Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Primer
  • Published:

Neuroblastoma

Abstract

Neuroblastoma is the most common extracranial solid tumour occurring in childhood and has a diverse clinical presentation and course depending on the tumour biology. Unique features of these neuroendocrine tumours are the early age of onset, the high frequency of metastatic disease at diagnosis and the tendency for spontaneous regression of tumours in infancy. The most malignant tumours have amplification of the MYCN oncogene (encoding a transcription factor), which is usually associated with poor survival, even in localized disease. Although transgenic mouse models have shown that MYCN overexpression can be a tumour-initiating factor, many other cooperating genes and tumour suppressor genes are still under investigation and might also have a role in tumour development. Segmental chromosome alterations are frequent in neuroblastoma and are associated with worse outcome. The rare familial neuroblastomas are usually associated with germline mutations in ALK, which is mutated in 10–15% of primary tumours, and provides a potential therapeutic target. Risk-stratified therapy has facilitated the reduction of therapy for children with low-risk and intermediate-risk disease. Advances in therapy for patients with high-risk disease include intensive induction chemotherapy and myeloablative chemotherapy, followed by the treatment of minimal residual disease using differentiation therapy and immunotherapy; these have improved 5-year overall survival to 50%. Currently, new approaches targeting the noradrenaline transporter, genetic pathways and the tumour microenvironment hold promise for further improvements in survival and long-term quality of life.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Genetic predisposition to neuroblastoma.
Figure 2: The neuroblastoma stem cell.
Figure 3: MYCN-amplified neuroblastoma initiation.
Figure 4: Neuroblastoma progression and the tumour microenvironment.
Figure 5: mIBG and CT imaging for the diagnosis of neuroblastoma.
Figure 6: Pathology of neuroblastoma and ganglioneuroblastoma.
Figure 7: Overall treatment approach for high-risk neuroblastoma.

Similar content being viewed by others

References

  1. Stiller, C. A. & Parkin, D. M. International variations in the incidence of neuroblastoma. J. Int. Cancer 52, 538–543 (1992).

    Article  CAS  Google Scholar 

  2. London, W. B. et al. Evidence for an age cutoff greater than 365 days for neuroblastoma risk group stratification in the Children's Oncology Group. J. Clin. Oncol. 23, 6459–6465 (2005).

    Article  CAS  PubMed  Google Scholar 

  3. Thompson, D. et al. Identification of patient subgroups with markedly disparate rates of MYCN amplification in neuroblastoma: a report from the International Neuroblastoma Risk Group project. Cancer 122, 935–945 (2016).

    Article  PubMed  Google Scholar 

  4. Schleiermacher, G. et al. Accumulation of segmental alterations determines progression in neuroblastoma. J. Clin. Oncol. 28, 3122–3130 (2010). Comparison at diagnosis and relapse of DNA ploidy and array comparative genomic hybridization for segmental chromosomal aberrations in 394 patients with neuroblastoma showed that further changes evolve at recurrence, even in patients treated with surgery alone, suggesting that patients should be re-evaluated at relapse.

    Article  PubMed  Google Scholar 

  5. Pugh, T. J. et al. The genetic landscape of high-risk neuroblastoma. Nat. Genet. 45, 279–284 (2013). This comprehensive study using exome, genome and transcriptome analysis identified some important germline and somatic mutations in 240 neuroblastomas, as well as the relatively low frequency of somatic mutations at diagnosis.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. George, R. E. et al. Activating mutations in ALK provide a therapeutic target in neuroblastoma. Nature 455, 975–978 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Mosse, Y. P. et al. Identification of ALK as a major familial neuroblastoma predisposition gene. Nature 455, 930–935 (2008). Germline mutations in ALK account for the majority of familial neuroblastoma and somatic mutations are also found in 12% of sporadic neuroblastoma tumours, suggesting ALK as a new therapeutic target.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Kratz, C. P., Rapisuwon, S., Reed, H., Hasle, H. & Rosenberg, P. S. Cancer in Noonan, Costello, cardiofaciocutaneous and LEOPARD syndromes. Am. J. Med. Genet. C Semin. Med. Genet. 157C, 83–89 (2011).

    Article  PubMed  Google Scholar 

  9. Park, J. R. et al. Children's Oncology Group's 2013 blueprint for research: neuroblastoma. Pediatr. Blood Cancer 60, 985–993 (2013).

    Article  PubMed  Google Scholar 

  10. Cooper, R. et al. Opsoclonus-myoclonus-ataxia syndrome in neuroblastoma: histopathologic features — a report from the Children's Cancer Group. Med. Pediatr. Oncol. 36, 623–629 (2001).

    Article  CAS  PubMed  Google Scholar 

  11. Rudnick, E. et al. Opsoclonus-myoclonus-ataxia syndrome in neuroblastoma: clinical outcome and antineuronal antibodies-a report from the Children's Cancer Group Study. Med. Pediatr. Oncol. 36, 612–622 (2001).

    Article  CAS  PubMed  Google Scholar 

  12. Cohn, S. L. et al. The International Neuroblastoma Risk Group (INRG) classification system: an INRG Task Force report. J. Clin. Oncol. 27, 289–297 (2009). This is a comprehensive regression tree analysis of 13 potential prognostic factors on an international cohort of 8,800 patients with neuroblastoma, establishing the current basis of international risk stratification.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Matthay, K. K. et al. Treatment of high-risk neuroblastoma with intensive chemotherapy, radiotherapy, autologous bone marrow transplantation, and 13-cis- retinoic acid. N. Engl. J. Med. 341, 1165–1173 (1999). This seminal report of a multicentre randomized controlled study showed the significant improvement in EFS for children treated with myeloablative chemoradiotherapy and purged AHSCT compared with standard-dose chemotherapy, and for subsequent treatment with isotretinoin maintenance compared with no further therapy, with current incorporation into standard care for high-risk neuroblastoma.

    Article  CAS  PubMed  Google Scholar 

  14. Baker, D. L. et al. Outcome after reduced chemotherapy for intermediate-risk neuroblastoma. N. Engl. J. Med. 363, 1313–1323 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Strother, D. R. et al. Outcome after surgery alone or with restricted use of chemotherapy for patients with low-risk neuroblastoma: results of Children's Oncology Group study P9641. J. Clin. Oncol. 30, 1842–1848 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Mosse, Y. P. et al. Neuroblastoma in older children, adolescents and young adults: a report from the International Neuroblastoma Risk Group project. Pediatr. Blood Cancer 61, 627–635 (2013).

    Article  PubMed  Google Scholar 

  17. Maris, J. M. Recent advances in neuroblastoma. N. Engl. J. Med. 362, 2202–2211 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Schilling, F. H. et al. Neuroblastoma screening at one year of age. N. Engl. J. Med. 346, 1047–1053 (2002).

    Article  PubMed  Google Scholar 

  19. Woods, W. G. et al. A population-based study of the usefulness of screening for neuroblastoma. Lancet 348, 1682–1687 (1996).

    Article  CAS  PubMed  Google Scholar 

  20. Gamazon, E. R. et al. Trans-population analysis of genetic mechanisms of ethnic disparities in neuroblastoma survival. J. Natl Cancer Inst. 105, 302–309 (2013).

    Article  CAS  PubMed  Google Scholar 

  21. Ward, E., DeSantis, C., Robbins, A., Kohler, B. & Jemal, A. Childhood and adolescent cancer statistics, 2014. CA Cancer J. Clin. 64, 83–103 (2014).

    Article  PubMed  Google Scholar 

  22. Bluhm, E. C., Daniels, J., Pollock, B. H., Olshan, A. F. & Children's Oncology Group. Maternal use of recreational drugs and neuroblastoma in offspring: a report from the Children's Oncology Group (United States). Cancer Causes Control 17, 663–669 (2006).

    Article  PubMed  Google Scholar 

  23. McCall, E. E., Olshan, A. F. & Daniels, J. L. Maternal hair dye use and risk of neuroblastoma in offspring. Cancer Causes Control 16, 743–748 (2005).

    Article  PubMed  Google Scholar 

  24. Knudson, A. G. J. & Strong, L. C. Mutation and cancer: neuroblastoma and pheochromocytoma. Am. J. Hum. Genet. 24, 514–522 (1972).

    PubMed  PubMed Central  Google Scholar 

  25. Janoueix-Lerosey, I. et al. Somatic and germline activating mutations of the ALK kinase receptor in neuroblastoma. Nature 455, 967–970 (2008).

    Article  CAS  PubMed  Google Scholar 

  26. Trochet, D. et al. Germline mutations of the paired-like homeobox 2B (PHOX2B) gene in neuroblastoma. Am. J. Hum. Genet. 74, 761–764 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Amiel, J. et al. Polyalanine expansion and frameshift mutations of the paired-like homeobox gene PHOX2B in congenital central hypoventilation syndrome. Nat. Genet. 33, 459–461 (2003).

    Article  CAS  PubMed  Google Scholar 

  28. Manolio, T. A. et al. Finding the missing heritability of complex diseases. Nature 461, 747–753 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Bosse, K. R. & Maris, J. M. Advances in the translational genomics of neuroblastoma: from improving risk stratification and revealing novel biology to identifying actionable genomic alterations. Cancer 122, 20–33 (2016).

    Article  CAS  PubMed  Google Scholar 

  30. Oldridge, D. A. et al. Genetic predisposition to neuroblastoma mediated by a LMO1 super-enhancer polymorphism. Nature 528, 418–421 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. L'Abbate, A. et al. Genomic organization and evolution of double minutes/homogeneously staining regions with MYC amplification in human cancer. Nucleic Acids Res. 42, 9131–9145 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Garner, E. F. & Beierle, E. A. Cancer stem cells and their interaction with the tumor microenvironment in neuroblastoma. Cancers (Basel) 8 5 (2015).

    Article  CAS  Google Scholar 

  33. Huang, M. & Weiss, W. A. Neuroblastoma and MYCN. Cold Spring Harb. Perspect. Med. 3, a014415 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Moreau, L. A. et al. Does MYCN amplification manifested as homogeneously staining regions at diagnosis predict a worse outcome in children with neuroblastoma? A Children's Oncology Group study. Clin. Cancer Res. 12, 5693–5697 (2006).

    Article  CAS  PubMed  Google Scholar 

  35. Cox, D., Yuncken, C. & Spriggs, A. I. Minute chromatin bodies in malignant tumours of childhood. Lancet 1, 55–58 (1965).

    Article  CAS  PubMed  Google Scholar 

  36. Kohl, N. E. et al. Transposition and amplification of oncogene-related sequences in human neuroblastomas. Cell 35, 359–367 (1983).

    Article  CAS  PubMed  Google Scholar 

  37. Schwab, M., Varmus, H. E. & Bishop, J. M. Human N-myc gene contributes to neoplastic transformation of mammalian cells in culture. Nature 316, 160–162 (1985). Human MYCN, recently identified as amplified in neuroblastoma cell lines and shown to be amplified in human tumours, was shown to transform normal rat embryo cells into tumours, suggesting the importance of this gene in the pathogenesis of neuroblastoma.

    Article  CAS  PubMed  Google Scholar 

  38. Brodeur, G. M., Seeger, R. C., Schwab, M., Varmus, H. E. & Bishop, J. M. Amplification of N-myc in untreated human neuroblastomas correlates with advanced disease stage. Science 1121–1124 (1984).

  39. Seeger, R. C. et al. Association of multiple copies of the N-myc oncogene with rapid progression of neuroblastomas. N. Engl. J. Med. 313, 1111–1116 (1985).

    Article  CAS  PubMed  Google Scholar 

  40. Kastan, M. B. & Bartek, J. Cell-cycle checkpoints and cancer. Nature 432, 316–323 (2004).

    Article  CAS  PubMed  Google Scholar 

  41. Weiss, W. A., Aldape, K., Mohapatra, G., Feuerstein, B. G. & Bishop, J. M. Targeted expression of MYCN causes neuroblastoma in transgenic mice. EMBO J. 16, 2985–2995 (1997). The transgenic overexpressing MYCN mouse model for neuroblastoma was shown to have most of the typical features of human neuroblastoma histologically and in molecular characterization, and remains the most widely used spontaneous animal model for investigating the biology and therapy of neuroblastoma.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Armstrong, B. C. & Krystal, G. W. Isolation and characterization of complementary DNA for N-cym, a gene encoded by the DNA strand opposite to N-myc. Cell Growth Differ. 3, 385–390 (1992).

    CAS  PubMed  Google Scholar 

  43. Suenaga, Y. et al. NCYM, a cis-antisense gene of MYCN, encodes a de novo evolved protein that inhibits GSK3β resulting in the stabilization of MYCN in human neuroblastomas. PLoS Genet. 10, e1003996 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Bresler, S. C. et al. ALK mutations confer differential oncogenic activation and sensitivity to ALK inhibition therapy in neuroblastoma. Cancer Cell 26, 682–694 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Guan, J. et al. FAM150A and FAM150B are activating ligands for anaplastic lymphoma kinase. eLife 4, e09811 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  46. Reshetnyak, A. V. et al. Augmentor α and β (FAM150) are ligands of the receptor tyrosine kinases ALK and LTK: hierarchy and specificity of ligand–receptor interactions. Proc. Natl Acad. Sci. USA 112, 15862–15867 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Berry, T. et al. The ALKF1174L mutation potentiates the oncogenic activity of MYCN in neuroblastoma. Cancer Cell 22, 117–130 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Zhu, S. et al. Activated ALK collaborates with MYCN in neuroblastoma pathogenesis. Cancer Cell 21, 362–373 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Mosse, Y. P. et al. Safety and activity of crizotinib for paediatric patients with refractory solid tumours or anaplastic large-cell lymphoma: a Children's Oncology Group phase 1 consortium study. Lancet Oncol. 14, 472–480 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Mosse, Y. P. Anaplastic lymphoma kinase as a cancer target in pediatric malignancies. Clin. Cancer Res. 22, 546–552 (2016).

    Article  CAS  PubMed  Google Scholar 

  51. Eleveld, T. F. et al. Relapsed neuroblastomas show frequent RAS–MAPK pathway mutations. Nat. Genet. 47, 864–871 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Lambertz, I. et al. Upregulation of MAPK negative feedback regulators and RET in mutant ALK neuroblastoma: implications for targeted treatment. Clin. Cancer Res. 21, 3327–3339 (2015).

    Article  CAS  PubMed  Google Scholar 

  53. Cazes, A. et al. Activated Alk triggers prolonged neurogenesis and Ret upregulation providing a therapeutic target in ALK-mutated neuroblastoma. Oncotarget 5, 2688–2702 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  54. Diskin, S. J. et al. Common variation at 6q16 within HACE1 and LIN28B influences susceptibility to neuroblastoma. Nat. Genet. 44, 1126–1130 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Molenaar, J. J. et al. LIN28B induces neuroblastoma and enhances MYCN levels via let-7 suppression. Nat. Genet. 44, 1199–1206 (2012).

    Article  CAS  PubMed  Google Scholar 

  56. Schnepp, R. W. et al. A LIN28B–RAN–AURKA signaling network promotes neuroblastoma tumorigenesis. Cancer Cell 28, 599–609 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Powers, J. T. et al. Multiple mechanisms disrupt the let-7 microRNA family in neuroblastoma. Nature 535, 246–251 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Valentijn, L. J. et al. TERT rearrangements are frequent in neuroblastoma and identify aggressive tumors. Nat. Genet. 47, 1411–1414 (2015).

    Article  CAS  PubMed  Google Scholar 

  59. Peifer, M. et al. Telomerase activation by genomic rearrangements in high-risk neuroblastoma. Nature 526, 700–704 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Cheung, N. K. et al. Association of age at diagnosis and genetic mutations in patients with neuroblastoma. JAMA 307, 1062–1071 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Sausen, M. et al. Integrated genomic analyses identify ARID1A and ARID1B alterations in the childhood cancer neuroblastoma. Nat. Genet. 45, 12–17 (2013).

    Article  CAS  PubMed  Google Scholar 

  62. Kumps, C. et al. Focal DNA copy number changes in neuroblastoma target MYCN regulated genes. PLoS ONE 8, e52321 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Bown, N. et al. Gain of chromosome arm 17q and adverse outcome in patients with neuroblastoma. N. Engl. J. Med. 340, 1954–1961 (1999).

    Article  CAS  PubMed  Google Scholar 

  64. Attiyeh, E. F. et al. Chromosome 1p and 11q deletions and outcome in neuroblastoma. N. Engl. J. Med. 353, 2243–2253 (2005).

    Article  CAS  PubMed  Google Scholar 

  65. Henrich, K. O., Schwab, M. & Westermann, F. 1p36 tumor suppression — a matter of dosage? Cancer Res. 72, 6079–6088 (2012).

    Article  CAS  PubMed  Google Scholar 

  66. DeNardo, D. G. et al. Leukocyte complexity predicts breast cancer survival and functionally regulates response to chemotherapy. Cancer Discov. 1, 54–67 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Asgharzadeh, S. et al. Clinical significance of tumor-associated inflammatory cells in metastatic neuroblastoma. J. Clin. Oncol. 30, 3525–3532 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Larsson, K. et al. COX/mPGES-1/PGE2 pathway depicts an inflammatory-dependent high-risk neuroblastoma subset. Proc. Natl Acad. Sci. USA 112, 8070–8075 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Song, L. et al. Vα24-invariant NKT cells mediate antitumor activity via killing of tumor-associated macrophages. J. Clin. Invest. 119, 1524–1536 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Egler, R. A., Burlingame, S. M., Nuchtern, J. G. & Russell, H. V. Interleukin-6 and soluble interleukin-6 receptor levels as markers of disease extent and prognosis in neuroblastoma. Clin. Cancer Res. 14, 7028–7034 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Ara, T. et al. Critical role of STAT3 in IL-6-mediated drug resistance in human neuroblastoma. Cancer Res. 73, 3852–3864 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Ara, T. et al. Interleukin-6 in the bone marrow microenvironment promotes the growth and survival of neuroblastoma cells. Cancer Res. 69, 329–337 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Liu, Y. et al. Growth and activation of natural killer cells ex vivo from children with neuroblastoma for adoptive cell therapy. Clin. Cancer Res. 19, 2132–2143 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Delgado, D. C. et al. Genotypes of NK cell KIR receptors, their ligands, and Fcγ receptors in the response of neuroblastoma patients to Hu14.18-IL2 immunotherapy. Cancer Res. 70, 9554–9561 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. De Bernardi, B. et al. Excellent outcome with reduced treatment for infants with disseminated neuroblastoma without MYCN gene amplification. J. Clin. Oncol. 27, 1034–1040 (2009).

    Article  PubMed  Google Scholar 

  76. Hiyama, E. et al. Correlating telomerase activity levels with human neuroblastoma outcomes. Nat. Med. 1, 249–255 (1995).

    Article  CAS  PubMed  Google Scholar 

  77. Brodeur, G. M. & Bagatell, R. Mechanisms of neuroblastoma regression. Nat. Rev. Clin. Oncol. 11, 704–713 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Nakagawara, A. et al. Association between high levels of expression of the TRK gene and favorable outcome in human neuroblastoma. N. Engl. J. Med. 328, 847–854 (1993).

    Article  CAS  PubMed  Google Scholar 

  79. Zhu, Y. et al. Dependence receptor UNC5D mediates nerve growth factor depletion-induced neuroblastoma regression. J. Clin. Invest. 123, 2935–2947 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Vo, K. T. et al. Clinical, biologic, and prognostic differences on the basis of primary tumor site in neuroblastoma: a report from the international neuroblastoma risk group project. J. Clin. Oncol. 32, 3169–3176 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  81. DuBois, S. G. et al. Metastatic sites in stage IV and IVS neuroblastoma correlate with age, tumor biology, and survival [see comments]. J. Pediatr. Hematol. Oncol. 21, 181–189 (1999).

    Article  CAS  PubMed  Google Scholar 

  82. Taggart, D. R. et al. Prognostic value of the stage 4S metastatic pattern and tumor biology in patients with metastatic neuroblastoma diagnosed between birth and 18 months of age. J. Clin. Oncol. 29, 4358–4364 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  83. Hero, B. & Schleiermacher, G. Update on pediatric opsoclonus myoclonus syndrome. Neuropediatrics 44, 324–329 (2013).

    Article  PubMed  Google Scholar 

  84. Strenger, V. et al. Diagnostic and prognostic impact of urinary catecholamines in neuroblastoma patients. Pediatr. Blood Cancer 48, 504–509 (2007).

    Article  PubMed  Google Scholar 

  85. Franscini, L. C. et al. Pediatric reference intervals for plasma free and total metanephrines established with a parametric approach: relevance to the diagnosis of neuroblastoma. Pediatr. Blood Cancer 62, 587–593 (2015).

    Article  CAS  PubMed  Google Scholar 

  86. Beiske, K. et al. Consensus criteria for sensitive detection of minimal neuroblastoma cells in bone marrow, blood and stem cell preparations by immunocytology and QRT-PCR: recommendations by the International Neuroblastoma Risk Group Task Force. Br. J. Cancer 100, 1627–1637 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Viprey, V. F. et al. Neuroblastoma mRNAs predict outcome in children with stage 4 neuroblastoma: a European HR-NBL1/SIOPEN study. J. Clin. Oncol. 32, 1074–1083 (2014).

    Article  CAS  PubMed  Google Scholar 

  88. Monclair, T. et al. The International Neuroblastoma Risk Group (INRG) staging system: an INRG Task Force report. J. Clin. Oncol. 27, 298–303 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  89. Matthay, K. K. et al. Criteria for evaluation of disease extent by 123I-metaiodobenzylguanidine scans in neuroblastoma: a report for the International Neuroblastoma Risk Group (INRG) Task Force. Br. J. Cancer 102, 1319–1326 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Dubois, S. G. et al. Evaluation of norepinephrine transporter expression and metaiodobenzylguanidine avidity in neuroblastoma: a report from the Children's Oncology Group. Int. J. Mol. Imaging 2012, 250834 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Biermann, M. et al. Is there a role for PET-CT and SPECT-CT in pediatric oncology? Acta Radiol. 54, 1037–1045 (2013).

    Article  PubMed  Google Scholar 

  92. Yanik, G. A. et al. Semiquantitative mIBG scoring as a prognostic indicator in patients with stage 4 neuroblastoma: a report from the Children's Oncology Group. J. Nucl. Med. 54, 541–548 (2013).

    Article  CAS  PubMed  Google Scholar 

  93. Sharp, S. E., Shulkin, B. L., Gelfand, M. J., Salisbury, S. & Furman, W. L. 123I-MIBG scintigraphy and 18F-FDG PET in neuroblastoma. J. Nucl. Med. 50, 1237–1243 (2009).

    Article  PubMed  Google Scholar 

  94. Liu, Y. L. et al. Diagnostic FDG and FDOPA positron emission tomography scans distinguish the genomic type and treatment outcome of neuroblastoma. Oncotarget 7, 18774–18786 (2016).

    PubMed  PubMed Central  Google Scholar 

  95. Gains, J. E. et al. 177Lu-DOTATATE molecular radiotherapy for childhood neuroblastoma. J. Nucl. Med. 52, 1041–1047 (2011).

    Article  PubMed  Google Scholar 

  96. Shimada, H. et al. Histopathologic prognostic factors in neuroblastic tumors: definition of subtypes of ganglioneuroblastoma and an age-linked classification of neuroblastomas. J. Natl Cancer Inst. 73, 405–416 (1984). This age-linked histological classification of neuroblastoma using histological type, stroma characteristics and nuclear pathology (mitosis-karyorrhexis index) formed the basis for the current international risk stratification and has remained highly prognostic.

    Article  CAS  PubMed  Google Scholar 

  97. Shimada, H. et al. The International Neuroblastoma Pathology Classification (the Shimada system). Cancer 86, 364–372 (1999).

    CAS  Google Scholar 

  98. Shimada, H. et al. International neuroblastoma pathology classification for prognostic evaluation of patients with peripheral neuroblastic tumors: a report from the Children's Cancer Group. Cancer 92, 2451–2461 (2001).

    Article  CAS  PubMed  Google Scholar 

  99. Peuchmaur, M. et al. Revision of the International Neuroblastoma Pathology Classification: confirmation of favorable and unfavorable prognostic subsets in ganglioneuroblastoma, nodular. Cancer 98, 2274–2281 (2003).

    Article  PubMed  Google Scholar 

  100. Ambros, P. F. et al. International consensus for neuroblastoma molecular diagnostics: report from the International Neuroblastoma Risk Group (INRG) Biology Committee. Br. J. Cancer 100, 1471–1482 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Bagatell, R. et al. Significance of MYCN amplification in international neuroblastoma staging system stage 1 and 2 neuroblastoma: a report from the International Neuroblastoma Risk Group database. J. Clin. Oncol. 27, 365–370 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Wang, L. L. et al. Augmented expression of MYC and/or MYCN protein defines highly aggressive MYC-driven neuroblastoma: a Children's Oncology Group study. Br. J. Cancer 113, 57–63 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Valentijn, L. J. et al. Functional MYCN signature predicts outcome of neuroblastoma irrespective of MYCN amplification. Proc. Natl Acad. Sci. USA 109, 19190–19195 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  104. Ambros, I. M., Brunner, C., Abbasi, R., Frech, C. & Ambros, P. F. Ultra-high density SNParray in neuroblastoma molecular diagnostics. Front. Oncol. 4, 202 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  105. Kryh, H. et al. Comprehensive SNP array study of frequently used neuroblastoma cell lines; copy neutral loss of heterozygosity is common in the cell lines but uncommon in primary tumors. BMC Genomics 12, 443 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  106. Janoueix-Lerosey, I. et al. Overall genomic pattern is a predictor of outcome in neuroblastoma. J. Clin. Oncol. 27, 1026–1033 (2009).

    Article  PubMed  Google Scholar 

  107. Brodeur, G. M. et al. Revisions of the international criteria for neuroblastoma diagnosis, staging, and response to treatment [see comments]. J. Clin. Oncol. 11, 1466–1477 (1993).

    Article  CAS  PubMed  Google Scholar 

  108. Sawada, T. et al. Mass screening of neuroblastoma in infancy. Am. J. Dis. Child. 136, 710–712 (1982).

    CAS  PubMed  Google Scholar 

  109. Sawada, T., Nishi, M., Takeda, T. & Iehara, T. Mass screening for neuroblastoma in Japan. Med. Pediatr. Oncol. 31, 429–434 (1998).

    Article  Google Scholar 

  110. Yamamoto, K. et al. Mass screening and age-specific incidence of neuroblastoma in Saitama Prefecture, Japan. J. Clin. Oncol. 13, 2033–2038 (1995).

    Article  CAS  PubMed  Google Scholar 

  111. Hisashige, A. & NBS Evaluation Group. Effectiveness of nationwide screening program for neuroblastoma in Japan. Glob. J. Health Sci. 6, 94–106 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  112. Hiyama, E. et al. Effectiveness of screening for neuroblastoma at 6 months of age: a retrospective population-based cohort study. Lancet 371, 1173–1180 (2008).

    Article  PubMed  Google Scholar 

  113. Kerbl, R. et al. Neuroblastoma mass screening in late infancy: insights into the biology of neuroblastic tumors. J. Clin. Oncol. 21, 4228–4234 (2003).

    Article  PubMed  Google Scholar 

  114. Nakagawara, A. et al. Different genomic and metabolic patterns between mass screening-positive and mass screening-negative later-presenting neuroblastomas. Cancer 68, 2037–2044 (1991).

    Article  CAS  PubMed  Google Scholar 

  115. Schilling, F. H. et al. Children may not benefit from neuroblastoma screening at 1 year of age. Updated results of the population based controlled trial in Germany. Cancer Lett. 197, 19–28 (2003).

    Article  CAS  PubMed  Google Scholar 

  116. Pinto, N. R. et al. Advances in risk classification and treatment strategies for neuroblastoma. J. Clin. Oncol. 33, 3008–3017 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Nuchtern, J. G. et al. A prospective study of expectant observation as primary therapy for neuroblastoma in young infants: a Children's Oncology Group study. Ann. Surg. 256, 573–580 (2012).

    Article  PubMed  Google Scholar 

  118. Rubie, H. et al. Excellent outcome with reduced treatment in infants with nonmetastatic and unresectable neuroblastoma without MYCN amplification: results of the prospective INES 99.1. J. Clin. Oncol. 29, 449–455 (2011).

    Article  CAS  PubMed  Google Scholar 

  119. Hero, B. et al. Localized infant neuroblastomas often show spontaneous regression: results of the prospective trials NB95-S and NB97. J. Clin. Oncol. 26, 1504–1510 (2008).

    Article  PubMed  Google Scholar 

  120. Iehara, T. et al. Successful treatment of infants with localized neuroblastoma based on their MYCN status. Int. J. Clin. Oncol. 18, 389–395 (2013).

    Article  CAS  PubMed  Google Scholar 

  121. US National Library of Medicine. ClinicalTrials.govhttps://clinicaltrials.gov/ct2/show/NCT02176967 (2016).

  122. US National Library of Medicine. ClinicalTrials.govhttps://clinicaltrials.gov/ct2/show/NCT01728155 (2015).

  123. Schmidt, M. L. et al. Favorable prognosis for patients 12 to 18 months of age with stage 4 nonamplified MYCN neuroblastoma: a Children's Cancer Group Study. J. Clin. Oncol. 23, 6474–6480 (2005).

    Article  CAS  PubMed  Google Scholar 

  124. Defferrari, R. et al. Influence of segmental chromosome abnormalities on survival in children over the age of 12 months with unresectable localised peripheral neuroblastic tumours without MYCN amplification. Br. J. Cancer 112, 290–295 (2015).

    Article  CAS  PubMed  Google Scholar 

  125. Kohler, J. A. et al. Treatment of children over the age of one year with unresectable localised neuroblastoma without MYCN amplification: results of the SIOPEN study. Eur. J. Cancer 49, 3671–3679 (2013).

    Article  CAS  PubMed  Google Scholar 

  126. Marachelian, A. et al. The significance of serial histopathology in a residual mass for outcome of intermediate risk stage 3 neuroblastoma. Pediatr. Blood Cancer 58, 675–681 (2012).

    Article  PubMed  Google Scholar 

  127. Matthay, K. K. et al. Successful treatment of stage III neuroblastoma based on prospective biologic staging: a Children's Cancer Group study. J. Clin. Oncol. 16, 1256–1264 (1998).

    Article  CAS  PubMed  Google Scholar 

  128. Ladenstein, R. et al. Multivariate analysis of risk factors in stage 4 neuroblastoma patients over the age of one year treated with megatherapy and stem-cell transplantation: a report from the European Bone Marrow Transplantation Solid Tumor Registry. J. Clin. Oncol. 16, 953–965 (1998).

    Article  CAS  PubMed  Google Scholar 

  129. Ladenstein, R. et al. Randomized trial of prophylactic granulocyte colony-stimulating factor during rapid COJEC induction in pediatric patients with high-risk neuroblastoma: the European HR-NBL1/SIOPEN study. J. Clin. Oncol. 28, 3516–3524 (2010).

    Article  CAS  PubMed  Google Scholar 

  130. Park, J. R. et al. A phase 3 randomized clinical trial (RCT) of tandem myeloablative autologous stem cell transplant (ASCT) using peripheral blood stem cell (PBSC) as consolidation therapy for high-risk neuroblastoma (HR-NB): a Children's Oncology Group (COG) study. J. Clin. Oncol. Abstr. 34, LBA3 (2016).

    Article  Google Scholar 

  131. Berthold, F. et al. Myeloablative megatherapy with autologous stem-cell rescue versus oral maintenance chemotherapy as consolidation treatment in patients with high-risk neuroblastoma: a randomised controlled trial. Lancet Oncol. 6, 649–658 (2005).

    Article  CAS  PubMed  Google Scholar 

  132. Pearson, A. D. et al. High-dose rapid and standard induction chemotherapy for patients aged over 1 year with stage 4 neuroblastoma: a randomised trial. Lancet Oncol. 9, 247–256 (2008).

    Article  CAS  PubMed  Google Scholar 

  133. Zage, P. E. et al. Outcomes of the POG 9340/9341/9342 trials for children with high-risk neuroblastoma: a report from the Children's Oncology Group. Pediatr. Blood Cancer 51, 747–753 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  134. Kreissman, S. G. et al. Purged versus non-purged peripheral blood stem-cell transplantation for high-risk neuroblastoma (COG A3973): a randomised phase 3 trial. Lancet Oncol. 14, 999–1008 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. US National Library of Medicine. ClinicalTrials.govhttps://clinicaltrials.gov/ct2/show/NCT01704716 (2016).

  136. Garaventa, A. et al. A phase II study of topotecan with vincristine and doxorubicin in children with recurrent/refractory neuroblastoma. Cancer 98, 2488–2494 (2003).

    Article  CAS  PubMed  Google Scholar 

  137. Bagatell, R. et al. Phase II study of irinotecan and temozolomide in children with relapsed or refractory neuroblastoma: a Children's Oncology Group study. J. Clin. Oncol. 29, 208–213 (2011).

    Article  CAS  PubMed  Google Scholar 

  138. Matthay, K. K. et al. Phase II study on the effect of disease sites, age, and prior therapy on response to iodine-131-metaiodobenzylguanidine therapy in refractory neuroblastoma. J. Clin. Oncol. 25, 1054–1060 (2007).

    Article  CAS  PubMed  Google Scholar 

  139. Zhou, M. J. et al. Different outcomes for relapsed versus refractory neuroblastoma after therapy with 131I-metaiodobenzylguanidine (131I-mIBG). Eur. J. Cancer 51, 2465–2472 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Mullassery, D., Farrelly, P. & Losty, P. D. Does aggressive surgical resection improve survival in advanced stage 3 and 4 neuroblastoma? A systematic review and meta-analysis. Pediatr. Hematol. Oncol. 31, 703–716 (2014).

    Article  PubMed  Google Scholar 

  141. Haas-Kogan, D. A. et al. Impact of radiotherapy for high-risk neuroblastoma: a Children's Cancer Group study. Int. J. Radiat. Oncol. Biol. Phys. 56, 28–39 (2003).

    Article  PubMed  Google Scholar 

  142. Adkins, E. S. et al. Efficacy of complete resection for high-risk neuroblastoma: a Children's Cancer Group study. J. Pediatr. Surg. 39, 931–936 (2004).

    Article  PubMed  Google Scholar 

  143. Park, J. R. et al. Outcome of high-risk stage 3 neuroblastoma with myeloablative therapy and 13-cis-retinoic acid: a report from the Children's Oncology Group. Pediatr. Blood Cancer 52, 44–50 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  144. Simon, T., Haberle, B., Hero, B., von Schweinitz, D. & Berthold, F. Role of surgery in the treatment of patients with stage 4 neuroblastoma age 18 months or older at diagnosis. J. Clin. Oncol. 31, 752–758 (2013).

    Article  PubMed  Google Scholar 

  145. Wolden, S. L. et al. Local control with multimodality therapy for stage 4 neuroblastoma. Int. J. Radiat. Oncol. Biol. Phys. 46, 969–974 (2000).

    Article  CAS  PubMed  Google Scholar 

  146. Pritchard, J. et al. High dose melphalan in the treatment of advanced neuroblastoma: results of a randomised trial (ENSG-1) by the European Neuroblastoma Study Group. Pediatr. Blood Cancer 44, 348–357 (2005).

    Article  PubMed  Google Scholar 

  147. Ladenstein, R. L. et al. Busulphan-melphalan as a myeloablative therapy (MAT) for high-risk neuroblastoma: results from the HR-NBL1/SIOPEN trial. J. Clin Oncol. Abstr. 29 (Suppl.), 2 (2011).

    Article  Google Scholar 

  148. George, R. E. et al. High-risk neuroblastoma treated with tandem autologous peripheral-blood stem cell-supported transplantation: long-term survival update. J. Clin. Oncol. 24, 2891–2896 (2006).

    Article  PubMed  Google Scholar 

  149. Seif, A. E. et al. A pilot study of tandem high-dose chemotherapy with stem cell rescue as consolidation for high-risk neuroblastoma: Children's Oncology Group study ANBL00P1. Bone Marrow Transplant. 48, 947–952 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Matthay, K. K. et al. Phase I dose escalation of iodine-131-metaiodobenzylguanidine with myeloablative chemotherapy and autologous stem-cell transplantation in refractory neuroblastoma: a new approaches to neuroblastoma therapy consortium study. J. Clin. Oncol. 24, 500–506 (2006).

    Article  CAS  PubMed  Google Scholar 

  151. Yanik, G. A. et al. 131I-metaiodobenzylguanidine with intensive chemotherapy and autologous stem cell transplantation for high-risk neuroblastoma. A new approaches to neuroblastoma therapy (NANT) phase II study. Biol. Blood Marrow Transplant. 21, 673–681 (2015).

    Article  CAS  PubMed  Google Scholar 

  152. Park, J. R. et al. Pilot induction regimen incorporating pharmacokinetically guided topotecan for treatment of newly diagnosed high-risk neuroblastoma: a Children's Oncology Group study. J. Clin. Oncol. 29, 4351–4357 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Yu, A. L. et al. Anti-GD2 antibody with GM-CSF, interleukin-2, and isotretinoin for neuroblastoma. N. Engl. J. Med. 363, 1324–1334 (2010). This randomized controlled trial in patients with high-risk neuroblastoma after AHSCT showed that maintenance therapy with isotretinoin with the addition of chimeric anti-GD2 monoclonal antibody, GM-CSF and IL-2 resulted in a significantly higher EFS and overall survival than isotretinoin alone.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Siebert, N. et al. Pharmacokinetics and pharmacodynamics of ch14.18/CHO in relapsed/refractory high-risk neuroblastoma patients treated by long-term infusion in combination with IL-2. MAbs 8, 604–616 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Navid, F. et al. Phase I trial of a novel anti-GD2 monoclonal antibody, Hu14.18K322A, designed to decrease toxicity in children with refractory or recurrent neuroblastoma. J. Clin. Oncol. 32, 1445–1452 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Shusterman, S. et al. Antitumor activity of hu14.18-IL2 in patients with relapsed/refractory neuroblastoma: a Children's Oncology Group (COG) phase II study. J. Clin. Oncol. 28, 4969–4975 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Maurer, B. J. et al. Phase I trial of fenretinide delivered orally in a novel organized lipid complex in patients with relapsed/refractory neuroblastoma: a report from the new approaches to neuroblastoma therapy (NANT) consortium. Pediatr. Blood Cancer 60, 1801–1808 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Kushner, B. H. et al. Phase I trial of a bivalent gangliosides vaccine in combination with β-glucan for high-risk neuroblastoma in second or later remission. Clin. Cancer Res. 20, 1375–1382 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Bassiri, H. et al. Translational development of difluoromethylornithine (DFMO) for the treatment of neuroblastoma. Transl Pediatr. 4, 226–238 (2015).

    PubMed  PubMed Central  Google Scholar 

  160. London, W. B. et al. Phase II randomized comparison of topotecan plus cyclophosphamide versus topotecan alone in children with recurrent or refractory neuroblastoma: a Children's Oncology Group study. J. Clin. Oncol. 28, 3808–3815 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Kushner, B. H., Kramer, K., Modak, S. & Cheung, N. K. Irinotecan plus temozolomide for relapsed or refractory neuroblastoma. J. Clin. Oncol. 24, 5271–5276 (2006).

    Article  CAS  PubMed  Google Scholar 

  162. Di Giannatale, A. et al. Phase II study of temozolomide in combination with topotecan (TOTEM) in relapsed or refractory neuroblastoma: a European Innovative Therapies for Children with Cancer-SIOP-European Neuroblastoma study. Eur. J. Cancer 50, 170–177 (2014).

    Article  CAS  PubMed  Google Scholar 

  163. Wilson, J. S., Gains, J. E., Moroz, V., Wheatley, K. & Gaze, M. N. A systematic review of 131I-meta iodobenzylguanidine molecular radiotherapy for neuroblastoma. Eur. J. Cancer 50, 801–815 (2014).

    Article  CAS  PubMed  Google Scholar 

  164. DuBois, S. G. et al. Phase I study of vincristine, irinotecan, and 131I-metaiodobenzylguanidine for patients with relapsed or refractory neuroblastoma: a new approaches to neuroblastoma therapy trial. Clin. Cancer Res. 18, 2679–2686 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. DuBois, S. G. et al. Phase I study of vorinostat as a radiation sensitizer with 131I-metaiodobenzylguanidine (131I-MIBG) for patients with relapsed or refractory neuroblastoma. Clin. Cancer Res. 21, 2715–2721 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. US National Library of Medicine. ClinicalTrials.govhttps://clinicaltrials.gov/ct2/show/NCT01606878 (2016).

  167. US National Library of Medicine. ClinicalTrials.govhttps://clinicaltrials.gov/ct2/show/NCT01742286 (2016).

  168. Infarinato, N. R. et al. The ALK/ROS1 inhibitor PF-06463922 overcomes primary resistance to crizotinib in ALK-driven neuroblastoma. Cancer Discov. 6, 96–107 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. DuBois, S. G. et al. Phase I study of the Aurora A kinase inhibitor alisertib in combination with irinotecan and temozolomide for patients with relapsed or refractory neuroblastoma: a NANT (new approaches to neuroblastoma therapy) trial. J. Clin. Oncol. 34, 1368–1375 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Puissant, A. et al. Targeting MYCN in neuroblastoma by BET bromodomain inhibition. Cancer Discov. 3, 308–323 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Henssen, A. et al. Targeting MYCN-driven transcription by BET-bromodomain inhibition. Clin. Cancer Res. 22, 2470–2481 (2015).

    Article  CAS  PubMed  Google Scholar 

  172. Evageliou, N. F. et al. Polyamine antagonist therapies inhibit neuroblastoma initiation and progression. Clin. Cancer Res. 22, 4391–4401 (2016).

    Article  CAS  PubMed  Google Scholar 

  173. Louis, C. U. et al. Antitumor activity and long-term fate of chimeric antigen receptor-positive T cells in patients with neuroblastoma. Blood 118, 6050–6056 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Kramer, K., Kushner, B., Heller, G. & Cheung, N. K. Neuroblastoma metastatic to the central nervous system. the Memorial Sloan-Kettering Cancer Center Experience and a literature review. Cancer 91, 1510–1519 (2001).

    Article  CAS  PubMed  Google Scholar 

  175. Matthay, K. K. et al. Central nervous system metastases in neuroblastoma: radiologic, clinical, and biologic features in 23 patients. Cancer 98, 155–165 (2003).

    Article  PubMed  Google Scholar 

  176. Kramer, K. et al. Compartmental intrathecal radioimmunotherapy: results for treatment for metastatic CNS neuroblastoma. J. Neurooncol. 97, 409–418 (2010).

    Article  PubMed  Google Scholar 

  177. De Bernardi, B. et al. Neuroblastoma with symptomatic epidural compression in the infant: the AIEOP experience. Pediatr. Blood Cancer 61, 1369–1375 (2014).

    Article  PubMed  Google Scholar 

  178. Mitchell, W. G. et al. Effect of increased immunosuppression on developmental outcome of opsoclonus myoclonus syndrome (OMS). J. Child Neurol. 30, 976–982 (2015).

    Article  PubMed  Google Scholar 

  179. Bourdeaut, F. et al. VIP hypersecretion as primary or secondary syndrome in neuroblastoma: a retrospective study by the Societe Francaise des Cancers de l'Enfant (SFCE). Pediatr. Blood Cancer 52, 585–590 (2009).

    Article  PubMed  Google Scholar 

  180. Katzenstein, H. M., Kent, P. M., London, W. B. & Cohn, S. L. Treatment and outcome of 83 children with intraspinal neuroblastoma: the Pediatric Oncology Group experience. J. Clin. Oncol. 19, 1047–1055 (2001).

    Article  CAS  PubMed  Google Scholar 

  181. Laverdiere, C. et al. Long-term outcomes in survivors of neuroblastoma: a report from the Childhood Cancer Survivor Study. J. Natl Cancer Inst. 101, 1131–1140 (2009). This study reports the health outcomes of 954 5-year neuroblastoma survivors who were diagnosed between 1970 and 1986, showing the increase in late mortality, secondary malignancies and chronic health conditions compared with sibling controls.

    Article  PubMed  PubMed Central  Google Scholar 

  182. Wilson, C. L. et al. Renal carcinoma after childhood cancer: a report from the childhood cancer survivor study. J. Natl Cancer Inst. 105, 504–508 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  183. Cohen, L. E. et al. Late effects in children treated with intensive multimodal therapy for high-risk neuroblastoma: high incidence of endocrine and growth problems. Bone Marrow Transplant. 49, 502–508 (2014).

    Article  CAS  PubMed  Google Scholar 

  184. Gurney, J. G. et al. Hearing loss, quality of life, and academic problems in long-term neuroblastoma survivors: a report from the Children's Oncology Group. Pediatrics 120, e1229–e1236 (2007).

    Article  PubMed  Google Scholar 

  185. Applebaum, M. A. et al. Second malignancies in patients with neuroblastoma: the effects of risk-based therapy. Pediatr. Blood Cancer 62, 128–133 (2015).

    Article  PubMed  Google Scholar 

  186. Willi, S. M. et al. Growth in children after bone marrow transplantation for advanced neuroblastoma compared with growth after transplantation for leukemia or aplastic anemia. J. Pediatr. 120, 726–732 (1992).

    Article  CAS  PubMed  Google Scholar 

  187. Hobbie, W. L., Mostoufi, S. M., Carlson, C. A., Gruccio, D. & Ginsberg, J. P. Prevalence of advanced bone age in a cohort of patients who received cis-retinoic acid for high-risk neuroblastoma. Pediatr. Blood Cancer 56, 474–476 (2011).

    Article  PubMed  Google Scholar 

  188. van Santen, H. M., de Kraker, J., van Eck, B. L., de Vijlder, J. J. & Vulsma, T. High incidence of thyroid dysfunction despite prophylaxis with potassium iodide during 131I-meta-iodobenzylguanidine treatment in children with neuroblastoma. Cancer 94, 2081–2089 (2002).

    Article  CAS  PubMed  Google Scholar 

  189. van Waas, M. et al. Abdominal radiotherapy: a major determinant of metabolic syndrome in nephroblastoma and neuroblastoma survivors. PLoS ONE 7, e52237 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Meacham, L. R. et al. Diabetes mellitus in long-term survivors of childhood cancer. Increased risk associated with radiation therapy: a report for the Childhood Cancer Survivor Study. Arch. Intern. Med. 169, 1381–1388 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  191. Lord, C. J., Tutt, A. N. & Ashworth, A. Synthetic lethality and cancer therapy: lessons learned from the development of PARP inhibitors. Annu. Rev. Med. 66, 455–470 (2015).

    Article  CAS  PubMed  Google Scholar 

  192. Schramm, A. et al. Mutational dynamics between primary and relapse neuroblastomas. Nat. Genet. 47, 872–877 (2015).

    Article  CAS  PubMed  Google Scholar 

  193. Schleiermacher, G. et al. Emergence of new ALK mutations at relapse of neuroblastoma. J. Clin. Oncol. 32, 2727–2734 (2014).

    Article  CAS  PubMed  Google Scholar 

  194. Gerlinger, M. et al. Intratumor heterogeneity and branched evolution revealed by multiregion sequencing. N. Engl. J. Med. 366, 883–892 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Bettegowda, C. et al. Detection of circulating tumor DNA in early- and late-stage human malignancies. Sci. Transl Med. 6, 224ra224 (2014).

    Article  CAS  Google Scholar 

  196. Huang, S. Y. et al. Patient-specific dosimetry using pretherapy [124I]m-iodobenzylguanidine ([124I]mIBG) dynamic PET/CT imaging before [131I]mIBG targeted radionuclide therapy for neuroblastoma. Mol. Imaging Biol. 17, 284–294 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. Doran, M. G. et al. Applying Zr-transferrin to study the pharmacology of inhibitors to BET bromodomain containing proteins. Mol. Pharm. 13, 683–688 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  198. Gustafson, W. C. et al. Drugging MYCN through an allosteric transition in Aurora kinase A. Cancer Cell 26, 414–427 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. Ross, C. J. et al. Genetic variants in TPMT and COMT are associated with hearing loss in children receiving cisplatin chemotherapy. Nat. Genet. 41, 1345–1349 (2009).

    Article  CAS  PubMed  Google Scholar 

  200. Roco, A., Cayun, J., Contreras, S., Stojanova, J. & Quinones, L. Can pharmacogenetics explain efficacy and safety of cisplatin pharmacotherapy? Front. Genet. 5, 391 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  201. Banerjee, S. A., Hoppe, P., Brilliant, M. & Chikaraishi, D. M. 5′ flanking sequences of the rat tyrosine hydroxylase gene target accurate tissue-specific, developmental, and transsynaptic expression in transgenic mice. J. Neurosci. 12, 4460–4467 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  202. Teitz, T. et al. Th-MYCN mice with caspase-8 deficiency develop advanced neuroblastoma with bone marrow metastasis. Cancer Res. 73, 4086–4097 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  203. Hackett, C. S. et al. Expression quantitative trait loci and receptor pharmacology implicate Arg1 and the GABA-A receptor as therapeutic targets in neuroblastoma. Cell Rep. 9, 1034–1046 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  204. Althoff, K. et al. A Cre-conditional MYCN-driven neuroblastoma mouse model as an improved tool for preclinical studies. Oncogene 34, 3357–3368 (2015).

    Article  CAS  PubMed  Google Scholar 

  205. Lo Piccolo, M. S., Cheung, N. K. & Cheung, I. Y. GD2 synthase: a new molecular marker for detecting neuroblastoma. Cancer 92, 924–931 (2001).

    Article  CAS  PubMed  Google Scholar 

  206. Wu, Z. L., Schwartz, E., Seeger, R. & Ladisch, S. Expression of GD2 ganglioside by untreated primary human neuroblastomas. Cancer Res. 46, 440–443 (1986).

    CAS  PubMed  Google Scholar 

  207. Cheung, N. K. et al. Key role for myeloid cells: phase II results of anti-GD2 antibody 3F8 plus granulocyte-macrophage colony-stimulating factor for chemoresistant osteomedullary neuroblastoma. J. Int. Cancer 135, 2199–2205 (2014).

    Article  CAS  Google Scholar 

  208. Cheung, N. K. et al. FCGR2A polymorphism is correlated with clinical outcome after immunotherapy of neuroblastoma with anti-GD2 antibody and granulocyte macrophage colony-stimulating factor. J. Clin. Oncol. 24, 2885–2890 (2006).

    Article  CAS  PubMed  Google Scholar 

  209. Tarek, N. et al. Unlicensed NK cells target neuroblastoma following anti-GD2 antibody treatment. J. Clin. Invest. 122, 3260–3270 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  210. Pule, M. A. et al. Virus-specific T cells engineered to coexpress tumor-specific receptors: persistence and antitumor activity in individuals with neuroblastoma. Nat. Med. 14, 1264–1270 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  211. Long, A. H. et al. 4-1BB costimulation ameliorates T cell exhaustion induced by tonic signaling of chimeric antigen receptors. Nat. Med. 21, 581–590 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  212. Decarolis, B. et al. Iodine-123 metaiodobenzylguanidine scintigraphy scoring allows prediction of outcome in patients with stage 4 neuroblastoma: results of the Cologne interscore comparison study. J. Clin. Oncol. 31, 944–951 (2013).

    Article  CAS  PubMed  Google Scholar 

  213. Bronner, M. E. & Simoes-Costa, M. The neural crest migrating into the twenty-first century. Curr. Top. Dev. Biol. 116, 115–134 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  214. Simoes-Costa, M. & Bronner, M. E. Establishing neural crest identity: a gene regulatory recipe. Development 142, 242–257 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  215. Marshall, G. M. et al. The prenatal origins of cancer. Nat. Rev. Cancer 14, 277–289 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank S. Cho, University of California, San Francisco, USA, for preparing the photomicrographs used in Figure 6.

Author information

Authors and Affiliations

Authors

Contributions

Introduction (K.K.M.); Epidemiology (J.M.M.); Mechanisms/pathophysiology (C.L.M. and W.A.W.); Diagnosis, screening and prevention (K.K.M., G.S. and A.N.); Management (K.K.M. and G.S.); Quality of life (L.D.); Outlook (K.K.M. and J.M.M.); Overview of the Primer (K.K.M.).

Corresponding author

Correspondence to Katherine K. Matthay.

Ethics declarations

Competing interests

The authors declare no competing interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Matthay, K., Maris, J., Schleiermacher, G. et al. Neuroblastoma. Nat Rev Dis Primers 2, 16078 (2016). https://doi.org/10.1038/nrdp.2016.78

Download citation

  • Published:

  • DOI: https://doi.org/10.1038/nrdp.2016.78

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer