    Article  CAS  Google Scholar 

  62. Nistala, K. & Wedderburn, L. R. Th17 and regulatory T cells: rebalancing pro- and anti-inflammatory forces in autoimmune arthritis. Rheumatology (Oxford) 48, 602–606 (2009).

    Article  CAS  Google Scholar 

  63. Zaiss, M. M. et al. Regulatory T cells protect from local and systemic bone destruction in arthritis. J. Immunol. 184, 7238–7246 (2010).

    Article  CAS  PubMed  Google Scholar 

  64. Keffer, J. et al. Transgenic mice expressing human tumour necrosis factor: a predictive genetic model of arthritis. EMBO J. 10, 4025–4031 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Schett, G. et al. Osteoprotegerin protects against generalized bone loss in tumor necrosis factor-transgenic mice. Arthritis Rheum. 48, 2042–2051 (2003).

    Article  CAS  PubMed  Google Scholar 

  66. David, J. P. & Schett, G. TNF and bone. Curr. Dir Autoimmun. 11, 135–144 (2010).

    Article  CAS  PubMed  Google Scholar 

  67. Eizirik, D. L., Colli, M. L. & Ortis, F. The role of inflammation in insulitis and beta-cell loss in type 1 diabetes. Nat. Rev. Endocrinol. 5, 219–226 (2009).

    Article  CAS  PubMed  Google Scholar 

  68. Huber, A., Menconi, F., Corathers, S., Jacobson, E. M. & Tomer, Y. Joint genetic susceptibility to type 1 diabetes and autoimmune thyroiditis: from epidemiology to mechanisms. Endocr. Rev. 29, 697–725 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Ounissi-Benkalha, H. & Polychronakos, C. The molecular genetics of type 1 diabetes: new genes and emerging mechanisms. Trends Mol. Med. 14, 268–275 (2008).

    Article  CAS  PubMed  Google Scholar 

  70. Concannon, P., Rich, S. S. & Nepom, G. T. Genetics of type 1A diabetes. N. Engl. J. Med. 360, 1646–1654 (2009).

    Article  CAS  PubMed  Google Scholar 

  71. Pirot, P., Cardozo, A. K. & Eizirik, D. L. Mediators and mechanisms of pancreatic beta-cell death in type 1 diabetes. Arq. Bras. Endocrinol. Metabol. 52, 156–165 (2008).

    Article  PubMed  Google Scholar 

  72. Schwartz, A. V. Diabetes mellitus: does it affect bone? Calcif. Tissue Int. 73, 515–519 (2003).

    Article  CAS  PubMed  Google Scholar 

  73. Räkel, A., Sheehy, O., Rahme, E. & LeLorier, J. Osteoporosis among patients with type 1 and type 2 diabetes. Diabetes Metab. 34, 193–205 (2008).

    Article  PubMed  Google Scholar 

  74. Thrailkill, K. M., Lumpkin, C. K. Jr, Bunn, R. C., Kemp, S. F. & Fowlkes, J. L. Is insulin an anabolic agent in bone? Dissecting the diabetic bone for clues. Am. J. Physiol. Endocrinol. Metab. 289, E735–E745 (2005).

    Article  CAS  PubMed  Google Scholar 

  75. McCabe, L. R. Understanding the pathology and mechanisms of type I diabetic bone loss. J. Cell Biochem. 102, 1343–1357 (2007).

    Article  CAS  PubMed  Google Scholar 

  76. Botolin, S. & McCabe, L. R. Bone loss and increased bone adiposity in spontaneous and pharmacologically induced diabetic mice. Endocrinology 148, 198–205 (2007).

    Article  CAS  PubMed  Google Scholar 

  77. Martin, L. M. & McCabe, L. R. Type I diabetic bone phenotype is location but not gender dependent. Histochem. Cell Biol. 128, 125–133 (2007).

    Article  CAS  PubMed  Google Scholar 

  78. Thrailkill, K. M. et al. Bone formation is impaired in a model of type 1 diabetes. Diabetes 54, 2875–2881 (2005).

    Article  CAS  PubMed  Google Scholar 

  79. Irwin, R., Lin, H. V., Motyl, K. J. & McCabe, L. R. Normal bone density obtained in the absence of insulin receptor expression in bone. Endocrinology 14 7, 5760–5767 (2006).

    Article  CAS  Google Scholar 

  80. Fulzele, K. et al. Insulin receptor signaling in osteoblasts regulates postnatal bone acquisition and body composition. Cell 142, 309–319 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Moyer-Mileur, L. J., Slater, H., Jordan, K. C. & Murray, M. A. IGF-1 and IGF-binding proteins and bone mass, geometry, and strength: relation to metabolic control in adolescent girls with type 1 diabetes. J. Bone Miner. Res. 23, 1884–1891 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Kalra, S. P. Central leptin gene therapy ameliorates diabetes type 1 and 2 through two independent hypothalamic relays; a benefit beyond weight and appetite regulation. Peptides 30, 1957–1963 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Hamrick, M. W. et al. Leptin treatment induces loss of bone marrow adipocytes and increases bone formation in leptin-deficient ob/ob mice. J. Bone Miner. Res. 20, 994–1001 (2005).

    Article  CAS  PubMed  Google Scholar 

  84. Botolin, S. & McCabe, L. R. Inhibition of PPARgamma prevents type I diabetic bone marrow adiposity but not bone loss. J. Cell Physiol. 20 9, 967–976 (2006).

    Article  CAS  Google Scholar 

  85. Motyl, K. J. & McCabe, L. R. Leptin treatment prevents type I diabetic marrow adiposity but not bone loss in mice. J. Cell Physiol. 218, 376–384 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Van den Driessche, A., Eenkhoorn, V., Van Gaal, L. & De Block, C. Type 1 diabetes and autoimmune polyglandular syndrome: a clinical review. Neth. J. Med. 67, 376–387 (2009).

    CAS  PubMed  Google Scholar 

  87. Michels, A. W. & Eisenbarth, G. S. Immunologic endocrine disorders. J. Allergy Clin. Immunol. 125 (Suppl. 2), S226–S237 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  88. Vestergaard, P. & Mosekilde, L. Fractures in patients with hyperthyroidism and hypothyroidism: a nationwide follow-up study in 16,249 patients. Thyroid 12, 411–419 (2002).

    Article  PubMed  Google Scholar 

  89. Abe, E. et al. TSH is a negative regulator of skeletal remodeling. Cell 1 15, 151–162 (2003).

    Article  Google Scholar 

  90. Bassett, J. H. et al. A lack of thyroid hormones rather than excess thyrotropin causes abnormal skeletal development in hypothyroidism. Mol. Endocrinol. 22, 501–512 (2008).

    Article  CAS  PubMed  Google Scholar 

  91. Walsh, N. C., Crotti, T. N., Goldring, S. R. & Gravallese, E. M. Rheumatic diseases: the effects of inflammation on bone. Immunol. Rev. 208, 228–251 (2005).

    Article  CAS  PubMed  Google Scholar 

  92. García-Carrasco, M. et al. Osteoporosis in patients with systemic lupus erythematosus. Isr. Med. Assoc. J. 11, 486–491 (2009).

    PubMed  Google Scholar 

  93. Sinigaglia, L., Varenna, M., Girasole, G. & Bianchi, G. Epidemiology of osteoporosis in rheumatic diseases. Rheum. Dis. Clin. North Am. 32, 631–658 (2006).

    Article  PubMed  Google Scholar 

  94. Cutolo, M. & Otsa, K. Review: vitamin D, immunity and lupus. Lupus 17, 6–10 (2008).

    Article  CAS  PubMed  Google Scholar 

  95. Lilleby, V. Bone status in juvenile systemic lupus erythematosus. Lupus 16, 580–586 (2007).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Both authors contributed to researching data for the article, a substantial contribution to discussion of the content, and to writing the article and reviewing/editing the manuscript before submission.

Corresponding author

Correspondence to Jean-Pierre David.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schett, G., David, JP. The multiple faces of autoimmune-mediated bone loss. Nat Rev Endocrinol 6, 698–706 (2010). https://doi.org/10.1038/nrendo.2010.190

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrendo.2010.190

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing