Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Primer
  • Published:

Parkinson disease

Abstract

Parkinson disease is the second-most common neurodegenerative disorder that affects 2–3% of the population ≥65 years of age. Neuronal loss in the substantia nigra, which causes striatal dopamine deficiency, and intracellular inclusions containing aggregates of α-synuclein are the neuropathological hallmarks of Parkinson disease. Multiple other cell types throughout the central and peripheral autonomic nervous system are also involved, probably from early disease onwards. Although clinical diagnosis relies on the presence of bradykinesia and other cardinal motor features, Parkinson disease is associated with many non-motor symptoms that add to overall disability. The underlying molecular pathogenesis involves multiple pathways and mechanisms: α-synuclein proteostasis, mitochondrial function, oxidative stress, calcium homeostasis, axonal transport and neuroinflammation. Recent research into diagnostic biomarkers has taken advantage of neuroimaging in which several modalities, including PET, single-photon emission CT (SPECT) and novel MRI techniques, have been shown to aid early and differential diagnosis. Treatment of Parkinson disease is anchored on pharmacological substitution of striatal dopamine, in addition to non-dopaminergic approaches to address both motor and non-motor symptoms and deep brain stimulation for those developing intractable L-DOPA-related motor complications. Experimental therapies have tried to restore striatal dopamine by gene-based and cell-based approaches, and most recently, aggregation and cellular transport of α-synuclein have become therapeutic targets. One of the greatest current challenges is to identify markers for prodromal disease stages, which would allow novel disease-modifying therapies to be started earlier.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Incidence and prevalence of Parkinson disease.
Figure 2: The main diagnostic neuropathologies for Parkinson disease.
Figure 3: Molecular mechanisms involved in Parkinson disease.
Figure 4: Motor cortex circuitry activity changes in Parkinson disease.
Figure 5: Clinical symptoms associated with Parkinson disease progression.
Figure 6: Imaging methods used to study Parkinson disease.
Figure 7: Dopaminergic drug targets in Parkinson disease.

Similar content being viewed by others

References

  1. Twelves, D., Perkins, K. S. & Counsell, C. Systematic review of incidence studies of Parkinson's disease. Mov. Disord. 18, 19–31 (2003).

    Google Scholar 

  2. Savica, R., Grossardt, B. R., Bower, J. H., Ahlskog, J. E. & Rocca, W. A. Incidence and pathology of synucleinopathies and tauopathies related to parkinsonism. JAMA Neurol. 70, 859–866 (2013).

    Google Scholar 

  3. Van Den Eeden, S. K. et al. Incidence of Parkinson's disease: variation by age, gender, and race/ethnicity. Am. J. Epidemiol. 157, 1015–1022 (2003).

    Google Scholar 

  4. Pringsheim, T., Jette, N., Frolkis, A. & Steeves, T. D. The prevalence of Parkinson's disease: a systematic review and meta-analysis. Mov. Disord. 29, 1583–1590 (2014).

    Google Scholar 

  5. Pinter, B. et al. Mortality in Parkinson's disease: a 38-year follow-up study. Mov. Disord. 30, 266–269 (2015).

    Google Scholar 

  6. Lix, L. M. et al. Socioeconomic variations in the prevalence and incidence of Parkinson's disease: a population-based analysis. J. Epidemiol. Community Health 64, 335–340 (2010).

    Google Scholar 

  7. Dorsey, E. R. et al. Projected number of people with Parkinson disease in the most populous nations, 2005 through 2030. Neurology 68, 384–386 (2007).

    Google Scholar 

  8. Vos, T. et al. Years lived with disability (YLDs) for 1160 sequelae of 289 diseases and injuries 1990–2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet 380, 2163–2196 (2012).

    Google Scholar 

  9. Murray, C. J. et al. Disability-adjusted life years (DALYs) for 291 diseases and injuries in 21 regions, 1990–2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet 380, 2197–2223 (2012).

    Google Scholar 

  10. Leibson, C. L. et al. Direct medical costs associated with Parkinson's disease: a population-based study. Mov. Disord. 21, 1864–1871 (2006).

    Google Scholar 

  11. Baldereschi, M. et al. Parkinson's disease and parkinsonism in a longitudinal study: two-fold higher incidence in men. ILSA Working Group. Italian Longitudinal Study on Aging. Neurology 55, 1358–1363 (2000).

    Google Scholar 

  12. Kusumi, M., Nakashima, K., Harada, H., Nakayama, H. & Takahashi, K. Epidemiology of Parkinson's disease in Yonago City, Japan: comparison with a study carried out 12 years ago. Neuroepidemiology 15, 201–207 (1996).

    Google Scholar 

  13. Chillag-Talmor, O. et al. Use of a refined drug tracer algorithm to estimate prevalence and incidence of Parkinson's disease in a large Israeli population. J. Parkinsons Dis. 1, 35–47 (2011).

    Google Scholar 

  14. Gordon, P. H., Mehal, J. M., Holman, R. C., Rowland, A. S. & Cheek, J. E. Parkinson's disease among American Indians and Alaska natives: a nationwide prevalence study. Mov. Disord. 27, 1456–1459 (2012).

    Google Scholar 

  15. Morens, D. M. et al. Epidemiologic observations on Parkinson's disease: incidence and mortality in a prospective study of middle-aged men. Neurology 46, 1044–1050 (1996).

    Google Scholar 

  16. Ascherio, A. & Schwarzschild, M. A. The epidemiology of Parkinson's disease: risk factors and prevention. Lancet Neurol. 15, 1257–1272 (2016). This is a comprehensive and up-to-date review of epidemiological data on risk factors for Parkinson disease.

    Google Scholar 

  17. Dickson, D. W. et al. Neuropathological assessment of Parkinson's disease: refining the diagnostic criteria. Lancet Neurol. 8, 1150–1157 (2009). This is a joint review of diagnostic criteria for a neuropathological diagnosis of Parkinson disease by leading neuropathologists.

    Google Scholar 

  18. Halliday, G. M., Holton, J. L., Revesz, T. & Dickson, D. W. Neuropathology underlying clinical variability in patients with synucleinopathies. Acta Neuropathol. 122, 187–204 (2011).

    Google Scholar 

  19. Fearnley, J. M. & Lees, A. J. Ageing and Parkinson's disease: substantia nigra regional selectivity. Brain 114, 2283–2301 (1991).

    Google Scholar 

  20. Damier, P., Hirsch, E. C., Agid, Y. & Graybiel, A. M. The substantia nigra of the human brain. II. Patterns of loss of dopamine-containing neurons in Parkinson's disease. Brain 122, 1437–1448 (1999).

    Google Scholar 

  21. Dijkstra, A. A. et al. Stage-dependent nigral neuronal loss in incidental Lewy body and Parkinson's disease. Mov. Disord. 29, 1244–1251 (2014).

    Google Scholar 

  22. Iacono, D. et al. Parkinson disease and incidental Lewy body disease: just a question of time? Neurology 85, 1670–1679 (2015).

    Google Scholar 

  23. Braak, H. et al. Staging of brain pathology related to sporadic Parkinson's disease. Neurobiol. Aging 24, 197–211 (2003). In this landmark paper, Braak and colleagues first introduced the concept of spreading of pathology in the parkinsonian brain.

    Google Scholar 

  24. Nalls, M. A. et al. Large-scale meta-analysis of genome-wide association data identifies six new risk loci for Parkinson's disease. Nat. Genet. 46, 989–993 (2014). This paper is a large meta-analysis of GWAS that describes the genetic variants that alter the risk for Parkinson disease.

    Google Scholar 

  25. Vekrellis, K., Xilouri, M., Emmanouilidou, E., Rideout, H. J. & Stefanis, L. Pathological roles of alpha-synuclein in neurological disorders. Lancet Neurol. 10, 1015–1025 (2011).

    Google Scholar 

  26. Soldner, F. et al. Parkinson-associated risk variant in distal enhancer of alpha-synuclein modulates target gene expression. Nature 533, 95–99 (2016).

    Google Scholar 

  27. Wales, P., Pinho, R., Lazaro, D. F. & Outeiro, T. F. Limelight on alpha-synuclein: pathological and mechanistic implications in neurodegeneration. J. Parkinsons Dis. 3, 415–459 (2013).

    Google Scholar 

  28. Burre, J. The synaptic function of alpha-synuclein. J. Parkinsons Dis. 5, 699–713 (2015).

    Google Scholar 

  29. Kim, C. & Lee, S. J. Controlling the mass action of alpha-synuclein in Parkinson's disease. J. Neurochem. 107, 303–316 (2008).

    Google Scholar 

  30. Melki, R. Role of different alpha-synuclein strains in synucleinopathies, similarities with other neurodegenerative diseases. J. Parkinsons Dis. 5, 217–227 (2015).

    Google Scholar 

  31. Kaushik, S. & Cuervo, A. M. Proteostasis and aging. Nat. Med. 21, 1406–1415 (2015).

    Google Scholar 

  32. Xilouri, M., Brekk, O. R. & Stefanis, L. Alpha-synuclein and protein degradation systems: a reciprocal relationship. Mol. Neurobiol. 47, 537–551 (2013).

    Google Scholar 

  33. Brundin, P., Li, J. Y., Holton, J. L., Lindvall, O. & Revesz, T. Research in motion: the enigma of Parkinson's disease pathology spread. Nat. Rev. Neurosci. 9, 741–745 (2008). This review marks the start of a new research area that is focused on the cell-to-cell propagation of α-synuclein aggregates, based on observations of Lewy bodies in grafted neurons in Parkinson disease.

    Google Scholar 

  34. Xilouri, M., Vogiatzi, T., Vekrellis, K., Park, D. & Stefanis, L. Abberant alpha-synuclein confers toxicity to neurons in part through inhibition of chaperone-mediated autophagy. PLoS ONE 4, e5515 (2009).

    Google Scholar 

  35. Chu, Y. & Kordower, J. H. Age-associated increases of alpha-synuclein in monkeys and humans are associated with nigrostriatal dopamine depletion: is this the target for Parkinson's disease? Neurobiol. Dis. 25, 134–149 (2007).

    Google Scholar 

  36. Sarkar, S., Davies, J. E., Huang, Z., Tunnacliffe, A. & Rubinsztein, D. C. Trehalose, a novel mTOR-independent autophagy enhancer, accelerates the clearance of mutant huntingtin and alpha-synuclein. J. Biol. Chem. 282, 5641–5652 (2007).

    Google Scholar 

  37. Steele, J. W. et al. Latrepirdine stimulates autophagy and reduces accumulation of alpha-synuclein in cells and in mouse brain. Mol. Psychiatry 18, 882–888 (2013).

    Google Scholar 

  38. Chu, Y., Dodiya, H., Aebischer, P., Olanow, C. W. & Kordower, J. H. Alterations in lysosomal and proteasomal markers in Parkinson's disease: relationship to alpha-synuclein inclusions. Neurobiol. Dis. 35, 385–398 (2009).

    Google Scholar 

  39. Alvarez-Erviti, L. et al. Chaperone-mediated autophagy markers in Parkinson disease brains. Arch. Neurol. 67, 1464–1472 (2010).

    Google Scholar 

  40. Anglade, P. et al. Apoptosis and autophagy in nigral neurons of patients with Parkinson's disease. Histol. Histopathol. 12, 25–31 (1997).

    Google Scholar 

  41. Emmanouilidou, E., Stefanis, L. & Vekrellis, K. Cell-produced alpha-synuclein oligomers are targeted to, and impair, the 26S proteasome. Neurobiol. Aging 31, 953–968 (2010).

    Google Scholar 

  42. Winslow, A. R. et al. Alpha-synuclein impairs macroautophagy: implications for Parkinson's disease. J. Cell Biol. 190, 1023–1037 (2010).

    Google Scholar 

  43. Tanik, S. A., Schultheiss, C. E., Volpicelli-Daley, L. A., Brunden, K. R. & Lee, V. M. Lewy body-like alpha-synuclein aggregates resist degradation and impair macroautophagy. J. Biol. Chem. 288, 15194–15210 (2013).

    Google Scholar 

  44. Martinez-Vicente, M. et al. Dopamine-modified alpha-synuclein blocks chaperone-mediated autophagy. J. Clin. Invest. 118, 777–788 (2008).

    Google Scholar 

  45. Volpicelli-Daley, L. A. et al. G2019S-LRRK2 expression augments alpha-synuclein sequestration into inclusions in neurons. J. Neurosci. 36, 7415–7427 (2016).

    Google Scholar 

  46. Sidransky, E. et al. Multicenter analysis of glucocerebrosidase mutations in Parkinson's disease. N. Engl. J. Med. 361, 1651–1661 (2009).

    Google Scholar 

  47. Fernandes, H. J. et al. ER stress and autophagic perturbations lead to elevated extracellular alpha-synuclein in GBA-N370S Parkinson's iPSC-derived dopamine neurons. Stem Cell Reports 6, 342–356 (2016).

    Google Scholar 

  48. Rocha, E. M. et al. Progressive decline of glucocerebrosidase in aging and Parkinson's disease. Ann. Clin. Transl Neurol. 2, 433–438 (2015).

    Google Scholar 

  49. Cilia, R. et al. Survival and dementia in GBA-associated Parkinson's disease: the mutation matters. Ann. Neurol. 80, 662–673 (2016).

    Google Scholar 

  50. Liu, G. et al. Specifically neuropathic Gaucher's mutations accelerate cognitive decline in Parkinson's. Ann. Neurol. 80, 674–685 (2016).

    Google Scholar 

  51. Mazzulli, J. R. et al. Gaucher disease glucocerebrosidase and alpha-synuclein form a bidirectional pathogenic loop in synucleinopathies. Cell 146, 37–52 (2011).

    Google Scholar 

  52. Sardi, S. P. et al. Augmenting CNS glucocerebrosidase activity as a therapeutic strategy for parkinsonism and other Gaucher-related synucleinopathies. Proc. Natl Acad. Sci. USA 110, 3537–3542 (2013).

    Google Scholar 

  53. Vilarino-Guell, C. et al. VPS35 mutations in Parkinson disease. Am. J. Hum. Genet. 89, 162–167 (2011).

    Google Scholar 

  54. Zimprich, A. et al. A mutation in VPS35, encoding a subunit of the retromer complex, causes late-onset Parkinson disease. Am. J. Hum. Genet. 89, 168–175 (2011).

    Google Scholar 

  55. Seaman, M. & Freeman, C. L. Analysis of the retromer complex–WASH complex interaction illuminates new avenues to explore in Parkinson disease. Commun. Integr. Biol. 7, e29483 (2014).

    Google Scholar 

  56. Tang, F. L. et al. VPS35 in dopamine neurons is required for endosome-to-golgi retrieval of Lamp2a, a receptor of chaperone-mediated autophagy that is critical for alpha-synuclein degradation and prevention of pathogenesis of Parkinson's disease. J. Neurosci. 35, 10613–10628 (2015).

    Google Scholar 

  57. Dhungel, N. et al. Parkinson's disease genes VPS35 and EIF4G1 interact genetically and converge on alpha-synuclein. Neuron 85, 76–87 (2015).

    Google Scholar 

  58. Ramirez, A. et al. Hereditary parkinsonism with dementia is caused by mutations in ATP13A2, encoding a lysosomal type 5 P-type ATPase. Nat. Genet. 38, 1184–1191 (2006).

    Google Scholar 

  59. Dehay, B. et al. Lysosomal dysfunction in Parkinson disease: ATP13A2 gets into the groove. Autophagy 8, 1389–1391 (2012).

    Google Scholar 

  60. Lubbe, S. J. et al. Additional rare variant analysis in Parkinson's disease cases with and without known pathogenic mutations: evidence for oligogenic inheritance. Hum. Mol. Genet. 25, 5483–5489 (2016).

    Google Scholar 

  61. Angot, E., Steiner, J. A., Hansen, C., Li, J. Y. & Brundin, P. Are synucleinopathies prion-like disorders? Lancet Neurol. 9, 1128–1138 (2010).

    Google Scholar 

  62. Brundin, P., Melki, R. & Kopito, R. Prion-like transmission of protein aggregates in neurodegenerative diseases. Nat. Rev. Mol. Cell Biol. 11, 301–307 (2010).

    Google Scholar 

  63. Tyson, T., Steiner, J. A. & Brundin, P. Sorting out release, uptake and processing of alpha-synuclein during prion-like spread of pathology. J. Neurochem. 139 (Suppl. 1), 275–289 (2016).

    Google Scholar 

  64. Mao, X. et al. Pathological alpha-synuclein transmission initiated by binding lymphocyte-activation gene 3. Science 353, aah3374 (2016).

    Google Scholar 

  65. Berg, D. et al. MDS research criteria for prodromal Parkinson's disease. Mov. Disord. 30, 1600–1611 (2015). This is the first paper that provides a research framework to operationalize the diagnosis of the prodromal stages of Parkinson disease.

    Google Scholar 

  66. Mahlknecht, P., Seppi, K. & Poewe, W. The concept of prodromal Parkinson's disease. J. Parkinsons Dis. 5, 681–697 (2015).

    Google Scholar 

  67. George, S., Rey, N. L., Reichenbach, N., Steiner, J. A. & Brundin, P. Alpha-synuclein: the long distance runner. Brain Pathol. 23, 350–357 (2013).

    Google Scholar 

  68. Schapira, A. H. Mitochondrial dysfunction in Parkinson's disease. Cell Death Differ. 14, 1261–1266 (2007).

    Google Scholar 

  69. Bose, A. & Beal, M. F. Mitochondrial dysfunction in Parkinson's disease. J. Neurochem. 139 (Suppl. 1), 216–231 (2016).

    Google Scholar 

  70. Zheng, B. et al. PGC-1alpha, a potential therapeutic target for early intervention in Parkinson's disease. Sci. Transl Med. 2, 52ra73 (2010).

    Google Scholar 

  71. Devi, L., Raghavendran, V., Prabhu, B. M., Avadhani, N. G. & Anandatheerthavarada, H. K. Mitochondrial import and accumulation of alpha-synuclein impair complex I in human dopaminergic neuronal cultures and Parkinson disease brain. J. Biol. Chem. 283, 9089–9100 (2008).

    Google Scholar 

  72. Eschbach, J. et al. Mutual exacerbation of peroxisome proliferator-activated receptor gamma coactivator 1alpha deregulation and alpha-synuclein oligomerization. Ann. Neurol. 77, 15–32 (2015).

    Google Scholar 

  73. Ekstrand, M. I. et al. Progressive parkinsonism in mice with respiratory-chain-deficient dopamine neurons. Proc. Natl Acad. Sci. USA 104, 1325–1330 (2007).

    Google Scholar 

  74. Nordstrom, U. et al. Progressive nigrostriatal terminal dysfunction and degeneration in the engrailed1 heterozygous mouse model of Parkinson's disease. Neurobiol. Dis. 73, 70–82 (2015).

    Google Scholar 

  75. Sossi, V. et al. Changes of dopamine turnover in the progression of Parkinson's disease as measured by positron emission tomography: their relation to disease-compensatory mechanisms. J. Cereb. Blood Flow Metab. 24, 869–876 (2004).

    Google Scholar 

  76. Sossi, V. et al. Dopamine turnover increases in asymptomatic LRRK2 mutations carriers. Mov. Disord. 25, 2717–2723 (2010).

    Google Scholar 

  77. Kordower, J. H. et al. Disease duration and the integrity of the nigrostriatal system in Parkinson's disease. Brain 136, 2419–2431 (2013).

    Google Scholar 

  78. Lamberts, J. T., Hildebrandt, E. N. & Brundin, P. Spreading of alpha-synuclein in the face of axonal transport deficits in Parkinson's disease: a speculative synthesis. Neurobiol. Dis. 77, 276–283 (2015).

    Google Scholar 

  79. Pickrell, A. M. & Youle, R. J. The roles of PINK1, parkin, and mitochondrial fidelity in Parkinson's disease. Neuron 85, 257–273 (2015).

    Google Scholar 

  80. Hsieh, C. H. et al. Functional impairment in miro degradation and mitophagy is a shared feature in familial and sporadic Parkinson's sisease. Cell Stem Cell 19, 709–724 (2016).

    Google Scholar 

  81. Dias, V., Junn, E. & Mouradian, M. M. The role of oxidative stress in Parkinson's disease. J. Parkinsons Dis. 3, 461–491 (2013).

    Google Scholar 

  82. Bonifati, V. et al. Mutations in the DJ-1 gene associated with autosomal recessive early-onset parkinsonism. Science 299, 256–259 (2003).

    Google Scholar 

  83. Di Nottia, M. et al. DJ-1 modulates mitochondrial response to oxidative stress: clues from a novel diagnosis of PARK7. Clin. Genet.http://dx.doi.org/10.1111/cge.12841 (2016).

  84. Guzman, J. N. et al. Oxidant stress evoked by pacemaking in dopaminergic neurons is attenuated by DJ-1. Nature 468, 696–700 (2010).

    Google Scholar 

  85. Bolam, J. P. & Pissadaki, E. K. Living on the edge with too many mouths to feed: why dopamine neurons die. Mov. Disord. 27, 1478–1483 (2012).

    Google Scholar 

  86. Pissadaki, E. K. & Bolam, J. P. The energy cost of action potential propagation in dopamine neurons: clues to susceptibility in Parkinson's disease. Front. Comput. Neurosci. 7, 13 (2013).

    Google Scholar 

  87. Surmeier, D. J., Guzman, J. N., Sanchez-Padilla, J. & Schumacker, P. T. The role of calcium and mitochondrial oxidant stress in the loss of substantia nigra pars compacta dopaminergic neurons in Parkinson's disease. Neuroscience 198, 221–231 (2011).

    Google Scholar 

  88. Surmeier, D. J. et al. Calcium and Parkinson's disease. Biochem. Biophys. Res. Commun. 483, 1013–1019 (2017).

    Google Scholar 

  89. Mosharov, E. V. et al. Interplay between cytosolic dopamine, calcium, and alpha-synuclein causes selective death of substantia nigra neurons. Neuron 62, 218–229 (2009).

    Google Scholar 

  90. Lotharius, J. & Brundin, P. Pathogenesis of Parkinson's disease: dopamine, vesicles and alpha-synuclein. Nat. Rev. Neurosci. 3, 932–942 (2002).

    Google Scholar 

  91. Dehay, B. et al. Pathogenic lysosomal depletion in Parkinson's disease. J. Neurosci. 30, 12535–12544 (2010).

    Google Scholar 

  92. Moehle, M. S. & West, A. B. M1 and M2 immune activation in Parkinson's disease: foe and ally? Neuroscience 302, 59–73 (2015).

    Google Scholar 

  93. Ransohoff, R. M. How neuroinflammation contributes to neurodegeneration. Science 353, 777–783 (2016).

    Google Scholar 

  94. Hirsch, E. C. & Hunot, S. Neuroinflammation in Parkinson's disease: a target for neuroprotection? Lancet Neurol. 8, 382–397 (2009).

    Google Scholar 

  95. Cebrian, C. et al. MHC-I expression renders catecholaminergic neurons susceptible to T-cell-mediated degeneration. Nat. Commun. 5, 3633 (2014).

    Google Scholar 

  96. Schapansky, J., Nardozzi, J. D., Felizia, F. & LaVoie, M. J. Membrane recruitment of endogenous LRRK2 precedes its potent regulation of autophagy. Hum. Mol. Genet. 23, 4201–4214 (2014).

    Google Scholar 

  97. Ma, B. et al. LRRK2 modulates microglial activity through regulation of chemokine (C-X3-C) receptor 1 -mediated signalling pathways. Hum. Mol. Genet. 25, 3515–3523 (2016).

    Google Scholar 

  98. Gao, H. M. et al. Neuroinflammation and oxidation/nitration of alpha-synuclein linked to dopaminergic neurodegeneration. J. Neurosci. 28, 7687–7698 (2008).

    Google Scholar 

  99. Lema Tome, C. M. et al. Inflammation and alpha-synuclein's prion-like behavior in Parkinson's disease — is there a link? Mol. Neurobiol. 47, 561–574 (2013).

    Google Scholar 

  100. Sampson, T. R. et al. Gut microbiota regulate motor deficits and neuroinflammation in a model of Parkinson's disease. Cell 167, 1469–1480.e12 (2016).

    Google Scholar 

  101. George, S. & Brundin, P. Immunotherapy in Parkinson's disease: micromanaging alpha-synuclein aggregation. J. Parkinsons Dis. 5, 413–424 (2015).

    Google Scholar 

  102. Alexander, G., Crutcher, M. D. & DeLong, M. R. Basal ganglia-thalamocortical circuits: parallel substrates for motor, oculomotor, “prefrontal” and “limbic” functions. Prog. Brain Res. 85, 119–146 (1990).

    Google Scholar 

  103. Alexander, G. D., DeLong, M. R. & Strick, P. L. Parallel organization of functionally segregated circuits linking basal ganglia and cortex. Annu. Rev. Neurosci. 9, 357–381 (1986).

    Google Scholar 

  104. Bergman, H., Wichmann, T. & DeLong, M. R. Reversal of experimental parkinsonism by lesions of the subthalamic nucleus. Science 249, 1436–1438 (1990).

    Google Scholar 

  105. Laitinen, L. V., Bergenheim, A. T. & Hariz, M. I. Leksell's posteroventral pallidotomy in the treatment of Parkinson's disease. J. Neurosurg. 76, 53–61 (1992).

    Google Scholar 

  106. Nambu, A. et al. Excitatory cortical inputs to pallidal neurons via the subthalamic nucleus in the monkey. J. Neurophysiol. 84, 289–300 (2000).

    Google Scholar 

  107. Frank, M. J., Samanta, J., Moustafa, A. A. & Sherman, S. J. Hold your horses: impulsivity, deep brain stimulation, and medication in parkinsonism. Science 318, 1309–1312 (2007).

    Google Scholar 

  108. Gradinaru, V., Mogri, M., Thompson, K. R., Henderson, J. M. & Deisseroth, K. Optical deconstruction of parkinsonian neural circuitry. Science 324, 354–359 (2009).

    Google Scholar 

  109. Li, Q. et al. Therapeutic deep brain stimulation in parkinsonian rats directly influences motor cortex. Neuron 76, 1030–1041 (2012).

    Google Scholar 

  110. Kuhn, A. A. et al. High-frequency stimulation of the subthalamic nucleus suppresses oscillatory beta activity in patients with Parkinson's disease in parallel with improvement in motor performance. J. Neurosci. 28, 6165–6173 (2008).

    Google Scholar 

  111. Kuhn, A. A., Kupsch, A., Schneider, G. H. & Brown, P. Reduction in subthalamic 8–35 Hz oscillatory activity correlates with clinical improvement in Parkinson's disease. Eur. J. Neurosci. 23, 1956–1960 (2006).

    Google Scholar 

  112. Chen, C. C. et al. Oscillatory pallidal local field potential activity correlates with involuntary EMG in dystonia. Neurology 66, 418–420 (2006).

    Google Scholar 

  113. Dirkx, M. F. et al. The cerebral network of Parkinson's tremor: an effective connectivity fMRI study. J. Neurosci. 36, 5362–5372 (2016).

    Google Scholar 

  114. Windels, F., Thevathasan, W., Silburn, P. & Sah, P. Where and what is the PPN and what is its role in locomotion? Brain 138, 1133–1134 (2015).

    Google Scholar 

  115. Kalia, L. V. & Lang, A. E. Parkinson's disease. Lancet 386, 896–912 (2015).

    Google Scholar 

  116. Tolosa, E., Wenning, G. & Poewe, W. The diagnosis of Parkinson's disease. Lancet Neurol. 5, 75–86 (2006).

    Google Scholar 

  117. Gibb, W. R. & Lees, A. J. The relevance of the Lewy body to the pathogenesis of idiopathic Parkinson's disease. J. Neurol. Neurosurg. Psychiatry 51, 745–752 (1988).

    Google Scholar 

  118. Postuma, R. B. et al. MDS clinical diagnostic criteria for Parkinson's disease. Mov. Disord. 30, 1591–1601 (2015).

    Google Scholar 

  119. Alcalay, R. N. et al. Frequency of known mutations in early-onset Parkinson disease: implication for genetic counseling: the consortium on risk for early onset Parkinson disease study. Arch. Neurol. 67, 1116–1122 (2010).

    Google Scholar 

  120. Marder, K. S. et al. Predictors of parkin mutations in early-onset Parkinson disease: the consortium on risk for early-onset Parkinson disease study. Arch. Neurol. 67, 731–738 (2010).

    Google Scholar 

  121. Chaudhuri, K. R. & Schapira, A. H. Non-motor symptoms of Parkinson's disease: dopaminergic pathophysiology and treatment. Lancet Neurol. 8, 464–474 (2009).

    Google Scholar 

  122. Hely, M. A., Reid, W. G., Adena, M. A., Halliday, G. M. & Morris, J. G. The Sydney multicenter study of Parkinson's disease: the inevitability of dementia at 20 years. Mov. Disord. 23, 837–844 (2008).

    Google Scholar 

  123. Goetz, C. G. et al. Movement Disorder Society-sponsored revision of the Unified Parkinson's Disease Rating Scale (MDS-UPDRS): scale presentation and clinimetric testing results. Mov. Disord. 23, 2129–2170 (2008).

    Google Scholar 

  124. Venuto, C. S., Potter, N. B., Ray Dorsey, E. & Kieburtz, K. A review of disease progression models of Parkinson's disease and applications in clinical trials. Mov. Disord. 31, 947–956 (2016).

    Google Scholar 

  125. Rizzo, G. et al. Accuracy of clinical diagnosis of Parkinson disease: a systematic review and meta-analysis. Neurology 86, 566–576 (2016).

    Google Scholar 

  126. Garnett, E. S., Firnau, G. & Nahmias, C. Dopamine visualized in the basal ganglia of living man. Nature 305, 137–138 (1983).

    Google Scholar 

  127. Stoessl, A. J., Lehericy, S. & Strafella, A. P. Imaging insights into basal ganglia function, Parkinson's disease, and dystonia. Lancet 384, 532–544 (2014). This paper provides a state-of-the-art review of the recent advances in neuroimaging of Parkinson disease.

    Google Scholar 

  128. Politis, M. Neuroimaging in Parkinson disease: from research setting to clinical practice. Nat. Rev. Neurol. 10, 708–722 (2014).

    Google Scholar 

  129. Mahlknecht, P. et al. Significance of MRI in diagnosis and differential diagnosis of Parkinson's disease. Neurodegener. Dis. 7, 300–318 (2010).

    Google Scholar 

  130. Scherfler, C. et al. Diagnostic potential of automated subcortical volume segmentation in atypical parkinsonism. Neurology 86, 1242–1249 (2016).

    Google Scholar 

  131. Tuite, P. Magnetic resonance imaging as a potential biomarker for Parkinson's disease. Transl Res. 175, 4–16 (2016).

    Google Scholar 

  132. Treglia, G. et al. MIBG scintigraphy in differential diagnosis of Parkinsonism: a meta-analysis. Clin. Auton. Res. 22, 43–55 (2012).

    Google Scholar 

  133. Marras, C. et al. Nomenclature of genetic movement disorders: recommendations of the International Parkinson and Movement Disorder Society Task Force. Mov. Disord. 31, 436–457 (2016).

    Google Scholar 

  134. Lill, C. M. Genetics of Parkinson's disease. Mol. Cell. Probes 30, 386–396 (2016).

    Google Scholar 

  135. Brundin, P., Atkin, G. & Lamberts, J. T. Basic science breaks through: new therapeutic advances in Parkinson's disease. Mov. Disord. 30, 1521–1527 (2015). This review provides an outlook on emerging targets for future therapies of Parkinson disease.

    Google Scholar 

  136. Chen-Plotkin, A. S. Unbiased approaches to biomarker discovery in neurodegenerative diseases. Neuron 84, 594–607 (2014).

    Google Scholar 

  137. Swanson, C. R. et al. Plasma apolipoprotein A1 associates with age at onset and motor severity in early Parkinson's disease patients. Mov. Disord. 30, 1648–1656 (2015).

    Google Scholar 

  138. Stern, M. B., Lang, A. & Poewe, W. Toward a redefinition of Parkinson's disease. Mov. Disord. 27, 54–60 (2012).

    Google Scholar 

  139. Salat, D., Noyce, A. J., Schrag, A. & Tolosa, E. Challenges of modifying disease progression in prediagnostic Parkinson's disease. Lancet Neurol. 15, 637–648 (2016).

    Google Scholar 

  140. Espay, A. J. et al. Technology in Parkinson's disease: challenges and opportunities. Mov. Disord. 31, 1272–1282 (2016).

    Google Scholar 

  141. Pont-Sunyer, C. et al. The onset of nonmotor symptoms in Parkinson's disease (the ONSET PD study). Mov. Disord. 30, 229–237 (2015).

    Google Scholar 

  142. Iranzo, A., Santamaria, J. & Tolosa, E. Idiopathic rapid eye movement sleep behaviour disorder: diagnosis, management, and the need for neuroprotective interventions. Lancet Neurol. 15, 405–419 (2016).

    Google Scholar 

  143. Jennings, D. et al. Imaging prodromal Parkinson disease: the Parkinson Associated Risk Syndrome Study. Neurology 83, 1739–1746 (2014).

    Google Scholar 

  144. Mahlknecht, P. et al. Olfactory dysfunction predicts early transition to a Lewy body disease in idiopathic RBD. Neurology 84, 654–658 (2015). This paper provides important evidence on the effects of combining Parkinson disease risk markers to enhance predictivity for conversion in at-risk populations.

    Google Scholar 

  145. Mahlknecht, P. et al. Prodromal Parkinson's disease as defined per MDS research criteria in the general elderly community. Mov. Disord. 31, 1405–1408 (2016).

    Google Scholar 

  146. PD Med Collaborative Group et al. Long-term effectiveness of dopamine agonists and monoamine oxidase B inhibitors compared with levodopa as initial treatment for Parkinson's disease (PD MED): a large, open-label, pragmatic randomised trial. Lancet 384, 1196–1205 (2014).

    Google Scholar 

  147. LeWitt, P. A. & Fahn, S. Levodopa therapy for Parkinson disease: a look backward and forward. Neurology 86, S3–S12 (2016).

    Google Scholar 

  148. Olanow, C. W., Obeso, J. A. & Stocchi, F. Continuous dopamine-receptor treatment of Parkinson's disease: scientific rationale and clinical implications. Lancet Neurol. 5, 677–687 (2006).

    Google Scholar 

  149. Cenci, M. A. Presynaptic mechanisms of L-DOPA-induced dyskinesia: the findings, the debate, and the therapeutic implications. Front. Neurol. 5, 242 (2014).

    Google Scholar 

  150. Poewe, W. & Antonini, A. Novel formulations and modes of delivery of levodopa. Mov. Disord. 30, 114–120 (2015).

    Google Scholar 

  151. Antonini, A. et al. Effect of levodopa–carbidopa intestinal gel on dyskinesia in advanced Parkinson's disease patients. Mov. Disord. 31, 530–537 (2016).

    Google Scholar 

  152. Muller, T. Catechol-O-methyltransferase inhibitors in Parkinson's disease. Drugs 75, 157–174 (2015).

    Google Scholar 

  153. Fox, S. H. et al. The Movement Disorder Society evidence-based medicine review update: treatments for the motor symptoms of Parkinson's disease. Mov. Disord. 26, S2–S41 (2011).

    Google Scholar 

  154. Ferreira, J. J. et al. Opicapone as an adjunct to levodopa in patients with Parkinson's disease and end-of-dose motor fluctuations: a randomised, double-blind, controlled trial. Lancet Neurol. 15, 154–165 (2016).

    Google Scholar 

  155. Schapira, A. H. Monoamine oxidase B inhibitors for the treatment of Parkinson's disease: a review of symptomatic and potential disease-modifying effects. CNS Drugs 25, 1061–1071 (2011).

    Google Scholar 

  156. Birkmayer, W., Riederer, P., Ambrozi, L. & Youdim, M. B. Implications of combined treatment with ‘Madopar’ and L-deprenil in Parkinson's disease. A long-term study. Lancet 1, 439–443 (1977).

    Google Scholar 

  157. Schapira, A. H. et al. Assessment of safety and efficacy of safinamide as a levodopa adjunct in patients with Parkinson disease and motor fluctuations: a randomized clinical trial. JAMA Neurol. 74, 216–224 (2017).

    Google Scholar 

  158. Connolly, B. S. & Lang, A. E. Pharmacological treatment of Parkinson disease: a review. JAMA 311, 1670–1683 (2014). This paper provides a comprehensive review on the current options for the pharmacological management of Parkinson disease.

    Google Scholar 

  159. Jankovic, J. & Poewe, W. Therapies in Parkinson's disease. Curr. Opin. Neurol. 25, 433–447 (2012).

    Google Scholar 

  160. Voon, V., Mehta, A. R. & Hallett, M. Impulse control disorders in Parkinson's disease: recent advances. Curr. Opin. Neurol. 24, 324–330 (2011).

    Google Scholar 

  161. Frankel, J. P., Lees, A. J., Kempster, P. A. & Stern, G. M. Subcutaneous apomorphine in the treatment of Parkinson's disease. J. Neurol. Neurosurg. Psychiatry 53, 96–101 (1990).

    Google Scholar 

  162. Katzenschlager, R. et al. Continuous subcutaneous apomorphine therapy improves dyskinesias in Parkinson's disease: a prospective study using single-dose challenges. Mov. Disord. 20, 151–157 (2005).

    Google Scholar 

  163. Hauser, R. A. et al. Sublingual apomorphine (APL-130277) for the acute conversion of OFF to ON in Parkinson's disease. Mov. Disord. 31, 1366–1372 (2016).

    Google Scholar 

  164. Storch, A. et al. Nonmotor fluctuations in Parkinson disease: severity and correlation with motor complications. Neurology 80, 800–809 (2013).

    Google Scholar 

  165. Lim, S. Y., Fox, S. H. & Lang, A. E. Overview of the extranigral aspects of Parkinson disease. Arch. Neurol. 66, 167–172 (2009).

    Google Scholar 

  166. Kalia, L. V., Brotchie, J. M. & Fox, S. H. Novel nondopaminergic targets for motor features of Parkinson's disease: review of recent trials. Mov. Disord. 28, 131–144 (2013).

    Google Scholar 

  167. Seppi, K. et al. The Movement Disorder Society evidence-based medicine review update: treatments for the non-motor symptoms of Parkinson's disease. Mov. Disord. 26, S42–S80 (2011).

    Google Scholar 

  168. Connolly, B. & Fox, S. H. Treatment of cognitive, psychiatric, and affective disorders associated with Parkinson's disease. Neurotherapeutics 11, 78–91 (2014).

    Google Scholar 

  169. Cummings, J. et al. Pimavanserin for patients with Parkinson's disease psychosis: a randomised, placebo-controlled phase 3 trial. Lancet 383, 533–540 (2014).

    Google Scholar 

  170. Weintraub, D. & Burn, D. J. Parkinson's disease: the quintessential neuropsychiatric disorder. Mov. Disord. 26, 1022–1031 (2011).

    Google Scholar 

  171. Perez-Lloret, S., Rey, M. V., Pavy-Le Traon, A. & Rascol, O. Emerging drugs for autonomic dysfunction in Parkinson's disease. Expert Opin. Emerg. Drugs 18, 39–53 (2013).

    Google Scholar 

  172. Limousin, P. et al. Effect of parkinsonian signs and symptoms of bilateral subthalamic nucleus stimulation. Lancet 345, 91–95 (1995).

    Google Scholar 

  173. Bronstein, J. M. et al. Deep brain stimulation for Parkinson disease: an expert consensus and review of key issues. Arch. Neurol. 68, 165 (2011).

    Google Scholar 

  174. Deuschl, G. & Agid, Y. Subthalamic neurostimulation for Parkinson's disease with early fluctuations: balancing the risks and benefits. Lancet Neurol. 12, 1025–1034 (2013). This review summarizes the evidence base for the efficacy and safety of DBS in Parkinson disease.

    Google Scholar 

  175. Odekerken, V. J. et al. Subthalamic nucleus versus globus pallidus bilateral deep brain stimulation for advanced Parkinson's disease (NSTAPS study): a randomised controlled trial. Lancet Neurol. 12, 37–44 (2013).

    Google Scholar 

  176. Stern, M. B., Follett, K. A. & Weaver, F. M. Randomized trial of deep brain stimulation for Parkinson disease: thirty-six-month outcomes; turning tables: should GPi become the preferred DBS target for Parkinson disease? Author response. Neurology 80, 225 (2013).

    Google Scholar 

  177. Odekerken, V. J. et al. GPi versus STN deep brain stimulation for Parkinson disease: three-year follow-up. Neurology 86, 755–761 (2016).

    Google Scholar 

  178. Voges, J. et al. Thirty days complication rate following surgery performed for deep-brain-stimulation. Mov. Disord. 22, 1486–1489 (2007).

    Google Scholar 

  179. Volkmann, J., Daniels, C. & Witt, K. Neuropsychiatric effects of subthalamic neurostimulation in Parkinson disease. Nat. Rev. Neurol. 6, 487–498 (2010).

    Google Scholar 

  180. Kuhn, A. A. & Volkmann, J. Innovations in deep brain stimulation methodology. Mov. Disord. 32, 11–19 (2017).

    Google Scholar 

  181. Keus, S. H., Munneke, M., Nijkrake, M. J., Kwakkel, G. & Bloem, B. R. Physical therapy in Parkinson's disease: evolution and future challenges. Mov. Disord. 24, 1–14 (2009).

    Google Scholar 

  182. Bloem, B. R., de Vries, N. M. & Ebersbach, G. Nonpharmacological treatments for patients with Parkinson's disease. Mov. Disord. 30, 1504–1520 (2015).

    Google Scholar 

  183. Ahlskog, J. E. Does vigorous exercise have a neuroprotective effect in Parkinson disease? Neurology 77, 288–294 (2011).

    Google Scholar 

  184. Yang, F. et al. Physical activity and risk of Parkinson's disease in the Swedish National March Cohort. Brain 138, 269–275 (2015).

    Google Scholar 

  185. Xu, Q. et al. Physical activities and future risk of Parkinson disease. Neurology 75, 341–348 (2010).

    Google Scholar 

  186. Hinnell, C. et al. Nonmotor versus motor symptoms: how much do they matter to health status in Parkinson's disease? Mov. Disord. 27, 236–241 (2012).

    Google Scholar 

  187. Schrag, A., Jahanshahi, M. & Quinn, N. What contributes to quality of life in patients with Parkinson's disease? J. Neurol. Neurosurg. Psychiatry 69, 308–312 (2000).

    Google Scholar 

  188. Schrag, A., Sauerbier, A. & Chaudhuri, K. R. New clinical trials for nonmotor manifestations of Parkinson's disease. Mov. Disord. 30, 1490–1504 (2015).

    Google Scholar 

  189. Lawson, R. A. et al. Cognitive decline and quality of life in incident Parkinson's disease: the role of attention. Parkinsonism Relat. Disord. 27, 47–53 (2016).

    Google Scholar 

  190. Weerkamp, N. J. et al. Nonmotor symptoms in nursing home residents with Parkinson's disease: prevalence and effect on quality of life. J. Am. Geriatr. Soc. 61, 1714–1721 (2013).

    Google Scholar 

  191. van der Marck, M. A. et al. Effectiveness of multidisciplinary care for Parkinson's disease: a randomized, controlled trial. Mov. Disord. 28, 605–611 (2013).

    Google Scholar 

  192. Greenwell, K., Gray, W. K., van Wersch, A., van Schaik, P. & Walker, R. Predictors of the psychosocial impact of being a carer of people living with Parkinson's disease: a systematic review. Parkinsonism Relat. Disord. 21, 1–11 (2015).

    Google Scholar 

  193. Schrag, A., Hovris, A., Morley, D., Quinn, N. & Jahanshahi, M. Caregiver-burden in parkinson's disease is closely associated with psychiatric symptoms, falls, and disability. Parkinsonism Relat. Disord. 12, 35–41 (2006).

    Google Scholar 

  194. Weisskopf, M. G., O’Reilly, E., Chen, H., Schwarzschild, M. A. & Ascherio, A. Plasma urate and risk of Parkinson's disease. Am. J. Epidemiol. 166, 561–567 (2007).

    Google Scholar 

  195. Nalls, M. A. et al. Diagnosis of Parkinson's disease on the basis of clinical and genetic classification: a population-based modelling study. Lancet Neurol. 14, 1002–1009 (2015).

    Google Scholar 

  196. Scheperjans, F. Can microbiota research change our understanding of neurodegenerative diseases? Neurodegener. Dis. Manag. 6, 81–85 (2016).

    Google Scholar 

  197. Delenclos, M., Jones, D. R., McLean, P. J. & Uitti, R. J. Biomarkers in Parkinson's disease: advances and strategies. Parkinsonism Relat. Disord. 22, S106–S110 (2016).

    Google Scholar 

  198. Gibbons, C. H., Garcia, J., Wang, N., Shih, L. C. & Freeman, R. The diagnostic discrimination of cutaneous alpha-synuclein deposition in Parkinson disease. Neurology 87, 505–512 (2016).

    Google Scholar 

  199. Doppler, K. et al. Cutaneous neuropathy in Parkinson's disease: a window into brain pathology. Acta Neuropathol. 128, 99–109 (2014).

    Google Scholar 

  200. Sprenger, F. S. et al. Enteric nervous system alpha-synuclein immunoreactivity in idiopathic REM sleep behavior disorder. Neurology 85, 1761–1768 (2015).

    Google Scholar 

  201. Vilas, D. et al. Assessment of alpha-synuclein in submandibular glands of patients with idiopathic rapid-eye-movement sleep behaviour disorder: a case–control study. Lancet Neurol. 15, 708–718 (2016).

    Google Scholar 

  202. Kordower, J. H. & Bjorklund, A. Trophic factor gene therapy for Parkinson's disease. Mov. Disord. 28, 96–109 (2013).

    Google Scholar 

  203. Gill, S. S. et al. Direct brain infusion of glial cell line-derived neurotrophic factor in Parkinson disease. Nat. Med. 9, 589–595 (2003).

    Google Scholar 

  204. Lang, A. E. et al. Randomized controlled trial of intraputamenal glial cell line-derived neurotrophic factor infusion in Parkinson disease. Ann. Neurol. 59, 459–466 (2006).

    Google Scholar 

  205. Kordower, J. H. et al. Delivery of neurturin by AAV2 (CERE-120)-mediated gene transfer provides structural and functional neuroprotection and neurorestoration in MPTP-treated monkeys. Ann. Neurol. 60, 706–715 (2006).

    Google Scholar 

  206. Bartus, R. T. & Johnson, E. M. Jr. Clinical tests of neurotrophic factors for human neurodegenerative diseases, part 1: where have we been and what have we learned? Neurobiol. Dis. 97, 156–168 (2017).

    Google Scholar 

  207. Bartus, R. T. & Johnson, E. M. Jr. Clinical tests of neurotrophic factors for human neurodegenerative diseases, part 2: where do we stand and where must we go next? Neurobiol. Dis. 97, 169–178 (2017).

    Google Scholar 

  208. Mittermeyer, G. et al. Long-term evaluation of a phase 1 study of AADC gene therapy for Parkinson's disease. Hum. Gene Ther. 23, 377–381 (2012).

    Google Scholar 

  209. Palfi, S. et al. Long-term safety and tolerability of ProSavin, a lentiviral vector-based gene therapy for Parkinson's disease: a dose escalation, open-label, phase 1/2 trial. Lancet 383, 1138–1146 (2014).

    Google Scholar 

  210. Bjorklund, A., Bjorklund, T. & Kirik, D. Gene therapy for dopamine replacement in Parkinson's disease. Sci. Transl Med. 1, 2ps2 (2009).

    Google Scholar 

  211. Carlsson, T. et al. Reversal of dyskinesias in an animal model of Parkinson's disease by continuous L-DOPA delivery using rAAV vectors. Brain 128, 559–569 (2005).

    Google Scholar 

  212. LeWitt, P. A. et al. AAV2-GAD gene therapy for advanced Parkinson's disease: a double-blind, sham-surgery controlled, randomised trial. Lancet Neurol. 10, 309–319 (2011).

    Google Scholar 

  213. Lindvall, O. et al. Grafts of fetal dopamine neurons survive and improve motor function in Parkinson's disease. Science 247, 574–577 (1990).

    Google Scholar 

  214. Piccini, P. et al. Dopamine release from nigral transplants visualized in vivo in a Parkinson's patient. Nat. Neurosci. 2, 1137–1140 (1999).

    Google Scholar 

  215. Freed, C. R. et al. Transplantation of embryonic dopamine neurons for severe Parkinson's disease. N. Engl. J. Med. 344, 710–719 (2001).

    Google Scholar 

  216. Olanow, C. W. et al. A double-blind controlled trial of bilateral fetal nigral transplantation in Parkinson's disease. Ann. Neurol. 54, 403–414 (2003).

    Google Scholar 

  217. Hagell, P. et al. Dyskinesias following neural transplantation in Parkinson's disease. Nat. Neurosci. 5, 627–628 (2002).

    Google Scholar 

  218. Carta, M., Carlsson, T., Munoz, A., Kirik, D. & Bjorklund, A. Role of serotonin neurons in the induction of levodopa- and graft-induced dyskinesias in Parkinson's disease. Mov. Disord. 25, S174–S179 (2010).

    Google Scholar 

  219. Lane, E. L., Vercammen, L., Cenci, M. A. & Brundin, P. Priming for L-DOPA-induced abnormal involuntary movements increases the severity of amphetamine-induced dyskinesia in grafted rats. Exp. Neurol. 219, 355–358 (2009).

    Google Scholar 

  220. Brundin, P. & Kordower, J. H. Neuropathology in transplants in Parkinson's disease: implications for disease pathogenesis and the future of cell therapy. Prog. Brain Res. 200, 221–241 (2012).

    Google Scholar 

  221. Kefalopoulou, Z. et al. Long-term clinical outcome of fetal cell transplantation for Parkinson disease: two case reports. JAMA Neurol. 71, 83–87 (2014).

    Google Scholar 

  222. Barker, R. A., Drouin-Ouellet, J. & Parmar, M. Cell-based therapies for Parkinson disease-past insights and future potential. Nat. Rev. Neurol. 11, 492–503 (2015). This paper provides a thoughtful and critical review on the limitations and the potential of cell-based therapies for Parkinson disease.

    Google Scholar 

  223. Petit, G. H., Olsson, T. T. & Brundin, P. The future of cell therapies and brain repair: Parkinson's disease leads the way. Neuropathol. Appl. Neurobiol. 40, 60–70 (2014).

    Google Scholar 

  224. Barker, R. A. et al. Are stem cell-based therapies for Parkinson's disease ready for the clinic in 2016? J. Parkinsons Dis. 6, 57–63 (2016).

    Google Scholar 

  225. Kimmelman, J. et al. New ISSCR guidelines: clinical translation of stem cell research. Lancet 387, 1979–1981 (2016).

    Google Scholar 

  226. Mandler, M. et al. Next-generation active immunization approach for synucleinopathies: implications for Parkinson's disease clinical trials. Acta Neuropathol. 127, 861–879 (2014).

    Google Scholar 

  227. McGuire Kuhl, M. Foxfeed blog: vaccine for Parkinson's reports positive results from boost study. MichaelJFox.orghttps://www.michaeljfox.org/foundation/news-detail.php?vaccine-for-parkinson-reports-positive-results-from-boost-study&et_cid=663719&et_rid=81507667&et_lid=Read+Moreem_cid (2016).

  228. Bergstrom, A. L., Kallunki, P. & Fog, K. Development of passive immunotherapies for synucleinopathies. Mov. Disord. 31, 203–213 (2016).

    Google Scholar 

  229. Schenk, D. B. et al. First-in-human assessment of PRX002, an anti-α-synuclein monoclonal antibody, in healthy volunteers. Mov. Disord. 32, 211–218 (2017).

    Google Scholar 

  230. Wrasidlo, W. M. et al. A de novo compound targeting α-synuclein improves deficits in models of Parkinson's disease. Brain 139, 3217–3236 (2016).

    Google Scholar 

  231. Aviles-Olmos, I. et al. Motor and cognitive advantages persist 12 months after exenatide exposure in Parkinson's disease. J. Parkinsons Dis. 4, 337–344 (2014).

    Google Scholar 

  232. Parkinson Study Group SURE-PD Investigators et al. Inosine to increase serum and cerebrospinal fluid urate in Parkinson disease: a randomized clinical trial. JAMA Neurol. 71, 141–150 (2014).

    Google Scholar 

  233. Migdalska-Richards, A., Daly, L., Bezard, E. & Schapira, A. H. Ambroxol effects in glucocerebrosidase and alpha-synuclein transgenic mice. Ann. Neurol. 80, 766–775 (2016).

    Google Scholar 

  234. Parkinson Study Group. Phase II safety, tolerability, and dose selection study of isradipine as a potential disease-modifying intervention in early Parkinson's disease (STEADY-PD). Mov. Disord. 28, 1823–1831 (2013).

    Google Scholar 

  235. Hirsch, L., Jette, N., Frolkis, A., Steeves, T. & Pringsheim, T. The incidence of Parkinson's disease: a systematic review and meta-analysis. Neuroepidemiology 46, 292–300 (2016).

    Google Scholar 

  236. Halliday, G. M. & McCann, H. The progression of pathology in Parkinson's disease. Ann. NY Acad. Sci. 1184, 188–195 (2010).

    Google Scholar 

  237. Reiter, E. et al. Dorsolateral nigral hyperintensity on 3.0T susceptibility-weighted imaging in neurodegenerative Parkinsonism. Mov Disord. 30, 1068–1076 (2015).

    Google Scholar 

  238. Ohtsuka, C. et al. Changes in substantia nigra and locus coeruleus in patients with early-stage Parkinson's disease using neuromelanin-sensitive MR imaging. Neurosci. Lett. 541, 93–98 (2013).

    Google Scholar 

  239. Schmidauer, C. et al. Transcranial ultrasound shows nigral hypoechogenicity in restless legs syndrome. Ann. Neurol. 58, 630–634 (2005).

    Google Scholar 

  240. Deng, H. X. et al. Identification of TMEM230 mutations in familial Parkinson's disease. Nat. Genet. 48, 733–739 (2016).

    Google Scholar 

  241. Lill, C. M. et al. Launching the Movement Disorders Society Genetic Mutation Database (MDSGene). Mov. Disord. 31, 607–609 (2016).

    Google Scholar 

Download references

Acknowledgements

The authors are grateful to U. Zijerveld for providing administrative support.

Author information

Authors and Affiliations

Authors

Contributions

Introduction (W.P.); Epidemiology (C.M.T.); Mechanisms/pathophysiology (G.M.H., P.B. and J.V.); Diagnosis, screening and prevention (K.S. and A.-E.S.); Management (W.P., A.E.L. and J.V.); Quality of life (A.E.S.); Outlook (All); Overview of Primer (W.P.).

Corresponding author

Correspondence to Werner Poewe.

Ethics declarations

Competing interests

W.P. reports personal fees from AbbVie, Allergan, AstraZeneca, BIAL, Boehringer-Ingelheim, Boston Scientific, GlaxoSmithKline, Ipsen, Lundbeck, Medtronic, MSD, Merck-Serono, Merz Pharmaceuticals, Neuroderm, Novartis, Orion Pharma, Teva, UCB and Zambon (consultancy and lecture fees in relation to clinical drug development programmes for Parkinson disease) and publishing royalties from Thieme, Wiley-Blackwell, Oxford University Press and Cambridge University Press. K.S. reports personal fees from Boehringer-Ingelheim, UCB, Lundbeck, AbbVie, Roche, Teva and AOP Orphan Pharmaceuticals AG. C.M.T. has received compensation for serving on Data Monitoring Committees from Biotie Therapeutics, Voyager Therapeutics and Intec Pharma and personal fees for consulting services from Ultragenyx Pharmaceuticals, Neurocrine Biosciences, Cynapsus, Therapeutics, Sage Bionetworks and Adamas. G.M.H. has received compensation for serving on data monitoring committees from Biotie Therapeutics, Voyager Therapeutics and Intec Pharma, and personal fees from the American Academy of Neurology, Bionomics and Lundbeck. P.B. has received commercial support as a consultant from Renovo Neural, Roche, Teva, Lundbeck, AbbVie, Neuroderm, Versant Ventures/Apollo and IOS Press Partners. J.V. reports personal fees from Boston Scientific, Medtronic, Bial, Allergan, Zambon (consultancy and lecture fees in relation to clinical therapeutic development programmes for Parkinson disease) and grants from Boston Scientific and Medtronic. A.-E.S. reports grants from, Parkinson's UK, GE Healthcare, International Parkinson and Movement Disorder Society, shares from AstraZeneca, and personal fees from Grunenthal, Medtronic and Oxford University Press. A.E.L. reports personal fees from AbbVie, Acorda, Avanir Pharmaceuticals, Bristol-Myers Squibb, Cipla, Intekrin, Sun Pharma, Medichem, Medtronic, Teva, UCB and Merck, and publishing royalties from Saunders, Wiley-Blackwell, Johns Hopkins Press and Cambridge University Press.

Supplementary information

Supplementary table 1

Imaging biomarkers for used to study Parkinson disease (PDF 107 kb)

Supplementary table 2

Overview of potential biochemical biomarkers in Parkinson disease (PDF 131 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Poewe, W., Seppi, K., Tanner, C. et al. Parkinson disease. Nat Rev Dis Primers 3, 17013 (2017). https://doi.org/10.1038/nrdp.2017.13

Download citation

  • Published:

  • DOI: https://doi.org/10.1038/nrdp.2017.13

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing