Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Primer
  • Published:

Traumatic brain injuries

Abstract

Traumatic brain injuries (TBIs) are clinically grouped by severity: mild, moderate and severe. Mild TBI (the least severe form) is synonymous with concussion and is typically caused by blunt non-penetrating head trauma. The trauma causes stretching and tearing of axons, which leads to diffuse axonal injury — the best-studied pathogenetic mechanism of this disorder. However, mild TBI is defined on clinical grounds and no well-validated imaging or fluid biomarkers to determine the presence of neuronal damage in patients with mild TBI is available. Most patients with mild TBI will recover quickly, but others report persistent symptoms, called post-concussive syndrome, the underlying pathophysiology of which is largely unknown. Repeated concussive and subconcussive head injuries have been linked to the neurodegenerative condition chronic traumatic encephalopathy (CTE), which has been reported post-mortem in contact sports athletes and soldiers exposed to blasts. Insights from severe injuries and CTE plausibly shed light on the underlying cellular and molecular processes involved in mild TBI. MRI techniques and blood tests for axonal proteins to identify and grade axonal injury, in addition to PET for tau pathology, show promise as tools to explore CTE pathophysiology in longitudinal clinical studies, and might be developed into diagnostic tools for CTE. Given that CTE is attributed to repeated head trauma, prevention might be possible through rule changes by sports organizations and legislators.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Examples of the types of forces in mild traumatic brain injury.
Figure 2: Tau pathology in chronic traumatic encephalopathy.
Figure 3: Axonal injury in traumatic brain injuries.
Figure 4: Diffusion tensor imaging for assessment of diffuse axonal injury.
Figure 5: Repeated traumatic brain injuries and the proposed window of vulnerability.
Figure 6: Unknowns in the clinical and pathological pathways of chronic traumatic encephalopathy.

Similar content being viewed by others

References

  1. Hyder, A. A., Wunderlich, C. A., Puvanachandra, P., Gururaj, G. & Kobusingye, O. C. The impact of traumatic brain injuries: a global perspective. NeuroRehabilitation 22, 341–353 (2007).

    PubMed  Google Scholar 

  2. Cassidy, J. D. et al. Incidence, risk factors and prevention of mild traumatic brain injury: results of the WHO Collaborating Centre Task Force on Mild Traumatic Brain Injury. J. Rehabil. Med. 36, 28–60 (2004).

    Article  Google Scholar 

  3. Management of Concussion/mTBI Working Group. VA/DoD clinical practice guideline for management of concussion/mild traumatic brain injury. J. Rehabil. Res. Dev. 46, CP1–CP68 (2009).

    Article  Google Scholar 

  4. McCrory, P. et al. Consensus statement on concussion in sport: the 4th International Conference on Concussion in Sport held in Zurich, November 2012. Br. J. Sports Med. 47, 250–258 (2013). A report of the most recent international consensus conference on sports concussion that importantly communicated definitions and guidelines for the management of sports concussion.

    Article  PubMed  Google Scholar 

  5. Mild Traumatic Brain Injury Committee of the Head Injury Interdisciplinary Special Interest Group of the American Congress of Rehabilitation Medicine. Definition of mild traumatic brain injury. J. Head Trauma Rehabil. 8, 86–87 (1993).

    Article  Google Scholar 

  6. West, T. A. & Marion, D. W. Current recommendations for the diagnosis and treatment of concussion in sport: a comparison of three new guidelines. J. Neurotrauma 31, 159–168 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  7. Meares, S. et al. The prospective course of postconcussion syndrome: the role of mild traumatic brain injury. Neuropsychology 25, 454–465 (2011).

    Article  PubMed  Google Scholar 

  8. Ponsford, J., Cameron, P., Fitzgerald, M., Grant, M. & Mikocka-Walus, A. Long-term outcomes after uncomplicated mild traumatic brain injury: a comparison with trauma controls. J. Neurotrauma 28, 937–946 (2011).

    Article  PubMed  Google Scholar 

  9. Silverberg, N. D. & Iverson, G. L. Etiology of the post-concussion syndrome: physiogenesis and psychogenesis revisited. NeuroRehabilitation 29, 317–329 (2011).

    PubMed  Google Scholar 

  10. Bieniek, K. F. et al. Chronic traumatic encephalopathy pathology in a neurodegenerative disorders brain bank. Acta Neuropathol. 130, 877–889 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Reams, N. et al. A clinical approach to the diagnosis of traumatic encephalopathy syndrome: a review. JAMA Neurol. 73, 743–749 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Martland, H. S. Punch drunk. JAMA 91, 1103–1107 (1928).

    Article  Google Scholar 

  13. Millspaugh, J. Dementia pugilistica. US Naval Med. Bull. 35, 297–303 (1937).

    Google Scholar 

  14. Critchley, M. Punch-Drunk Syndromes: The Chronic Traumatic Encephalopathy of Boxers (Maloine, 1949).

    Google Scholar 

  15. Blennow, K., Hardy, J. & Zetterberg, H. The neuropathology and neurobiology of traumatic brain injury. Neuron 76, 886–899 (2012).

    Article  CAS  PubMed  Google Scholar 

  16. Gandy, S. et al. Chronic traumatic encephalopathy: clinical-biomarker correlations and current concepts in pathogenesis. Mol. Neurodegener. 9, 37 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Corsellis, J. A., Bruton, C. J. & Freeman-Browne, D. The aftermath of boxing. Psychol. Med. 3, 270–303 (1973). This is a pivotal paper that revealed extensive NFTs (later known to be composed of P-tau) and other pathological changes in a series of retired boxers; the majority had memory problems or dementia and the authors concluded that this pathology represents the consequences of boxing.

    Article  CAS  PubMed  Google Scholar 

  18. Omalu, B. I. et al. Chronic traumatic encephalopathy in a National Football League player. Neurosurgery 57, 128–134; discussion 128–134 (2005).

    Article  PubMed  Google Scholar 

  19. Goldstein, L. E. et al. Chronic traumatic encephalopathy in blast-exposed military veterans and a blast neurotrauma mouse model. Sci. Transl Med. 4, 134ra60 (2012).

    PubMed  PubMed Central  Google Scholar 

  20. Stein, T. D. et al. Beta-amyloid deposition in chronic traumatic encephalopathy. Acta Neuropathol. 130, 21–34 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Peeters, W. et al. Epidemiology of traumatic brain injury in Europe. Acta Neurochir. (Wien) 157, 1683–1696 (2015).

    Article  Google Scholar 

  22. Centers for Disease Control and Prevention. Nonfatal injury data. CDChttps://www.cdc.gov/injury/wisqars/nonfatal.html (2015).

  23. Maas, A. I., Stocchetti, N. & Bullock, R. Moderate and severe traumatic brain injury in adults. Lancet Neurol. 7, 728–741 (2008).

    Article  PubMed  Google Scholar 

  24. Whiteneck, G. G., Cuthbert, J. P., Corrigan, J. D. & Bogner, J. A. Risk of negative outcomes after traumatic brain injury: a statewide population-based survey. J. Head Trauma Rehabil. 31, E43–E54 (2016).

    Article  PubMed  Google Scholar 

  25. Roozenbeek, B., Maas, A. I. & Menon, D. K. Changing patterns in the epidemiology of traumatic brain injury. Nat. Rev. Neurol. 9, 231–236 (2013).

    Article  PubMed  Google Scholar 

  26. Coronado, V. G. et al. Trends in sports- and recreation-related traumatic brain injuries treated in US emergency departments: the National Electronic Injury Surveillance System-All Injury Program (NEISS-AIP) 2001–2012. J. Head Trauma Rehabil. 30, 185–197 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  27. Helmick, K. M. et al. Traumatic brain injury in the US military: epidemiology and key clinical and research programs. Brain Imaging Behav. 9, 358–366 (2015).

    Article  PubMed  Google Scholar 

  28. Fleminger, S., Oliver, D., Lovestone, S., Rabe-Hesketh, S. & Giora, A. Head injury as a risk factor for Alzheimer's disease: the evidence 10 years on; a partial replication. J. Neurol. Neurosurg. Psychiatry 74, 857–862 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Nordström, P., Michaëlsson, K., Gustafson, Y. & Nordström, A. Traumatic brain injury and young onset dementia: a nationwide cohort study. Ann. Neurol. 75, 374–381 (2014).

    Article  PubMed  Google Scholar 

  30. Plassman, B. L. et al. Documented head injury in early adulthood and risk of Alzheimer's disease and other dementias. Neurology 55, 1158–1166 (2000).

    Article  CAS  PubMed  Google Scholar 

  31. Gardner, R. C. & Yaffe, K. Epidemiology of mild traumatic brain injury and neurodegenerative disease. Mol. Cell. Neurosci. 66, 75–80 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Gardner, R. C. et al. Dementia risk after traumatic brain injury versus nonbrain trauma: the role of age and severity. JAMA Neurol. 71, 1490–1497 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  33. Barnes, D. E. et al. Traumatic brain injury and risk of dementia in older veterans. Neurology 83, 312–319 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  34. McCrory, P., Meeuwisse, W. H., Kutcher, J. S., Jordan, B. D. & Gardner, A. What is the evidence for chronic concussion-related changes in retired athletes: behavioural, pathological and clinical outcomes? Br. J. Sports Med. 47, 327–330 (2013).

    Article  PubMed  Google Scholar 

  35. King, A. I. Fundamentals of impact biomechanics: part I — biomechanics of the head, neck, and thorax. Annu. Rev. Biomed. Eng. 2, 55–81 (2000).

    Article  CAS  PubMed  Google Scholar 

  36. Young, L. A., Rule, G. T., Bocchieri, R. T. & Burns, J. M. Biophysical mechanisms of traumatic brain injuries. Semin. Neurol. 35, 5–11 (2015).

    Article  PubMed  Google Scholar 

  37. Cloots, R. J., Gervaise, H. M., van Dommelen, J. A. & Geers, M. G. Biomechanics of traumatic brain injury: influences of the morphologic heterogeneities of the cerebral cortex. Ann. Biomed. Eng. 36, 1203–1215 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. McKee, A. C. et al. Chronic traumatic encephalopathy in athletes: progressive tauopathy after repetitive head injury. J. Neuropathol. Exp. Neurol. 68, 709–735 (2009).

    Article  PubMed  Google Scholar 

  39. Gennarelli, T. A. et al. Diffuse axonal injury and traumatic coma in the primate. Ann. Neurol. 12, 564–574 (1982). This is an important early study on experimental rotational head injury in monkeys that demonstrates a direct relationship between the amount of rotational head motion and the severity of DAI, and in turn the duration of coma and the degree of neurological impairment.

    Article  CAS  PubMed  Google Scholar 

  40. Pellman, E. J., Viano, D. C., Tucker, A. M., Casson, I. R. & Waeckerle, J. F. Concussion in professional football: reconstruction of game impacts and injuries. Neurosurgery 53, 799–812; discussion 812–814 (2003).

    Article  PubMed  Google Scholar 

  41. Walilko, T. J., Viano, D. C. & Bir, C. A. Biomechanics of the head for Olympic boxer punches to the face. Br. J. Sports Med. 39, 710–719 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Atha, J., Yeadon, M. R., Sandover, J. & Parsons, K. C. The damaging punch. Br. Med. J. (Clin. Res. Ed.) 291, 1756–1757 (1985).

    Article  CAS  Google Scholar 

  43. Blumbergs, P. C. et al. Staining of amyloid precursor protein to study axonal damage in mild head injury. Lancet 344, 1055–1056 (1994). This is a seminal case report series of patients who sustained mild TBI but died from associated injuries, showing DAI in the brain.

    Article  CAS  PubMed  Google Scholar 

  44. Oppenheimer, D. R. Microscopic lesions in the brain following head injury. J. Neurol. Neurosurg. Psychiatry 31, 299–306 (1968).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. McKee, A. C., Daneshvar, D. H., Alvarez, V. E. & Stein, T. D. The neuropathology of sport. Acta Neuropathol. 127, 29–51 (2014).

    Article  CAS  PubMed  Google Scholar 

  46. McKee, A. C. et al. The first NINDS/NIBIB consensus meeting to define neuropathological criteria for the diagnosis of chronic traumatic encephalopathy. Acta Neuropathol. 131, 75–86 (2016).

    Article  CAS  PubMed  Google Scholar 

  47. McKee, A. C. et al. The spectrum of disease in chronic traumatic encephalopathy. Brain 136, 43–64 (2013). This is the largest series to date of pathological confirmation of CTE in contact sports athletes and military veterans, with detailed neuropathological characterization.

    Article  PubMed  Google Scholar 

  48. McKee, A. C. et al. TDP-43 proteinopathy and motor neuron disease in chronic traumatic encephalopathy. J. Neuropathol. Exp. Neurol. 69, 918–929 (2010).

    Article  CAS  PubMed  Google Scholar 

  49. Smith, D. H., Hicks, R. & Povlishock, J. T. Therapy development for diffuse axonal injury. J. Neurotrauma 30, 307–323 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  50. Smith, D. H. et al. Immediate coma following inertial brain injury dependent on axonal damage in the brainstem. J. Neurosurg. 93, 315–322 (2000).

    Article  CAS  PubMed  Google Scholar 

  51. Magnoni, S. et al. Tau elevations in the brain extracellular space correlate with reduced amyloid-β levels and predict adverse clinical outcomes after severe traumatic brain injury. Brain 135, 1268–1280 (2012).

    Article  PubMed  Google Scholar 

  52. Niogi, S. N. & Mukherjee, P. Diffusion tensor imaging of mild traumatic brain injury. J. Head Trauma Rehabil. 25, 241–255 (2010).

    Article  PubMed  Google Scholar 

  53. Tang-Schomer, M. D., Johnson, V. E., Baas, P. W., Stewart, W. & Smith, D. H. Partial interruption of axonal transport due to microtubule breakage accounts for the formation of periodic varicosities after traumatic axonal injury. Exp. Neurol. 233, 364–372 (2012).

    Article  PubMed  Google Scholar 

  54. Christman, C. W., Grady, M. S., Walker, S. A., Holloway, K. L. & Povlishock, J. T. Ultrastructural studies of diffuse axonal injury in humans. J. Neurotrauma 11, 173–186 (1994).

    Article  CAS  PubMed  Google Scholar 

  55. Gentleman, S. M., Nash, M. J., Sweeting, C. J., Graham, D. I. & Roberts, G. W. Beta-amyloid precursor protein (beta APP) as a marker for axonal injury after head injury. Neurosci. Lett. 160, 139–144 (1993).

    Article  CAS  PubMed  Google Scholar 

  56. Stone, J. R. et al. Impaired axonal transport and altered axolemmal permeability occur in distinct populations of damaged axons following traumatic brain injury. Exp. Neurol. 190, 59–69 (2004).

    Article  CAS  PubMed  Google Scholar 

  57. Marmarou, C. R., Walker, S. A., Davis, C. L. & Povlishock, J. T. Quantitative analysis of the relationship between intra-axonal neurofilament compaction and impaired axonal transport following diffuse traumatic brain injury. J. Neurotrauma 22, 1066–1080 (2005).

    Article  PubMed  Google Scholar 

  58. Grady, M. S. et al. The use of antibodies targeted against the neurofilament subunits for the detection of diffuse axonal injury in humans. J. Neuropathol. Exp. Neurol. 52, 143–152 (1993).

    Article  CAS  PubMed  Google Scholar 

  59. Stone, J. R., Singleton, R. H. & Povlishock, J. T. Intra-axonal neurofilament compaction does not evoke local axonal swelling in all traumatically injured axons. Exp. Neurol. 172, 320–331 (2001).

    Article  CAS  PubMed  Google Scholar 

  60. Povlishock, J. T. & Katz, D. I. Update of neuropathology and neurological recovery after traumatic brain injury. J. Head Trauma Rehabil. 20, 76–94 (2005).

    Article  PubMed  Google Scholar 

  61. Shitaka, Y. et al. Repetitive closed-skull traumatic brain injury in mice causes persistent multifocal axonal injury and microglial reactivity. J. Neuropathol. Exp. Neurol. 70, 551–567 (2011).

    Article  PubMed  Google Scholar 

  62. Buki, A. & Povlishock, J. T. All roads lead to disconnection? — Traumatic axonal injury revisited. Acta Neurochir. (Wien) 148, 181–193 (2006).

    Article  CAS  Google Scholar 

  63. Bennett, R. E. & Brody, D. L. Array tomography for the detection of non-dilated, injured axons in traumatic brain injury. J. Neurosci. Methods 245, 25–36 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  64. Blennow, K., de Leon, M. J. & Zetterberg, H. Alzheimer's disease. Lancet 368, 387–403 (2006).

    Article  CAS  PubMed  Google Scholar 

  65. Magnoni, S. & Brody, D. L. New perspectives on amyloid-beta dynamics after acute brain injury: moving between experimental approaches and studies in the human brain. Arch. Neurol. 67, 1068–1073 (2010).

    Article  PubMed  Google Scholar 

  66. Ikonomovic, M. D. et al. Alzheimer's pathology in human temporal cortex surgically excised after severe brain injury. Exp. Neurol. 190, 192–203 (2004).

    Article  CAS  PubMed  Google Scholar 

  67. Roberts, G. W., Gentleman, S. M., Lynch, A. & Graham, D. I. Beta A4 amyloid protein deposition in brain after head trauma. Lancet 338, 1422–1423 (1991). This is the first study which shows that patients with severe TBI who survived for 1–2 weeks had, regardless of age, extensive cortical Aβ deposition during the acute phase after trauma, which supports the notion that TBIs trigger acute Aβ deposition.

  68. Smith, D. H. et al. Accumulation of amyloid β and tau and the formation of neurofilament inclusions following diffuse brain injury in the pig. J. Neuropathol. Exp. Neurol. 58, 982–992 (1999). This is an important study in pigs on rotational head injury which shows that early DAI some days later is followed by extensive accumulation of Aβ and P-tau in damaged axons, cytoplasmic tau and neurofilament inclusions, severe axonal damage and Aβ-positive plaques.

  69. Brody, D. L. et al. Amyloid-β dynamics correlate with neurological status in the injured human brain. Science 321, 1221–1224 (2008). This is an important study on Aβ dynamics in patients with acute TBI which shows that Aβ levels correlate with neuronal function and neurological status.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Schwetye, K. E. et al. Traumatic brain injury reduces soluble extracellular amyloid-β in mice: a methodologically novel combined microdialysis-controlled cortical impact study. Neurobiol. Dis. 40, 555–564 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Olsson, A. et al. Marked increase of β-amyloid(1–42) and amyloid precursor protein in ventricular cerebrospinal fluid after severe traumatic brain injury. J. Neurol. 251, 870–876 (2004).

    Article  CAS  PubMed  Google Scholar 

  72. Smith, D. H. et al. Brain trauma induces massive hippocampal neuron death linked to a surge in β-amyloid levels in mice overexpressing mutant amyloid precursor protein. Am. J. Pathol. 153, 1005–1010 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Chen, X. H. et al. Long-term accumulation of amyloid-β, β-secretase, presenilin-1, and caspase-3 in damaged axons following brain trauma. Am. J. Pathol. 165, 357–371 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Tran, H. T., Laferla, F. M., Holtzman, D. M. & Brody, D. L. Controlled cortical impact traumatic brain injury in 3xTg-AD mice causes acute intra-axonal amyloid-β accumulation and independently accelerates the development of tau abnormalities. J. Neurosci. 31, 9513–9525 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Cleary, J. P. et al. Natural oligomers of the amyloid-β protein specifically disrupt cognitive function. Nat. Neurosci. 8, 79–84 (2005).

    Article  CAS  PubMed  Google Scholar 

  76. Gotz, J., Chen, F., van Dorpe, J. & Nitsch, R. M. Formation of neurofibrillary tangles in P301l tau transgenic mice induced by Aβ42 fibrils. Science 293, 1491–1495 (2001).

    Article  CAS  PubMed  Google Scholar 

  77. Tran, H. T., Sanchez, L. & Brody, D. L. Inhibition of JNK by a peptide inhibitor reduces traumatic brain injury-induced tauopathy in transgenic mice. J. Neuropathol. Exp. Neurol. 71, 116–129 (2012).

    Article  CAS  PubMed  Google Scholar 

  78. Loane, D. J., Kumar, A., Stoica, B. A., Cabatbat, R. & Faden, A. I. Progressive neurodegeneration after experimental brain trauma: association with chronic microglial activation. J. Neuropathol. Exp. Neurol. 73, 14–29 (2014).

    Article  CAS  PubMed  Google Scholar 

  79. Smith, C. Review: the long-term consequences of microglial activation following acute traumatic brain injury. Neuropathol. Appl. Neurobiol. 39, 35–44 (2013).

    Article  CAS  PubMed  Google Scholar 

  80. Aguzzi, A., Barres, B. A. & Bennett, M. L. Microglia: scapegoat, saboteur, or something else? Science 339, 156–161 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Kumar, A., Alvarez-Croda, D. M., Stoica, B. A., Faden, A. I. & Loane, D. J. Microglial/macrophage polarization dynamics following traumatic brain injury. J. Neurotrauma 33, 1732–1750 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  82. Helmy, A., Carpenter, K. L., Menon, D. K., Pickard, J. D. & Hutchinson, P. J. The cytokine response to human traumatic brain injury: temporal profiles and evidence for cerebral parenchymal production. J. Cereb. Blood Flow Metab. 31, 658–670 (2011).

    Article  CAS  PubMed  Google Scholar 

  83. Helmy, A. et al. Recombinant human interleukin-1 receptor antagonist in severe traumatic brain injury: a phase II randomized control trial. J. Cereb. Blood Flow Metab. 34, 845–851 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Hall, E. D., Vaishnav, R. A. & Mustafa, A. G. Antioxidant therapies for traumatic brain injury. Neurotherapeutics 7, 51–61 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Ji, J. et al. Lipidomics identifies cardiolipin oxidation as a mitochondrial target for redox therapy of brain injury. Nat. Neurosci. 15, 1407–1413 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Loane, D. J. & Kumar, A. Microglia in the TBI brain: the good, the bad, and the dysregulated. Exp. Neurol. 275 (Pt 3), 316–327 (2016).

    Article  CAS  PubMed  Google Scholar 

  87. Davidson, J., Cusimano, M. D. & Bendena, W. G. Post-traumatic brain injury: genetic susceptibility to outcome. Neuroscientist 21, 424–441 (2015).

    Article  CAS  PubMed  Google Scholar 

  88. Huang, Y., Weisgraber, K. H., Mucke, L. & Mahley, R. W. Apolipoprotein E: diversity of cellular origins, structural and biophysical properties, and effects in Alzheimer's disease. J. Mol. Neurosci. 23, 189–204 (2004).

    Article  CAS  PubMed  Google Scholar 

  89. Poirier, J. Apolipoprotein E in animal models of CNS injury and in Alzheimer's disease. Trends Neurosci. 17, 525–530 (1994).

    Article  CAS  PubMed  Google Scholar 

  90. Verghese, P. B., Castellano, J. M. & Holtzman, D. M. Apolipoprotein E in Alzheimer's disease and other neurological disorders. Lancet Neurol. 10, 241–252 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Bennett, R. E. et al. Human apolipoprotein E4 worsens acute axonal pathology but not amyloid-β immunoreactivity after traumatic brain injury in 3xTG-AD mice. J. Neuropathol. Exp. Neurol. 72, 396–403 (2013).

    Article  CAS  PubMed  Google Scholar 

  92. Zeng, S. et al. Prognostic value of apolipoprotein E ε4 allele in patients with traumatic brain injury: a meta-analysis and meta-regression. Genet. Test. Mol. Biomarkers 18, 202–210 (2014).

    Article  CAS  PubMed  Google Scholar 

  93. Jordan, B. D. et al. Apolipoprotein E ε4 associated with chronic traumatic brain injury in boxing. JAMA 278, 136–140 (1997).

    Article  CAS  PubMed  Google Scholar 

  94. Kutner, K. C., Erlanger, D. M., Tsai, J., Jordan, B. & Relkin, N. R. Lower cognitive performance of older football players possessing apolipoprotein E ε4. Neurosurgery 47, 651–657; discussion 657–658 (2000).

    CAS  PubMed  Google Scholar 

  95. Kim, J., Yoon, H., Basak, J. & Kim, J. Apolipoprotein E in synaptic plasticity and Alzheimer's disease: potential cellular and molecular mechanisms. Mol. Cells 37, 767–776 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Teasdale, G. J. B., Assessment of coma and impaired consciousness. A practical scale. Lancet Neurol. 2, 81–84 (1974).

    Article  CAS  Google Scholar 

  97. Teasdale, G. et al. The Glasgow Coma Scale at 40 years: standing the test of time. Neurology 13, 844–854 (2014).

    PubMed  Google Scholar 

  98. Theadom, A. et al. Persistent problems 1 year after mild traumatic brain injury: a longitudinal population study in New Zealand. Br. J. Gen. Pract. 66, e16–e23 (2016).

    Article  PubMed  Google Scholar 

  99. Montenigro, P. H. et al. Clinical subtypes of chronic traumatic encephalopathy: literature review and proposed research diagnostic criteria for traumatic encephalopathy syndrome. Alzheimers Res. Ther. 6, 68 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  100. Schneider, H. J., Kreitschmann-Andermahr, I., Ghigo, E., Stalla, G. K. & Agha, A. Hypothalamopituitary dysfunction following traumatic brain injury and aneurysmal subarachnoid hemorrhage: a systematic review. JAMA 298, 1429–1438 (2007).

    Article  CAS  PubMed  Google Scholar 

  101. Krahulik, D., Zapletalova, J., Frysak, Z. & Vaverka, M. Dysfunction of hypothalamic–hypophysial axis after traumatic brain injury in adults. J. Neurosurg. 113, 581–584 (2010).

    Article  PubMed  Google Scholar 

  102. Hannon, M. J. et al. Acute glucocorticoid deficiency and diabetes insipidus are common after acute traumatic brain injury and predict mortality. J. Clin. Endocrinol. Metab. 98, 3229–3237 (2013).

    Article  CAS  PubMed  Google Scholar 

  103. Aimaretti, G. et al. Traumatic brain injury and subarachnoid haemorrhage are conditions at high risk for hypopituitarism: screening study at 3 months after the brain injury. Clin. Endocrinol. (Oxf.) 61, 320–326 (2004).

    Article  CAS  Google Scholar 

  104. Tanriverdi, F. & Kelestimur, F. Neuroendocrine disturbances after brain damage: an important and often undiagnosed disorder. J. Clin. Med. 4, 847–857 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Klose, M. et al. Prevalence of posttraumatic growth hormone deficiency is highly dependent on the diagnostic set-up: results from The Danish National Study on Posttraumatic Hypopituitarism. J. Clin. Endocrinol. Metab. 99, 101–110 (2014).

    Article  CAS  PubMed  Google Scholar 

  106. Kelly, D. F. et al. Prevalence of pituitary hormone dysfunction, metabolic syndrome, and impaired quality of life in retired professional football players: a prospective study. J. Neurotrauma 31, 1161–1171 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  107. Tanriverdi, F. et al. Kickboxing sport as a new cause of traumatic brain injury-mediated hypopituitarism. Clin. Endocrinol. (Oxf.) 66, 360–366 (2007).

    Article  Google Scholar 

  108. Wilkinson, C. W. et al. High prevalence of chronic pituitary and target-organ hormone abnormalities after blast-related mild traumatic brain injury. Front. Neurol. 3, 11 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  109. Tanriverdi, F. & Kelestimur, F. Pituitary dysfunction following traumatic brain injury: clinical perspectives. Neuropsychiatr. Dis. Treat. 11, 1835–1843 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Klose, M. & Feldt-Rasmussen, U. Hypopituitarism in traumatic brain injury — a critical note. J. Clin. Med. 4, 1480–1497 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Brody, D. L., Mac Donald, C. L. & Shimony, J. S. Current and future diagnostic tools for traumatic brain injury: CT, conventional MRI, and diffusion tensor imaging. Handb. Clin. Neurol. 127, 267–275 (2015).

    Article  PubMed  Google Scholar 

  112. Yuh, E. L. et al. Magnetic resonance imaging improves 3-month outcome prediction in mild traumatic brain injury. Ann. Neurol. 73, 224–235 (2013).

    Article  PubMed  Google Scholar 

  113. Hulkower, M. B., Poliak, D. B., Rosenbaum, S. B., Zimmerman, M. E. & Lipton, M. L. A decade of DTI in traumatic brain injury: 10 years and 100 articles later. AJNR Am. J. Neuroradiol. 34, 2064–2074 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Mac Donald, C. L., Dikranian, K., Bayly, P., Holtzman, D. & Brody, D. Diffusion tensor imaging reliably detects experimental traumatic axonal injury and indicates approximate time of injury. J. Neurosci. 27, 11869–11876 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Mac Donald, C. L. et al. Detection of blast-related traumatic brain injury in U. S. military personnel. N. Engl. J. Med. 364, 2091–2100 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Niogi, S. N. et al. Structural dissociation of attentional control and memory in adults with and without mild traumatic brain injury. Brain 131, 3209–3221 (2008).

    Article  PubMed  Google Scholar 

  117. Magnoni, S. et al. Quantitative assessments of traumatic axonal injury in human brain: concordance of microdialysis and advanced MRI. Brain 138, 2263–2277 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  118. Nieuwenhuys, R., Voogd, J. & van Huijzen, C. The Human Central Nervous System (Springer, 2008).

    Book  Google Scholar 

  119. Grossman, E. J. et al. Thalamus and cognitive impairment in mild traumatic brain injury: a diffusional kurtosis imaging study. J. Neurotrauma 29, 2318–2327 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  120. Morey, R. A. et al. Effects of chronic mild traumatic brain injury on white matter integrity in Iraq and Afghanistan war veterans. Hum. Brain Mapp. 34, 2986–2999 (2013).

    Article  PubMed  Google Scholar 

  121. Presson, N. et al. An exploratory analysis linking neuropsychological testing to quantification of tractography using high definition fiber tracking (HDFT) in military TBI. Brain Imaging Behav. 9, 484–499 (2015).

    Article  PubMed  Google Scholar 

  122. Wang, X. et al. Diffusion basis spectrum imaging detects and distinguishes coexisting subclinical inflammation, demyelination and axonal injury in experimental autoimmune encephalomyelitis mice. NMR Biomed. 27, 843–852 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Maudsley, A. et al. Distributions of MR diffusion and spectroscopy measures with traumatic brain injury. J. Neurotrauma 32, 1056–1063 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  124. Vagnozzi, R. et al. Assessment of metabolic brain damage and recovery following mild traumatic brain injury: a multicentre, proton magnetic resonance spectroscopic study in concussed patients. Brain 133, 3232–3242 (2010).

    Article  PubMed  Google Scholar 

  125. Irimia, A. & Van Horn, J. D. Functional neuroimaging of traumatic brain injury: advances and clinical utility. Neuropsychiatr. Dis. Treat. 11, 2355–2365 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  126. Huang, M. X. et al. Integrated imaging approach with MEG and DTI to detect mild traumatic brain injury in military and civilian patients. J. Neurotrauma 26, 1213–1226 (2009).

    Article  CAS  PubMed  Google Scholar 

  127. Tarapore, P. E. et al. Resting state magnetoencephalography functional connectivity in traumatic brain injury. J. Neurosurg. 118, 1306–1316 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  128. Klunk, W. E. Amyloid imaging as a biomarker for cerebral β-amyloidosis and risk prediction for Alzheimer dementia. Neurobiol. Aging 32, S20–S36 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Hong, Y. T. et al. Amyloid imaging with carbon 11-labeled Pittsburgh compound B for traumatic brain injury. JAMA Neurol. 71, 23–31 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  130. Scott, G. et al. Amyloid pathology and axonal injury after brain trauma. Neurology 86, 821–828 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Scholl, M., Damian, A. & Engler, H. Fluorodeoxyglucose PET in neurology and psychiatry. PET Clin. 9, 371–390 (2014).

    Article  PubMed  Google Scholar 

  132. Byrnes, K. R. et al. FDG-PET imaging in mild traumatic brain injury: a critical review. Front. Neuroenerg. 5, 13 (2014).

    Article  Google Scholar 

  133. Okamura, N. et al. Advances in the development of tau PET radiotracers and their clinical applications. Ageing Res. Rev. 30, 107–113 (2016).

    Article  CAS  PubMed  Google Scholar 

  134. Villemagne, V. L., Fodero-Tavoletti, M. T., Masters, C. L. & Rowe, C. C. Tau imaging: early progress and future directions. Lancet Neurol. 14, 114–124 (2015).

    Article  PubMed  Google Scholar 

  135. Blennow, K., Hampel, H., Weiner, M. & Zetterberg, H. Cerebrospinal fluid and plasma biomarkers in Alzheimer disease. Nat. Rev. Neurol. 6, 131–144 (2010).

    Article  CAS  PubMed  Google Scholar 

  136. Zetterberg, H., Smith, D. H. & Blennow, K. Biomarkers of mild traumatic brain injury in cerebrospinal fluid and blood. Nat. Rev. Neurol. 9, 201–210 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Ost, M. et al. Initial CSF total tau correlates with 1-year outcome in patients with traumatic brain injury. Neurology 67, 1600–1604 (2006).

    Article  CAS  PubMed  Google Scholar 

  138. Rubenstein, R. et al. A novel, ultrasensitive assay for tau: potential for assessing traumatic brain injury in tissues and biofluids. J. Neurotrauma 32, 342–352 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  139. Zetterberg, H. et al. Neurochemical aftermath of amateur boxing. Arch. Neurol. 63, 1277–1280 (2006). This is the first study that shows direct neurochemical evidence of axonal damage after concussion in boxers, by increased levels of the axonal protein NF-L in CSF samples after a bout, with higher levels in boxers with severe head impacts and with normalization after rest.

    Article  PubMed  Google Scholar 

  140. Neselius, S. et al. CSF-biomarkers in Olympic boxing: diagnosis and effects of repetitive head trauma. PLoS ONE 7, e33606 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Raby, C. A. et al. Traumatic brain injury increases β-amyloid peptide 1–42 in cerebrospinal fluid. J. Neurochem. 71, 2505–2509 (1998).

    Article  CAS  PubMed  Google Scholar 

  142. Marklund, N. et al. Monitoring of β-amyloid dynamics after human traumatic brain injury. J. Neurotrauma 31, 42–55 (2014).

    Article  PubMed  Google Scholar 

  143. Olsson, B., Zetterberg, H., Hampel, H. & Blennow, K. Biomarker-based dissection of neurodegenerative diseases. Prog. Neurobiol. 95, 520–534 (2011).

    Article  CAS  PubMed  Google Scholar 

  144. Bohmer, A. E. et al. Neuron-specific enolase, S100B, and glial fibrillary acidic protein levels as outcome predictors in patients with severe traumatic brain injury. Neurosurgery 68, 1624–1630; discussion 1630–1631 (2011).

    Article  PubMed  Google Scholar 

  145. Ross, S. A., Cunningham, R. T., Johnston, C. F. & Rowlands, B. J. Neuron-specific enolase as an aid to outcome prediction in head injury. Br. J. Neurosurg. 10, 471–476 (1996).

    Article  CAS  PubMed  Google Scholar 

  146. Ramont, L. et al. Effects of hemolysis and storage condition on neuron-specific enolase (NSE) in cerebrospinal fluid and serum: implications in clinical practice. Clin. Chem. Lab. Med. 43, 1215–1217 (2005).

    Article  CAS  PubMed  Google Scholar 

  147. Riederer, B. M., Zagon, I. S. & Goodman, S. R. Brain spectrin(240/235) and brain spectrin(240/235E): two distinct spectrin subtypes with different locations within mammalian neural cells. J. Cell Biol. 102, 2088–2097 (1986).

    Article  CAS  PubMed  Google Scholar 

  148. Pike, B. R. et al. Accumulation of non-erythroid αII-spectrin and calpain-cleaved αII-spectrin breakdown products in cerebrospinal fluid after traumatic brain injury in rats. J. Neurochem. 78, 1297–1306 (2001).

    Article  CAS  PubMed  Google Scholar 

  149. Pineda, J. A. et al. Clinical significance of αII-spectrin breakdown products in cerebrospinal fluid after severe traumatic brain injury. J. Neurotrauma 24, 354–366 (2007).

    Article  PubMed  Google Scholar 

  150. Mondello, S. et al. αII-Spectrin breakdown products (SBDPs): diagnosis and outcome in severe traumatic brain injury patients. J. Neurotrauma 27, 1203–1213 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  151. Czeiter, E. et al. Brain injury biomarkers may improve the predictive power of the IMPACT outcome calculator. J. Neurotrauma 29, 1770–1778 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  152. Wilkinson, K. D. et al. The neuron-specific protein PGP 9.5 is a ubiquitin carboxyl-terminal hydrolase. Science 246, 670–673 (1989).

    Article  CAS  PubMed  Google Scholar 

  153. Csuka, E. et al. IL-10 levels in cerebrospinal fluid and serum of patients with severe traumatic brain injury: relationship to IL-6, TNF-α, TGF-β1 and blood–brain barrier function. J. Neuroimmunol. 101, 211–221 (1999).

    Article  CAS  PubMed  Google Scholar 

  154. Kossmann, T. et al. Intrathecal and serum interleukin-6 and the acute-phase response in patients with severe traumatic brain injuries. Shock 4, 311–317 (1995).

    Article  CAS  PubMed  Google Scholar 

  155. Blennow, K. et al. No neurochemical evidence of brain injury after blast overpressure by repeated explosions or firing heavy weapons. Acta Neurol. Scand. 123, 245–251 (2011).

    Article  CAS  PubMed  Google Scholar 

  156. Buttram, S. D. et al. Multiplex assessment of cytokine and chemokine levels in cerebrospinal fluid following severe pediatric traumatic brain injury: effects of moderate hypothermia. J. Neurotrauma 24, 1707–1717 (2007).

    Article  PubMed  Google Scholar 

  157. Kumar, R. G. et al. Acute CSF interleukin-6 trajectories after TBI: associations with neuroinflammation, polytrauma, and outcome. Brain Behav. Immun. 45, 253–262 (2015).

    Article  CAS  PubMed  Google Scholar 

  158. Randall, J. et al. Tau proteins in serum predict neurological outcome after hypoxic brain injury from cardiac arrest: results of a pilot study. Resuscitation 84, 351–356 (2013).

    Article  CAS  PubMed  Google Scholar 

  159. Gisslén, M. et al. Plasma concentration of the neurofilament light protein (NFL) is a biomarker of CNS injury in HIV infection: a cross-sectional study. EBioMedicine 3, 135–140 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  160. Kuhle, J. et al. Comparison of three analytical platforms for quantification of the neurofilament light chain in blood samples: ELISA, electrochemiluminescence immunoassay and Simoa. Clin. Chem. Lab. Med. 54, 1655–1661 (2016).

    Article  CAS  PubMed  Google Scholar 

  161. Zetterberg, H. et al. Plasma tau levels in Alzheimer's disease. Alzheimers Res. Ther. 5, 9 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Shahim, P. et al. Blood biomarkers for brain injury in concussed professional ice hockey players. JAMA Neurol. 71, 684–692 (2014).

    Article  PubMed  Google Scholar 

  163. Oliver, J. et al. Serum neurofilament light in American football athletes over the course of a season. J. Neurotrauma 33, 1784–1789 (2016).

    Article  PubMed  Google Scholar 

  164. Ljungqvist, J., Zetterberg, H., Mitsis, M., Blennow, K. & Skoglund, T. Serum neurofilament light protein as a marker for diffuse axonal injury — results from a case series study. J. Neurotrauma 13 Oct 2016 [epub ahead of print].

  165. Buki, A., Siman, R., Trojanowski, J. Q. & Povlishock, J. T. The role of calpain-mediated spectrin proteolysis in traumatically induced axonal injury. J. Neuropathol. Exp. Neurol. 58, 365–375 (1999).

    Article  CAS  PubMed  Google Scholar 

  166. Siman, R. et al. A panel of neuron-enriched proteins as markers for traumatic brain injury in humans. J. Neurotrauma 26, 1867–1877 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  167. Siman, R. et al. Evidence that the blood biomarker SNTF predicts brain imaging changes and persistent cognitive dysfunction in mild TBI patients. Front. Neurol. 4, 190 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  168. Siman, R. et al. Serum SNTF increases in concussed professional ice hockey players and relates to the severity of post-concussion symptoms. J. Neurotrauma 32, 1294–1300 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  169. Unden, J., Ingebrigtsen, T., Romner, B. & Scandinavian Neurotrauma Committee (SNC). Scandinavian guidelines for initial management of minimal, mild and moderate head injuries in adults: an evidence and consensus-based update. BMC Med. 11, 50 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  170. Unden, L., Calcagnile, O., Unden, J., Reinstrup, P. & Bazarian, J. Validation of the Scandinavian guidelines for initial management of minimal, mild and moderate traumatic brain injury in adults. BMC Med. 13, 292 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  171. Metting, Z., Wilczak, N., Rodiger, L. A., Schaaf, J. M. & van der Naalt, J. GFAP and S100B in the acute phase of mild traumatic brain injury. Neurology 78, 1428–1433 (2012).

    Article  CAS  PubMed  Google Scholar 

  172. Diaz-Arrastia, R. et al. Acute biomarkers of traumatic brain injury: relationship between plasma levels of ubiquitin C-terminal hydrolase-L1 and glial fibrillary acidic protein. J. Neurotrauma 31, 19–25 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  173. Nylen, K. et al. Increased serum-GFAP in patients with severe traumatic brain injury is related to outcome. J. Neurol. Sci. 240, 85–91 (2006).

    Article  CAS  PubMed  Google Scholar 

  174. Okonkwo, D. O. et al. GFAP-BDP as an acute diagnostic marker in traumatic brain injury: results from the prospective transforming research and clinical knowledge in traumatic brain injury study. J. Neurotrauma 30, 1490–1497 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  175. Papa, L. et al. Time course and diagnostic accuracy of glial and neuronal blood biomarkers GFAP and UCH-L1 in a large cohort of trauma patients with and without mild traumatic brain injury. JAMA Neurol. 73, 551–560 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  176. Welch, R. D. et al. Ability of serum glial fibrillary acidic protein, ubiquitin C-terminal hydrolase-L1, and S100B to differentiate normal and abnormal head computed tomography findings in patients with suspected mild or moderate traumatic brain injury. J. Neurotrauma 33, 203–214 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  177. Jagoda, A. S. et al. Clinical policy: neuroimaging and decision making in mild traumatic brain injury in the acute setting. Ann. Emerg. Med. 52, 714–748 (2008).

    Article  PubMed  Google Scholar 

  178. Levin, H. S. & Diaz-Arrastia, R. R. Diagnosis, prognosis, and clinical management of mild traumatic brain injury. Lancet Neurol. 14, 506–517 (2015).

    Article  PubMed  Google Scholar 

  179. Chauny, J. M. et al. Risk of delayed intracranial hemorrhage in anticoagulated patients with mild traumatic brain injury: systematic review and meta-analysis. J. Emerg. Med. 51, 519–528 (2016).

    Article  PubMed  Google Scholar 

  180. Thomas, D., Apps, J. N., Hoffmann, R. G., McCrea, M. & Hammeke, T. Benefits of strict rest after acute concussion: a randomized controlled trial. Pediatrics 135, 213–223 (2015).

    Article  PubMed  Google Scholar 

  181. Leddy, J. J. et al. Exercise treatment for postconcussion syndrome: a pilot study of changes in functional magnetic resonance imaging activation, physiology, and symptoms. J. Head Trauma Rehabil. 28, 241–249 (2013).

    Article  PubMed  Google Scholar 

  182. Giza, C. C. & Hovda, D. A. The new neurometabolic cascade of concussion. Neurosurgery 75, S24–S33 (2014).

    Article  PubMed  Google Scholar 

  183. Guskiewicz, K. M. et al. Cumulative effects associated with recurrent concussion in collegiate football players: the NCAA Concussion Study. JAMA 290, 2549–2555 (2003). This is a study on the cumulative effects of repeated concussion in American football players.

    Article  CAS  PubMed  Google Scholar 

  184. Slobounov, S., Slobounov, E., Sebastianelli, W., Cao, C. & Newell, K. Differential rate of recovery in athletes after first and second concussion episodes. Neurosurgery 61, 338–344; discussion 344 (2007).

    Article  PubMed  Google Scholar 

  185. Montenigro, P. H. et al. Cumulative head impact exposure predicts later-life depression, apathy, executive dysfunction, and cognitive impairment informer high school and college football players. J. Neurotrauma 30 Mar 2016 [epub ahead of print].

  186. Willemse-van Son, A. H., Ribbers, G. M., Verhagen, A. P. & Stam, H. J. Prognostic factors of long-term functioning and productivity after traumatic brain injury: a systematic review of prospective cohort studies. Clin. Rehabil. 21, 1024–1037 (2007).

    Article  PubMed  Google Scholar 

  187. Grauwmeijer, E., Heijenbrok-Kal, M. H. & Ribbers, G. M. Health-related quality of life 3 years after moderate to severe traumatic brain injury: a prospective cohort study. Arch. Phys. Med. Rehabil. 95, 1268–1276 (2014).

    Article  PubMed  Google Scholar 

  188. Willemse-van Son, A. H., Ribbers, G. M., Hop, W. C. & Stam, H. J. Community integration following moderate to severe traumatic brain injury: a longitudinal investigation. J. Rehabil. Med. 41, 521–527 (2009).

    Article  PubMed  Google Scholar 

  189. Wielenga-Boiten, J. E., Heijenbrok-Kal, M. H. & Ribbers, G. M. The relationship of health locus of control and health-related quality of life in the chronic phase after traumatic brain injury. J. Head Trauma Rehabil. 30, 424–431 (2015).

    Article  PubMed  Google Scholar 

  190. Andelic, N. et al. Trajectories of physical health in the first 5 years after traumatic brain injury. J. Neurol. 262, 523–531 (2015).

    Article  PubMed  Google Scholar 

  191. DiTommaso, C. et al. Medication usage patterns for headache treatment after mild traumatic brain injury. Headache 54, 511–519 (2014).

    Article  PubMed  Google Scholar 

  192. Bombardier, C. H. et al. Rates of major depressive disorder and clinical outcomes following traumatic brain injury. JAMA 303, 1938–1945 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. DeKosky, S. T., Blennow, K., Ikonomovic, M. D. & Gandy, S. Acute and chronic traumatic encephalopathies: pathogenesis and biomarkers. Nat. Rev. Neurol. 9, 192–200 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Clavaguera, F., Goedert, M. & Tolnay, M. [Induction and spreading of tau pathology in a mouse model of Alzheimer's disease]. Med. Sci. (Paris) 26, 121–124 (in French) (2010).

    Article  Google Scholar 

  195. Ryu, J. et al. The problem of axonal injury in the brains of veterans with histories of blast exposure. Acta Neuropathol. Commun. 2, 153 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  196. Shively, S. B. et al. Characterisation of interface astroglial scarring in the human brain after blast exposure: a post-mortem case series. Lancet Neurol. 15, 944–953 (2016).

    Article  PubMed  Google Scholar 

  197. Johnson, V. E., Stewart, W. & Smith, D. H. Traumatic brain injury and amyloid-β pathology: a link to Alzheimer's disease? Nat. Rev. Neurosci. 11, 361–370 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  198. Sharp, D. J. & Jenkins, P. O. Concussion is confusing us all. Pract. Neurol. 15, 172–186 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  199. Ingebrigtsen, T. et al. The clinical value of serum S-100 protein measurements in minor head injury: a Scandinavian multicentre study. Brain Inj. 14, 1047–1055 (2000).

    Article  CAS  PubMed  Google Scholar 

  200. Haimoto, H., Hosoda, S. & Kato, K. Differential distribution of immunoreactive S100-alpha and S100-beta proteins in normal nonnervous human tissues. Lab. Invest. 57, 489–498 (1987).

    CAS  PubMed  Google Scholar 

  201. Mez, J., Solomon, T. M., Daneshvar, D. H., Stein, T. D. & McKee, A. C. Pathologically confirmed chronic traumatic encephalopathy in a 25-year-old former college football player. JAMA Neurol. 73, 353–355 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  202. Blennow, K., Mattsson, N., Scholl, M., Hansson, O. & Zetterberg, H. Amyloid biomarkers in Alzheimer's disease. Trends Pharmacol. Sci. 36, 297–309 (2015).

    Article  CAS  PubMed  Google Scholar 

  203. Eisenmenger, L. B. et al. Advances in PET imaging of degenerative, cerebrovascular, and traumatic causes of dementia. Semin. Nucl. Med. 46, 57–87 (2016).

    Article  PubMed  Google Scholar 

  204. Giza, C. C. et al. Summary of evidence-based guideline update: evaluation and management of concussion in sports: report of the Guideline Development Subcommittee of the American Academy of Neurology. Neurology 80, 2250–2257 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  205. WMA Council Session. WMA statement on boxing. WMAhttp://www.wma.net/en/30publications/10policies/b6/ (2005).

  206. Maas, A. I., Roozenbeek, B. & Manley, G. T. Clinical trials in traumatic brain injury: past experience and current developments. Neurotherapeutics 7, 115–126 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  207. Andrews, P. J. et al. Hypothermia for intracranial hypertension after traumatic brain injury. N. Engl. J. Med. 373, 2403–2412 (2015).

    Article  CAS  PubMed  Google Scholar 

  208. Nichol, A. et al. Erythropoietin in traumatic brain injury (EPO-TBI): a double-blind randomised controlled trial. Lancet 386, 2499–2506 (2015).

    Article  CAS  PubMed  Google Scholar 

  209. Wright, D. W. et al. Very early administration of progesterone for acute traumatic brain injury. N. Engl. J. Med. 371, 2457–2466 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  210. Kochanek, P. M. et al. Operation brain trauma therapy: approach to modeling, therapy evaluation, drug selection, and biomarker assessments for a multicenter pre-clinical drug screening consortium for acute therapies in severe traumatic brain injury. J. Neurotrauma 33, 513–522 (2016).

    Article  PubMed  Google Scholar 

  211. Hasan, K. M. et al. Serial atlas-based diffusion tensor imaging study of uncomplicated mild traumatic brain injury in adults. J. Neurotrauma 31, 466–475 (2014).

    Article  PubMed  Google Scholar 

  212. Walcott, B. P., Kahle, K. T. & Simard, J. M. Novel treatment targets for cerebral edema. Neurotherapeutics 9, 65–72 (2012).

    Article  PubMed  Google Scholar 

  213. Laird, M. D. et al. High mobility group box protein-1 promotes cerebral edema after traumatic brain injury via activation of Toll-like receptor 4. Glia 62, 26–38 (2014).

    Article  PubMed  Google Scholar 

  214. Titus, D. J., Furones, C., Atkins, C. M. & Dietrich, W. D. Emergence of cognitive deficits after mild traumatic brain injury due to hyperthermia. Exp. Neurol. 263, 254–262 (2015).

    Article  PubMed  Google Scholar 

  215. Kondo, A. et al. Antibody against early driver of neurodegeneration cis P-tau blocks brain injury and tauopathy. Nature 523, 431–436 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  216. Liao, G. P. et al. Autologous bone marrow mononuclear cells reduce therapeutic intensity for severe traumatic brain injury in children. Pediatr. Crit. Care Med. 16, 245–255 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  217. Weiner, M. W. et al. Impact of the Alzheimer's Disease Neuroimaging Initiative, 2004 to 2014. Alzheimers Dement. 11, 865–884 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  218. Mez, J. et al. Assessing clinicopathological correlation in chronic traumatic encephalopathy: rationale and methods for the UNITE study. Alzheimers Res. Ther. 7, 62 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  219. Meehan, W. P. 3rd, Mannnix, R., Monuteaux, M. C., Stein, C. J. & Bachur, R. G. Early symptom burden predicts recovery after sport-related concussion. Neurology 83, 2204–2210 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  220. Neselius, S., Brisby, H., Granholm, F., Zetterberg, H. & Blennow, K. Monitoring concussion in a knocked-out boxer by CSF biomarker analysis. Knee Surg. Sports Traumatol. Arthrosc. 23, 2536–2539 (2015).

    Article  PubMed  Google Scholar 

  221. Jordan, B. D. The clinical spectrum of sport-related traumatic brain injury. Nat. Rev. Neurol. 9, 222–230 (2013).

    Article  CAS  PubMed  Google Scholar 

  222. Arfanakis, K. et al. Diffusion tensor MR imaging in diffuse axonal injury. AJNR Am. J. Neuroradiol. 23, 794–802 (2002).

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

K.B. holds the Torsten Söderberg Professorship in Medicine at the Royal Swedish Academy of Sciences. P.M.K. is supported by the US Department of Defense (grant WH81XWH-14-2-0018). H.L. is supported by the US National Institute of Neurological Disorders and Stroke (grant R21 NS086714-01). A.M. is supported by the US Department of Veterans Affairs, the Veterans Affairs Biorepository (program CSP 501), the National Institute of Neurological Disorders and Stroke (grant 1U01NS086659-01), the US National Institute of Ageing Boston University Alzheimer disease Disease Center (grant P30AG13846; supplement 0572063345–5), the Department of Defense (W81XWH-13-2-0064, CENC award WXWH-13-2-0095 and VA I01 RX 002170) and the National Operating Committee on Standards for Athletic Equipment and the Concussion Legacy Foundation. This work was also supported by unrestricted gifts from the Andlinger Foundation, the World Wrestling Entertainment and the National Football League.

Author information

Authors and Affiliations

Authors

Contributions

Introduction (K.B.); Epidemiology (K.Y.); Mechanisms/pathophysiology (K.B., D.L.B., A.M. and H.Z.); Diagnosis, screening and prevention (K.B., H.L. and H.Z.); Management (P.M.K. and H.L.); Quality of life (G.M.R.); Outlook (K.B. and P.M.K.); Overview of the Primer (K.B.).

Corresponding author

Correspondence to Kaj Blennow.

Ethics declarations

Competing interests

K.B. has served on advisory boards for IBL International and Roche Diagnostics and provided consultation to Fujirebio Europe. K.B. and H.Z. are cofounders of Brain Biomarker Solutions. P.M.K., D.L.B., H.L., A.M., G.M.R. and K.Y. declare no competing interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Blennow, K., Brody, D., Kochanek, P. et al. Traumatic brain injuries. Nat Rev Dis Primers 2, 16084 (2016). https://doi.org/10.1038/nrdp.2016.84

Download citation

  • Published:

  • DOI: https://doi.org/10.1038/nrdp.2016.84

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing