Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Reappraising the stereotypes of diabetes in the modern diabetogenic environment

Abstract

The prevailing concentration of blood glucose is a result of the integrated regulation of insulin secretion and insulin action. Nevertheless, the classic stereotypes of diabetes are dichotomous: type 1 diabetes mellitus (T1DM) is attributed to impaired insulin secretion, and type 2 diabetes mellitus (T2DM) is primarily attributed to impaired insulin action (insulin resistance). The available evidence indicates that this view is overly simplistic. Impaired insulin secretion (β-cell dysfunction) is also a feature of T2DM, and insulin resistance is also a risk factor for the development of T1DM. Moreover, with the increasing incidence of T2DM and T1DM in both developed and developing countries, attributed to environmental factors, the existence of 'hybrid' diabetes types that have clinical and pathogenetic features of both conditions is becoming clearly evident. A common thread across the spectrum of diabetes might be the activation of innate immunological and inflammatory pathways by a proinflammatory environment, which leads to β-cell dysfunction in T2DM, insulin resistance in both T2DM and T1DM, and enhanced adaptive immunity that kills β cells in T1DM. Embracing a holistic view of the diabetes syndrome will help us to understand the environmental basis for the epidemic of diabetes and improve preventative strategies.

Key Points

  • The incidences of both type 1 and type 2 diabetes mellitus have increased over the past half century in the developed world

  • Insulin deficiency and insulin resistance occur in both type 1 and type 2 diabetes

  • Environmental factors, including high-calorie and proinflammatory diets, sedentary lifestyles in sanitized indoor environments and vitamin D insufficiency amongst others, have contributed to the diabetes epidemic

  • Activation of innate immune responses by factors in the modern environment, in association with weight gain, might be a common mechanism that promotes all forms of diabetes

  • Clinicians and scientists must advocate public health policies that target the obesity–diabetes epidemic

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Gene–environment interactions that promote inflammatory mechanisms of diabetes.

Similar content being viewed by others

References

  1. ADA. Diagnosis and classification of diabetes mellitus. Diabetes Care 32 (Suppl. 1), S62–S67 (2009).

  2. Harrison, L. C. Risk assessment, prediction and prevention of type 1 diabetes. Pediatr. Diabetes 2, 71–82 (2001).

    Article  CAS  Google Scholar 

  3. Wenzlau, J. M. et al. The cation efflux transporter ZnT8 (Slc30A8) is a major autoantigen in human type 1 diabetes. Proc. Natl Acad. Sci. USA 104, 17040–17045 (2007).

    Article  CAS  Google Scholar 

  4. Eisenbarth, G. S. & Pugliese, A. in Type 1 Diabetes: Molecular, Cellular and Clinical Immunology (ed. Eisenbarth, G. S.) 2403–2407 (The Barbara Davis Center for Childhood Diabetes, Denver, 2007).

    Google Scholar 

  5. Florez, J. C. Clinical review: the genetics of type 2 diabetes: a realistic appraisal in 2008. J. Clin. Endocrinol. Metab. 93, 4633–4642 (2008).

    Article  CAS  Google Scholar 

  6. Fourlanos, S. et al. Latent autoimmune diabetes in adults (LADA) should be less latent. Diabetologia 48, 2206–2212 (2005).

    Article  CAS  Google Scholar 

  7. Gale, E. A. Declassifying diabetes. Diabetologia 49, 1989–1995 (2006).

    Article  CAS  Google Scholar 

  8. Wilkin, T. J. Diabetes: 1 and 2, or one and the same? Progress with the accelerator hypothesis. Pediatr. Diabetes 9, 23–32 (2008).

    Article  Google Scholar 

  9. Fox, C. S. et al. Trends in the incidence of type 2 diabetes mellitus from the 1970s to the 1990s: the Framingham Heart Study. Circulation 113, 2914–2918 (2006).

    Article  Google Scholar 

  10. Gale, E. A. The rise of childhood type 1 diabetes in the 20th century. Diabetes 51, 3353–3361 (2002).

    Article  CAS  Google Scholar 

  11. Fourlanos, S. et al. The rising incidence of type 1 diabetes is accounted for by cases with lower-risk human leukocyte antigen genotypes. Diabetes Care 31, 1546–1549 (2008).

    Article  Google Scholar 

  12. Bruining, G. J. Association between infant growth before onset of juvenile type-1 diabetes and autoantibodies to IA-2. Netherlands Kolibrie study group of childhood diabetes. Lancet 356, 655–656 (2000).

    Article  CAS  Google Scholar 

  13. Hypponen, E. et al. Infant feeding, early weight gain, and risk of type 1 diabetes. Childhood Diabetes in Finland (DiMe) Study Group. Diabetes Care 22, 1961–1965 (1999).

    Article  CAS  Google Scholar 

  14. Couper, J. J. et al. Weight gain in early life predicts risk of islet autoimmunity in children with a first-degree relative with type 1 diabetes. Diabetes Care 32, 94–99 (2009).

    Article  Google Scholar 

  15. Fourlanos, S., Narendran, P., Byrnes, G. B., Colman, P. G. & Harrison, L. C. Insulin resistance is a risk factor for progression to type 1 diabetes. Diabetologia 47, 1661–1667 (2004).

    Article  CAS  Google Scholar 

  16. Mrena, S. et al. Models for predicting type 1 diabetes in siblings of affected children. Diabetes Care 29, 662–667 (2006).

    Article  Google Scholar 

  17. Xu, P., Cuthbertson, D., Greenbaum, C., Palmer, J. P. & Krischer, J. P. Role of insulin resistance in predicting progression to type 1 diabetes. Diabetes Care 30, 2314–2320 (2007).

    Article  Google Scholar 

  18. Bingley, P. J., Mahon, J. L. & Gale, E. A. Insulin resistance and progression to type 1 diabetes in the European Nicotinamide Diabetes Intervention Trial (ENDIT). Diabetes Care 31, 146–150 (2008).

    Article  CAS  Google Scholar 

  19. Prentice, A. & Jebb, S. Energy intake/physical activity interactions in the homeostasis of body weight regulation. Nutr. Rev. 62, S98–S104 (2004).

    Article  Google Scholar 

  20. Esposito, K. et al. Meal modulation of circulating interleukin 18 and adiponectin concentrations in healthy subjects and in patients with type 2 diabetes mellitus. Am. J. Clin. Nutr. 78, 1135–1140 (2003).

    Article  CAS  Google Scholar 

  21. Qi, L. et al. Whole-grain, bran, and cereal fiber intakes and markers of systemic inflammation in diabetic women. Diabetes Care 29, 207–211 (2006).

    Article  CAS  Google Scholar 

  22. Odegaard, A. O. & Pereira, M. A. Trans fatty acids, insulin resistance, and type 2 diabetes. Nutr. Rev. 64, 364–372 (2006).

    Article  Google Scholar 

  23. Elliott, S. S., Keim, N. L., Stern, J. S., Teff, K. & Havel, P. J. Fructose, weight gain, and the insulin resistance syndrome. Am. J. Clin. Nutr. 76, 911–922 (2002).

    Article  CAS  Google Scholar 

  24. Yamagishi, S., Ueda, S. & Okuda, S. Food-derived advanced glycation end products (AGEs): a novel therapeutic target for various disorders. Curr. Pharm. Des. 13, 2832–2836 (2007).

    Article  CAS  Google Scholar 

  25. Bach, J. F. The effect of infections on susceptibility to autoimmune and allergic diseases. N. Engl. J. Med. 347, 911–920 (2002).

    Article  Google Scholar 

  26. Strachan, D. P. Hay fever, hygiene, and household size. BMJ 299, 1259–1260 (1989).

    Article  CAS  Google Scholar 

  27. Pozzilli, P., Signore, A., Williams, A. J. & Beales, P. E. NOD mouse colonies around the world—recent facts and figures. Immunol. Today 14, 193–196 (1993).

    Article  CAS  Google Scholar 

  28. Funda, D. P., Fundova, P. & Harrison, L. C. Microflora-dependency of selected diabetes-preventive diets: germ-free and ex-germ-free monocolonized NOD mice as models for studying environmental factors in type 1 diabetes [abstract MS-11.4]. In Proc. 13th Int. Cong. Immunol. 16 (Brazilian Society for Immunology, Rio de Janeiro, Brazil, 2007).

  29. Harrison, L. C. et al. Type 1 diabetes: lessons for other autoimmune diseases? J. Autoimmun. 31, 306–310 (2008).

    Article  CAS  Google Scholar 

  30. Ley, R. E., Turnbaugh, P. J., Klein, S. & Gordon, J. I. Microbial ecology: human gut microbes associated with obesity. Nature 444, 1022–1023 (2006).

    Article  CAS  Google Scholar 

  31. Turnbaugh, P. J. et al. An obesity-associated gut microbiome with increased capacity for energy harvest. Nature 444, 1027–1031 (2006).

    Article  Google Scholar 

  32. Creely, S. J. et al. Lipopolysaccharide activates an innate immune system response in human adipose tissue in obesity and type 2 diabetes. Am. J. Physiol. Endocrinol. Metab. 292, E740–E747 (2007).

    Article  CAS  Google Scholar 

  33. Nowson, C. A. & Margerison, C. Vitamin D intake and vitamin D status of Australians. Med. J. Aust. 177, 149–152 (2002).

    PubMed  Google Scholar 

  34. Holick, M. F. & Chen, T. C. Vitamin D deficiency: a worldwide problem with health consequences. Am. J. Clin. Nutr. 87, 1080S–1086S (2008).

    Article  CAS  Google Scholar 

  35. Hypponen, E., Laara, E., Reunanen, A., Jarvelin, M. R. & Virtanen, S. M. Intake of vitamin D and risk of type 1 diabetes: a birth-cohort study. Lancet 358, 1500–1503 (2001).

    Article  CAS  Google Scholar 

  36. Vieth, R. Vitamin D supplementation, 25-hydroxyvitamin D concentrations, and safety. Am. J. Clin. Nutr. 69, 842–856 (1999).

    Article  CAS  Google Scholar 

  37. [No authors listed] Vitamin D supplementation in early childhood and risk for Type I (insulin-dependent) diabetes mellitus. The EURODIAB Substudy 2 Study Group. Diabetologia 42, 51–54 (1999).

  38. Stene, L. C., Joner, G. & Norwegian Childhood Diabetes Study Group. Use of cod liver oil during the first year of life is associated with lower risk of childhood-onset type 1 diabetes: a large, population-based, case-control study. Am. J. Clin. Nutr. 78, 1128–1134 (2003).

    Article  CAS  Google Scholar 

  39. Scragg, R., Sowers, M. & Bell, C. Serum 25-hydroxyvitamin D, diabetes, and ethnicity in the Third National Health and Nutrition Examination Survey. Diabetes Care 27, 2813–2818 (2004).

    Article  CAS  Google Scholar 

  40. Borissova, A. M., Tankova, T., Kirilov, G., Dakovska, L. & Kovacheva, R. The effect of vitamin D3 on insulin secretion and peripheral insulin sensitivity in type 2 diabetic patients. Int. J. Clin. Pract. 57, 258–261 (2003).

    CAS  PubMed  Google Scholar 

  41. Inomata, S., Kadowaki, S., Yamatani, T., Fukase, M. & Fujita, T. Effect of 1α (OH)-vitamin D3 on insulin secretion in diabetes mellitus. Bone Miner. Res. 1, 187–192 (1986).

    CAS  Google Scholar 

  42. Chiu, K. C., Chu, A., Go, V. L. & Saad, M. F. Hypovitaminosis D is associated with insulin resistance and beta cell dysfunction. Am. J. Clin. Nutr. 79, 820–825 (2004).

    Article  CAS  Google Scholar 

  43. Pittas, A. G., Harris, S. S., Stark, P. C. & Dawson-Hughes, B. The effects of calcium and vitamin D supplementation on blood glucose and markers of inflammation in nondiabetic adults. Diabetes Care 30, 980–986 (2007).

    Article  CAS  Google Scholar 

  44. Westerterp-Plantenga, M. S., van Marken Lichtenbelt, W. D., Cilissen, C. & Top, S. Energy metabolism in women during short exposure to the thermoneutral zone. Physiol. Behav. 75, 227–235 (2002).

    Article  CAS  Google Scholar 

  45. Tasali, E., Mokhlesi, B. & Van Cauter, E. Obstructive sleep apnea and type 2 diabetes: interacting epidemics. Chest 133, 496–506 (2008).

    Article  Google Scholar 

  46. Bonnet, M. H. & Arand, D. L. We are chronically sleep-deprived. Sleep 18, 908–911 (1995).

    Article  CAS  Google Scholar 

  47. Agras, W. S., Hammer, L. D., McNicholas, F. & Kraemer, H. C. Risk factors for childhood overweight: a prospective study from birth to 9.5 years. J. Pediatr. 145, 20–25 (2004).

    Article  Google Scholar 

  48. Hasler, G. et al. The association between short sleep duration and obesity in young adults: a 13-year prospective study. Sleep 27, 661–666 (2004).

    Article  Google Scholar 

  49. Ayas, N. T. et al. A prospective study of self-reported sleep duration and incident diabetes in women. Diabetes Care 26, 380–384 (2003).

    Article  Google Scholar 

  50. Spiegel, K., Leproult, R. & Van Cauter, E. Impact of sleep debt on metabolic and endocrine function. Lancet 354, 1435–1439 (1999).

    Article  CAS  Google Scholar 

  51. Spiegel, K., Tasali, E., Penev, P. & Van Cauter, E. Brief communication: sleep curtailment in healthy young men is associated with decreased leptin levels, elevated ghrelin levels, and increased hunger and appetite. Ann. Intern. Med. 141, 846–850 (2004).

    Article  Google Scholar 

  52. Hotamisligil, G. S. Inflammation and metabolic disorders. Nature 444, 860–867 (2006).

    Article  CAS  Google Scholar 

  53. Pickup, J. C. Inflammation and activated innate immunity in the pathogenesis of type 2 diabetes. Diabetes Care 27, 813–823 (2004).

    Article  Google Scholar 

  54. Weisberg, S. P. et al. CCR2 modulates inflammatory and metabolic effects of high-fat feeding. J. Clin. Invest. 116, 115–124 (2006).

    Article  CAS  Google Scholar 

  55. Hevener, A. L. et al. Macrophage PPARγ is required for normal skeletal muscle and hepatic insulin sensitivity and full antidiabetic effects of thiazolidinediones. J. Clin. Invest. 117, 1658–1669 (2007).

    Article  CAS  Google Scholar 

  56. Odegaard, J. I. et al. Macrophage-specific PPARγ controls alternative activation and improves insulin resistance. Nature 447, 1116–1120 (2007).

    Article  CAS  Google Scholar 

  57. Patsouris, D. et al. Ablation of CD11-positive cells normalizes insulin sensitivity in obese insulin resistant animals. Cell. Metab. 8, 301–309 (2008).

    Article  CAS  Google Scholar 

  58. Laybutt, D. R. et al. Endoplasmic reticulum stress contributes to β cell apoptosis in type 2 diabetes. Diabetologia 50, 752–763 (2007).

    Article  CAS  Google Scholar 

  59. Ehses, J. A. et al. Increased number of islet-associated macrophages in type 2 diabetes. Diabetes 56, 2356–2370 (2007).

    Article  CAS  Google Scholar 

  60. Hutchings, P. et al. Transfer of diabetes in mice prevented by blockade of adhesion-promoting receptor on macrophages. Nature 348, 639–642 (1990).

    Article  CAS  Google Scholar 

  61. Devaraj, S. et al. Increased monocytic activity and biomarkers of inflammation in patients with type 1 diabetes. Diabetes 55, 774–779 (2006).

    Article  CAS  Google Scholar 

  62. Wang, X. et al. Identification of a molecular signature in human type 1 diabetes mellitus using serum and functional genomics. J. Immunol. 180, 1929–1937 (2008).

    Article  CAS  Google Scholar 

  63. Ebstein, W. Zur therapie des diabetes mellitus, insbesondere uber die anwendeng der salicylauren natron bei demselben [German]. Berl. Klin. Wochenschr. 13, 337–340 (1876).

    Google Scholar 

  64. Williamson, R. On the treatment of glycosuria and diabetes mellitus with sodium salicylate. Br. Med. J. 1, 760–762 (1901).

    Article  CAS  Google Scholar 

  65. Hundal, R. S. et al. Mechanism by which high-dose aspirin improves glucose metabolism in type 2 diabetes. J. Clin. Invest. 109, 1321–1326 (2002).

    Article  CAS  Google Scholar 

  66. Ofei, F., Hurel, S., Newkirk, J., Sopwith, M. & Taylor, R. Effects of an engineered human anti-TNF-α antibody (CDP571) on insulin sensitivity and glycemic control in patients with NIDDM. Diabetes 45, 881–885 (1996).

    Article  Google Scholar 

  67. Kiortsis, D. N., Mavridis, A. K., Vasakos, S., Nikas, S. N. & Drosos, A. A. Effects of infliximab treatment on insulin resistance in patients with rheumatoid arthritis and ankylosing spondylitis. Ann. Rheum. Dis. 64, 765–766 (2005).

    Article  CAS  Google Scholar 

  68. Larsen, C. M. et al. Interleukin-1-receptor antagonist in type 2 diabetes mellitus. N. Engl. J. Med. 356, 1517–1526 (2007).

    Article  CAS  Google Scholar 

  69. Stender, S., Dyerberg, J. & Astrup, A. High levels of industrially produced trans fat in popular fast foods. N. Engl. J. Med. 354, 1650–1652 (2006).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was funded by Program (516700) and Infrastructure (361646) grants from the National Health and Medical Research Council of Australia (NHMRC), a Victorian State Government Operational Infrastructure Support Grant, the Diabetes Australia Research Trust (DART) and the Royal Australian College of Physicians Research Foundation. J. M. Wentworth is a Doherty Fellow, and L. C. Harrison is a Senior Principal Research Fellow, of the NHMRC.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leonard C. Harrison.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wentworth, J., Fourlanos, S. & Harrison, L. Reappraising the stereotypes of diabetes in the modern diabetogenic environment. Nat Rev Endocrinol 5, 483–489 (2009). https://doi.org/10.1038/nrendo.2009.149

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrendo.2009.149

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing