Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Case Study
  • Published:

Focal congenital hyperinsulinism in a patient with septo-optic dysplasia

Abstract

Background. An infant diagnosed as having hypopituitarism and on adequate hydrocortisone replacement therapy was referred to a tertiary endocrine unit at 5 weeks of age with persistent hypoglycemia that required a high rate of intravenous glucose infusion (up to 18 mg/kg•min−1) to maintain euglycemia.

Investigations. A controlled hypoglycemia screen was performed to measure levels of plasma glucose, insulin, C-peptide and 3-β-hydroxybutyrate concentrations. The pancreas was analyzed by fluorine-18-L-3,4-dihydroxyphenylalanine (18F-DOPA) PET scan. Genetic analyses were performed on the peripheral blood leukocytes, and loss of heterozygosity within the resected focal lesion of the pancreas was investigated by microsatellite analysis. A glucagon stimulation test helped determine pituitary function, and an MRI of the brain and pituitary gland was performed to define the anatomy of the intracranial structures and the pituitary gland.

Diagnosis. Focal form of congenital hyperinsulinism localized to the head of the pancreas, septo-optic dysplasia and pituitary hormone deficiencies.

Management. Resection of the focal lesion from the head of the pancreas and hormonal replacement therapy for hypopituitarism.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Fluorine-18-L-3,4-dihydroxyphenylalanine (18F-DOPA) PET scan demonstrating a focal lesion in the head of the pancreas of the case patient.
Figure 2: MRI scans of the case patient's pituitary gland and cranium.

References

  1. Ellard, S. et al. Permanent neonatal diabetes caused by dominant, recessive, or compound heterozygous SUR1 mutations with opposite functional effects. Am. J. Hum. Genet. 81, 375–382 (2007).

    Article  CAS  Google Scholar 

  2. Flanagan, S. E., Edghill, E. L., Gloyn, A. L., Ellard, S. & Hattersley, A. T. Mutations in KCNJ11, which encodes Kir6.2, are a common cause of diabetes diagnosed in the first 6 months of life, with the phenotype determined by genotype. Diabetologia 49, 1190–1197 (2006).

    Article  CAS  Google Scholar 

  3. Cervantes, L. F., Altman, N. R. & Medina, L. S. Case 102: Pituitary aplasia. Radiology 241, 936–938 (2006).

    Article  Google Scholar 

  4. Yong, S. C., Boo, N. Y. & Wu, L. L. Persistent neonatal hypoglycemia as a result of hypoplastic pituitary gland. Br. J. Hosp. Med. (Lond.) 67, 326 (2006).

    Article  Google Scholar 

  5. Scommegna, S. et al. Neonatal identification of pituitary aplasia: a life-saving diagnosis. Review of five cases. Horm. Res. 62, 10–16 (2004).

    Article  CAS  Google Scholar 

  6. Bala, M., Brünnler, T., Guralnik, V., Schölmerich, J. & Schäffler, A. A 36-year old female patient presenting with hypoglycemic coma [German]. Internist (Berl.) 50, 606–611 (2009).

    Article  CAS  Google Scholar 

  7. Hussain, K., Hindmarsh, P. & Aynsley-Green, A. Neonates with symptomatic hyperinsulinemic hypoglycemia generate inappropriately low serum cortisol counterregulatory hormonal responses. J. Clin. Endocrinol. Metab. 88, 4342–4347 (2003).

    Article  CAS  Google Scholar 

  8. Kelly, A., Tang, R., Becker, S. & Stanley, C. A. Poor specificity of low growth hormone and cortisol levels during fasting hypoglycemia for the diagnoses of growth hormone deficiency and adrenal insufficiency. Pediatrics 122, e522–e528 (2008).

    Article  Google Scholar 

  9. Kapoor, R. R., James, C. & Hussain, K. Advances in the diagnosis and management of hyperinsulinemic hypoglycemia. Nat. Clin. Pract. Endocrinol. Metab. 5, 101–112 (2009).

    Article  CAS  Google Scholar 

  10. Thomas, P., Ye, Y. & Lightner, E. Mutation of the pancreatic islet inward rectifier Kir6.2 also leads to familial persistent hyperinsulinemic hypoglycemia of infancy. Hum. Mol. Genet. 5, 1809–1812 (1996).

    Article  CAS  Google Scholar 

  11. Thomas, P. M. et al. Mutations in the sulfonylurea receptor gene in familial persistent hyperinsulinemic hypoglycemia of infancy. Science 268, 426–429 (1995).

    Article  CAS  Google Scholar 

  12. Rahier, J., Guiot, Y. & Sempoux, C. Persistent hyperinsulinaemic hypoglycaemia of infancy: a heterogeneous syndrome unrelated to nesidioblastosis. Arch. Dis. Child. Fetal Neonatal Ed. 82, F108–F112 (2000).

    Article  CAS  Google Scholar 

  13. Fournet, J. C. et al. Loss of imprinted genes and paternal SUR1 mutations lead to hyperinsulinism in focal adenomatous hyperplasia. Ann. Endocrinol. (Paris) 59, 485–491 (1998).

    CAS  Google Scholar 

  14. Verkarre, V. et al. Paternal mutation of the sulfonylurea receptor (SUR1) gene and maternal loss of 11p15 imprinted genes lead to persistent hyperinsulinism in focal adenomatous hyperplasia. J. Clin. Invest. 102, 1286–1291 (1998).

    Article  CAS  Google Scholar 

  15. deLonlay, L. P. et al. Somatic deletion of the imprinted 11p15 region in sporadic persistent hyperinsulinemic hypoglycemia of infancy is specific of focal adenomatous hyperplasia and endorses partial pancreatectomy. J. Clin. Invest. 100, 802–807 (1997).

    Article  CAS  Google Scholar 

  16. Giannoukakis, N., Deal, C., Paquette, J., Goodyer, C. G. & Polychronakos, C. Parental genomic imprinting of the human IGF2 gene. Nat. Genet. 4, 98–101 (1993).

    Article  CAS  Google Scholar 

  17. Lee, M. P., Hu, R. J., Johnson, L. A. & Feinberg, A. P. Human KVLQT1 gene shows tissue-specific imprinting and encompasses Beckwith–Wiedemann syndrome chromosomal rearrangements. Nat. Genet. 15, 181–185 (1997).

    Article  Google Scholar 

  18. Matsuoka, S. et al. p57KIP2, a structurally distinct member of the p21CIP1 Cdk inhibitor family, is a candidate tumor suppressor gene. Genes Dev. 9, 650–662 (1995).

    Article  CAS  Google Scholar 

  19. Zhang, Y. & Tycko, B. Monoallelic expression of the human H19 gene. Nat. Genet. 1, 40–44 (1992).

    Article  CAS  Google Scholar 

  20. Damaj, L. et al. Chromosome 11p15 paternal isodisomy in focal forms of neonatal hyperinsulinism. J. Clin. Endocrinol. Metab. 93, 4941–4947 (2008).

    Article  CAS  Google Scholar 

  21. Patel, L., McNally, R. J., Harrison, E., Lloyd, I. C. & Clayton, P. E. Geographical distribution of optic nerve hypoplasia and septo-optic dysplasia in Northwest England. J. Pediatr. 148, 85–88 (2006).

    Article  Google Scholar 

  22. Mehta, A. & Dattani, M. T. Developmental disorders of the hypothalamus and pituitary gland associated with congenital hypopituitarism. Best Pract. Res. Clin. Endocrinol. Metab. 22, 191–206 (2008).

    Article  CAS  Google Scholar 

  23. McCulloch, D. L., Garcia-Filion, P., Fink, C., Chaplin, C. A. & Borchert, M. S. Clinical electrophysiology and visual outcome in optic nerve hypoplasia (ONH). Br. J. Ophthalmol. doi:10.1136/bjo.2009.161117.

  24. Harrison, I. M., Brosnahan, D., Phelan, E., Fitzgerald, R. J. & Reardon, W. Septo-optic dysplasia with digital anomalies—a recurrent pattern syndrome. Am. J. Med. Genet. A 131, 82–85 (2004).

    Article  Google Scholar 

  25. Travan, L., Oretti, C., Zennaro, F. & Demarini, S. Marshall-Smith syndrome and septo-optic dysplasia: an unreported association. Am. J. Med. Genet. A 146, 2138–2140 (2008).

    Article  Google Scholar 

  26. Hayashi, M. et al. Septo-optic dysplasia with cerebellar hypoplasia in Cornelia de Lange syndrome. Acta Neuropathol. 92, 625–630 (1996).

    Article  CAS  Google Scholar 

  27. McNay, D. E. et al. HESX1 mutations are an uncommon cause of septooptic dysplasia and hypopituitarism. J. Clin. Endocrinol. Metab. 92, 691–697 (2007).

    Article  CAS  Google Scholar 

  28. James, C., Kapoor, R. R., Ismail, D. & Hussain, K. The genetic basis of congenital hyperinsulinism. J. Med. Genet. 46, 289–299 (2009).

    Article  CAS  Google Scholar 

  29. Suchi, M. et al. Molecular and immunohistochemical analyses of the focal form of congenital hyperinsulinism. Mod. Pathol. 19, 122–129 (2006).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Written consent for publication was obtained from the patient's responsible relative. Charles P. Vega, University of California, Irvine, CA, is the author of and is solely responsible for the content of the learning objectives, questions and answers of the MedscapeCME-accredited continuing medical education activity associated with this article.

Author information

Authors and Affiliations

Authors

Contributions

R. R. Kapoor, Y. Moyo, C. Gilbert and K. Hussain researched the data for the article. R. Padidela, R. R. Kapoor, Y. Moyo, S. E. Flanagan, S. Ellard and K. Hussain provided a substantial contribution to discussions of the content. R. Padidela, R. R. Kapoor, S. E. Flanagan, S. Ellard and K. Hussain contributed equally to writing the article. R. Padidela and K. Hussain both reviewed and/or edited the manuscript before submission.

Corresponding author

Correspondence to Khalid Hussain.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Padidela, R., Kapoor, R., Moyo, Y. et al. Focal congenital hyperinsulinism in a patient with septo-optic dysplasia. Nat Rev Endocrinol 6, 646–650 (2010). https://doi.org/10.1038/nrendo.2010.153

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrendo.2010.153

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing