Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Primer
  • Published:

HTLV-1-associated myelopathy/tropical spastic paraparesis

A Corrigendum to this article was published on 06 August 2015

Abstract

Human T-lymphotropic virus 1 (HTLV-1)-associated myelopathy/tropical spastic paraparesis (HAM/TSP) is a progressive disease of the CNS that causes weakness or paralysis of the legs, lower back pain and urinary symptoms. HAM/TSP was first described in Jamaica in the nineteenth century, but the aetiology of the condition, infection with the retrovirus HTLV-1, was only identified in the 1980s. HAM/TSP causes chronic disability and, accordingly, imposes a substantial health burden in areas where HTLV-1 infection is endemic. Since the discovery of the cause of HAM/TSP, considerable advances have been made in the understanding of the virology, immunology, cell biology and pathology of HTLV-1 infection and its associated diseases. However, progress has been limited by the lack of accurate animal models of the disease. Moreover, the treatment of HAM/TSP remains highly unsatisfactory: antiretroviral drugs have little impact on the infection and, although potential disease-modifying therapies are widely used, their value is unproved. At present, clinical management is focused on symptomatic treatment and counselling. Here, we summarize current knowledge on the epidemiology, pathogenesis and treatment of HAM/TSP and identify areas in which further research is needed. For an illustrated summary of this Primer, visit: http://go.nature.com/tjZCFM

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: HTLV-1 life cycle.
Figure 2: Global prevalence of HTLV-1 infection in endemic areas.
Figure 3: MRI scan of an atrophic spinal cord in a patient with human T-lymphotropic virus 1 (HTLV-1)-associated myelopathy/tropical spastic paraparesis.
Figure 4: Risk factors for HAM/TSP development.
Figure 5: Proposed mechanism of tissue damage in HAM/TSP.
Figure 6: Flower cells in HTLV-1 infection.
Figure 7: Flowchart for the treatment of HAM/TSP.

Similar content being viewed by others

References

  1. Taylor, G. P. & Matsuoka, M. Natural history of adult T-cell leukemia/lymphoma and approaches to therapy. Oncogene 24, 6047–6057 (2005).

    Article  CAS  PubMed  Google Scholar 

  2. Uchiyama, T., Yodoi, J., Sagawa, K., Takatsuki, K. & Uchino, H. Adult T-cell leukemia: clinical and hematologic features of 16 cases. Blood 50, 481–492 (1977).

    CAS  PubMed  Google Scholar 

  3. Donegan, E. et al. Transfusion transmission of retroviruses: human T-lymphotropic virus types I and II compared with human immunodeficiency virus type 1. Transfusion 34, 478–483 (1994).

    Article  CAS  PubMed  Google Scholar 

  4. Manns, A. et al. A prospective study of transmission by transfusion of HTLV-I and risk factors associated with seroconversion. Int. J. Cancer 51, 886–891 (1992).

    Article  CAS  PubMed  Google Scholar 

  5. Sullivan, M. T. et al. Transmission of human T-lymphotropic virus types I and II by blood transfusion. A retrospective study of recipients of blood components The American Red Cross HTLV-I/II Collaborative Study Group. Arch. Intern. Med. 151, 2043–2048 (1991).

    Article  CAS  PubMed  Google Scholar 

  6. Hewitt, P. E., Davison, K., Howell, D. R. & Taylor, G. P. Human T-lymphotropic virus lookback in NHS Blood and Transplant (England) reveals the efficacy of leukoreduction. Transfusion 53, 2168–2175 (2013).

    PubMed  Google Scholar 

  7. Laydon, D. J. et al. Quantification of HTLV-1 clonality and TCR diversity. PLoS Comput. Biol. 10, e1003646 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Melamed, A. et al. Genome-wide determinants of proviral targeting, clonal abundance and expression in natural HTLV-1 infection. PLoS Pathog. 9, e1003271 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Gillet, N. A. et al. The host genomic environment of the provirus determines the abundance of HTLV-1-infected T cell clones. Blood 117, 3113–3122 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Wattel, E., Vartanian, J. P., Pannetier, C. & Wain-Hobson, S. Clonal expansion of human T-cell leukemia virus type I-infected cells in asymptomatic and symptomatic carriers without malignancy. J. Virol. 69, 2863–2868 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Cruickshank, E. K. A neuropathic syndrome of uncertain origin; review of 100 cases. West Indian Med. J. 5, 147–158 (1956).

    CAS  PubMed  Google Scholar 

  12. Montgomery, R. D., Cruickshank, E. K., Robertson, W. B. & McMenemey, W. H. Clinical and pathological observations on Jamaican neuropathy, a report on 206 cases. Brain 87, 425–462 (1964). This paper provides the classic description of Jamaican neuropathy, as HAM/TSP was formerly known.

    Article  CAS  PubMed  Google Scholar 

  13. Gessain, A. et al. Antibodies to human T-lymphotropic virus type-I in patients with tropical spastic paraparesis. Lancet 2, 407–410 (1985). This paper identifies HTLV-1 as the probable causative agent of TSP, another former name for HAM/TSP.

    Article  CAS  PubMed  Google Scholar 

  14. Osame, M. et al. HTLV-I associated myelopathy, a new clinical entity. Lancet 1, 1031–1032 (1986). This article identifies HAM in Japan; the syndrome was subsequently shown to be identical to TSP, leading to the current designation HAM/TSP.

    Article  CAS  PubMed  Google Scholar 

  15. Iwasaki, Y., Ohara, Y., Kobayashi, I. & Akizuki, S. Infiltration of helper/inducer T lymphocytes heralds central nervous system damage in human T-cell leukemia virus infection. Am. J. Pathol. 140, 1003–1008 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Nagai, M. et al. Analysis of HTLV-I proviral load in 202 HAM/TSP patients and 243 asymptomatic HTLV-I carriers: high proviral load strongly predisposes to HAM/TSP. J. Neurovirol. 4, 586–593 (1998). This is the largest systematic study of HTLV-1 proviral load and its disease association.

    Article  CAS  PubMed  Google Scholar 

  17. Olindo, S. et al. Natural history of human T-lymphotropic virus 1-associated myelopathy: a 14-year follow-up study. Arch. Neurol. 63, 1560–1566 (2006).

    Article  PubMed  Google Scholar 

  18. Gessain, A. & Cassar, O. Epidemiological aspects and world distribution of HTLV-1 infection. Front. Microbiol. 3, 388 (2012). This article is the most comprehensive analysis of the prevalence of HTLV-1. This invaluable resource for clinicians and public health policymakers alike also identifies the data gaps.

    Article  PubMed  PubMed Central  Google Scholar 

  19. de The, G. & Bomford, R. An HTLV-I vaccine: why, how, for whom? AIDS Res. Hum. Retroviruses 9, 381–386 (1993).

    Article  CAS  PubMed  Google Scholar 

  20. Hlela, C., Shepperd, S., Khumalo, N. P. & Taylor, G. P. The prevalence of human T-cell lymphotropic virus type 1 in the general population is unknown. AIDS Rev. 11, 205–214 (2009).

    PubMed  Google Scholar 

  21. European Centre for Disease Prevention and Control. Geographical distribution of areas with a high prevalence of HTLV-1 infection. ECDC[online], (2015).

  22. Einsiedel, L. et al. Clinical associations of human T-lymphotropic virus type 1 infection in an indigenous Australian population. PLoS Negl. Trop. Dis. 8, e2643 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  23. Chang, Y. B. et al. Seroprevalence and demographic determinants of human T-lymphotropic virus type 1 and 2 infections among first-time blood donors — United States, 2000–2009. J. Infect. Dis. 209, 523–531 (2014).

    Article  CAS  PubMed  Google Scholar 

  24. Ando, Y. et al. Long-term follow up study of vertical HTLV-I infection in children breast-fed by seropositive mothers. J. Infect. 46, 177–179 (2003).

    Article  CAS  PubMed  Google Scholar 

  25. Murphy, E. L. et al. Human T-lymphotropic virus type I (HTLV-I) seroprevalence in Jamaica. I. Demographic determinants. Am. J. Epidemiol. 133, 1114–1124 (1991).

    Article  CAS  PubMed  Google Scholar 

  26. Kaplan, J. E. et al. The risk of development of HTLV-I-associated myelopathy/tropical spastic paraparesis among persons infected with HTLV-I. J. Acquir. Immune Defic. Syndr. 3, 1096–1101 (1990).

    CAS  PubMed  Google Scholar 

  27. Murphy, E. L. et al. HTLV-associated myelopathy in a cohort of HTLV-I and HTLV-II-infected blood donors. The REDS investigators. Neurology 48, 315–320 (1997).

    Article  CAS  PubMed  Google Scholar 

  28. Orland, J. R. et al. Prevalence and clinical features of HTLV neurologic disease in the HTLV Outcomes Study. Neurology 61, 1588–1594 (2003).

    Article  CAS  PubMed  Google Scholar 

  29. Maloney, E. M. et al. Incidence of HTLV-I-associated myelopathy/tropical spastic paraparesis (HAM/TSP) in Jamaica and Trinidad. J. Acquir. Immune Defic. Syndr. Hum. Retrovirol. 17, 167–170 (1998).

    Article  CAS  PubMed  Google Scholar 

  30. Romanelli, L. C. et al. Incidence of human T cell lymphotropic virus type 1-associated myelopathy/tropical spastic paraparesis in a long-term prospective cohort study of initially asymptomatic individuals in Brazil. AIDS Res. Hum. Retroviruses 29, 1199–1202 (2013).

    Article  PubMed  Google Scholar 

  31. Kayembe, K., Goubau, P., Desmyter, J., Vlietinck, R. & Carton, H. A cluster of HTLV-1 associated tropical spastic paraparesis in Equateur (Zaire): ethnic and familial distribution. J. Neurol. Neurosurg. Psychiatry 53, 4–10 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Arisawa, K. et al. Evaluation of adult T-cell leukemia/lymphoma incidence and its impact on non-Hodgkin lymphoma incidence in southwestern Japan. Int. J. Cancer 85, 319–324 (2000).

    Article  CAS  PubMed  Google Scholar 

  33. Iwasaki, Y. Human T cell leukemia virus type I infection and chronic myelopathy. Brain Pathol. 3, 1–10 (1993). This article provides a classic description of the neuropathology of HAM/TSP.

    Article  CAS  PubMed  Google Scholar 

  34. Aye, M. M. et al. Histopathological analysis of four autopsy cases of HTLV-I-associated myelopathy/tropical spastic paraparesis: inflammatory changes occur simultaneously in the entire central nervous system. Acta Neuropathol. 100, 245–252 (2000).

    Article  CAS  PubMed  Google Scholar 

  35. Izumo, S. et al. Neuropathology of HTLV-I-associated myelopathy—a report of two autopsy cases. Acta Paediatr. Jpn 34, 358–364 (1992).

    Article  CAS  PubMed  Google Scholar 

  36. Izumo, S. Neuropathology of HTLV-1-associated myelopathy (HAM/TSP). Neuropathology 30, 480–485 (2010).

    PubMed  Google Scholar 

  37. Umehara, F. et al. Immunocytochemical analysis of the cellular infiltrate in the spinal cord lesions in HTLV-I-associated myelopathy. J. Neuropathol. Exp. Neurol. 52, 424–430 (1993).

    Article  CAS  PubMed  Google Scholar 

  38. Alcindor, F. et al. Imaging of human T-lymphotropic virus type I-associated chronic progressive myeloneuropathies. Neuroradiology 35, 69–74 (1992).

    Article  CAS  PubMed  Google Scholar 

  39. Shakudo, M., Inoue, Y. & Tsutada, T. HTLV-I-associated myelopathy: acute progression and atypical MR findings. AJNR Am. J. Neuroradiol. 20, 1417–1421 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Mochizuki, M. et al. Uveitis associated with human T lymphotropic virus type I: seroepidemiologic, clinical, and virologic studies. J. Infect. Dis. 166, 943–944 (1992).

    Article  CAS  PubMed  Google Scholar 

  41. Morgan, O. S., Rodgers-Johnson, P., Mora, C. & Char, G. HTLV-1 and polymyositis in Jamaica. Lancet 2, 1184–1187 (1989).

    Article  CAS  PubMed  Google Scholar 

  42. Lee, R. & Schwartz, R. A. Human T-lymphotrophic virus type 1-associated infective dermatitis: a comprehensive review. J. Am. Acad. Dermatol. 64, 152–160 (2011).

    Article  PubMed  Google Scholar 

  43. Nishioka, K. et al. Chronic inflammatory arthropathy associated with HTLV-I. Lancet 1, 441 (1989).

    Article  CAS  PubMed  Google Scholar 

  44. Jeffery, K. J. et al. HLA alleles determine human T-lymphotropic virus-I (HTLV-I) proviral load and the risk of HTLV-I-associated myelopathy. Proc. Natl Acad. Sci. USA 96, 3848–3853 (1999). This paper identifies the protective effect of HLA class I alleles in HTLV-1 infection and provides the first description of population-level protection by a single MHC allele in a natural virus infection.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Vine, A. M. et al. Polygenic control of human T lymphotropic virus type I (HTLV-I) provirus load and the risk of HTLV-I-associated myelopathy/tropical spastic paraparesis. J. Infect. Dis. 186, 932–939 (2002).

    Article  CAS  PubMed  Google Scholar 

  46. Cook, L. B., Rowan, A. G., Melamed, A., Taylor, G. P. & Bangham, C. R. HTLV-1-infected T cells contain a single integrated provirus in natural infection. Blood 120, 3488–3490 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Bangham, C. R. CTL quality and the control of human retroviral infections. Eur. J. Immunol. 39, 1700–1712 (2009).

    Article  CAS  PubMed  Google Scholar 

  48. Demontis, M. A., Hilburn, S. & Taylor, G. P. Human T cell lymphotropic virus type 1 viral load variability and long-term trends in asymptomatic carriers and in patients with human T cell lymphotropic virus type 1-related diseases. AIDS Res. Hum. Retroviruses 29, 359–364 (2013).

    Article  CAS  PubMed  Google Scholar 

  49. Taylor, G. P. et al. Prospective study of HTLV-I infection in an initially asymptomatic cohort. J. Acquir. Immune Defic. Syndr. 22, 92–100 (1999).

    Article  CAS  PubMed  Google Scholar 

  50. Lima, M. A., Harab, R. C., Schor, D., Andrada-Serpa, M. J. & Araujo, A. Q. Subacute progression of human T-lymphotropic virus type I-associated myelopathy/tropical spastic paraparesis. J. Neurovirol. 13, 468–473 (2007).

    Article  CAS  PubMed  Google Scholar 

  51. Martin, F., Fedina, A., Youshya, S. & Taylor, G. P. A. 15-year prospective longitudinal study of disease progression in patients with HTLV-1 associated myelopathy in the UK. J. Neurol. Neurosurg. Psychiatry 81, 1336–1340 (2010).

    Article  PubMed  Google Scholar 

  52. Daenke, S., Nightingale, S., Cruickshank, J. K. & Bangham, C. R. Sequence variants of human T-cell lymphotropic virus type I from patients with tropical spastic paraparesis and adult T-cell leukemia do not distinguish neurological from leukemic isolates. J. Virol. 64, 1278–1282 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Komurian, F., Pelloquin, F. & de The, G. In vivo genomic variability of human T-cell leukemia virus type I depends more upon geography than upon pathologies. J. Virol. 65, 3770–3778 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Slattery, J. P., Franchini, G. & Gessain, A. Genomic evolution, patterns of global dissemination, and interspecies transmission of human and simian T-cell leukemia/lymphotropic viruses. Genome Res. 9, 525–540 (1999).

    CAS  PubMed  Google Scholar 

  55. Vandamme, A. M., Liu, H. F., Goubau, P. & Desmyter, J. Primate T-lymphotropic virus type I LTR sequence variation and its phylogenetic analysis: compatibility with an African origin of PTLV-I. Virology 202, 212–223 (1994).

    Article  CAS  PubMed  Google Scholar 

  56. Furukawa, Y. et al. Phylogenetic subgroups of human T cell lymphotropic virus (HTLV) type I in the tax gene and their association with different risks for HTLV-I-associated myelopathy/tropical spastic paraparesis. J. Infect. Dis. 182, 1343–1349 (2000).

    Article  CAS  PubMed  Google Scholar 

  57. Bangham, C. R. M. in Genetic Susceptibility to Infectious Diseases (eds Kaslow, R. A., McNicholl, J. M. & Hill, A. V. S.) 303–317 (Oxford Univ. Press, 2008).

    Google Scholar 

  58. Jeffery, K. J. et al. The influence of HLA class I alleles and heterozygosity on the outcome of human T cell lymphotropic virus type I infection. J. Immunol. 165, 7278–7284 (2000).

    Article  CAS  PubMed  Google Scholar 

  59. Catalan-Soares, B. C. et al. HLA class I alleles in HTLV-1-associated myelopathy and asymptomatic carriers from the Brazilian cohort GIPH. Med. Microbiol. Immunol. 198, 1–3 (2009).

    Article  CAS  PubMed  Google Scholar 

  60. Talledo, M. et al. Evaluation of host genetic and viral factors as surrogate markers for HTLV-1-associated myelopathy/tropical spastic paraparesis in Peruvian HTLV-1-infected patients. J. Med. Virol. 82, 460–466 (2010).

    Article  CAS  PubMed  Google Scholar 

  61. Deschamps, R. et al. Absence of consistent association between human leukocyte antigen-I and -II alleles and human T-lymphotropic virus type 1 (HTLV-1)-associated myelopathy/tropical spastic paraparesis risk in an HTLV-1 French Afro-Caribbean population. Int. J. Infect. Dis. 14, e986–e990 (2010).

    Article  PubMed  Google Scholar 

  62. Trevino, A. et al. Association between HLA alleles and HAM/TSP in individuals infected with HTLV-1. J. Neurol. 260, 2551–2555 (2013).

    Article  PubMed  Google Scholar 

  63. Gadelha, S. R. et al. Correlation between polymorphisms at interleukin-6 but not at interleukin-10 promoter and the risk of human T lymphotropic virus type I-associated myelopathy/tropical spastic paraparesis in Brazilian individuals. J. Med. Virol. 80, 2141–2146 (2008).

    Article  CAS  PubMed  Google Scholar 

  64. Sabouri, A. H. et al. Polymorphism in the interleukin-10 promoter affects both provirus load and the risk of human T lymphotropic virus type I-associated myelopathy/tropical spastic paraparesis. J. Infect. Dis. 190, 1279–1285 (2004).

    Article  CAS  PubMed  Google Scholar 

  65. Assone, T. et al. IL28B gene polymorphism SNP rs8099917 genotype GG is associated with HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP) in HTLV-1 carriers. PLoS Negl. Trop. Dis. 8, e3199 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Nozuma, S. et al. Familial clusters of HTLV-1-associated myelopathy/tropical spastic paraparesis. PLoS ONE 9, e86144 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Lima, M. A., Bica, R. B. & Araujo, A. Q. Gender influence on the progression of HTLV-I associated myelopathy/tropical spastic paraparesis. J. Neurol. Neurosurg. Psychiatry 76, 294–296 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Toro, C., Rodes, B., Poveda, E. & Soriano, V. Rapid development of subacute myelopathy in three organ transplant recipients after transmission of human T-cell lymphotropic virus type I from a single donor. Transplantation 75, 102–104 (2003).

    Article  CAS  PubMed  Google Scholar 

  69. Osame, M. et al. Nationwide survey of HTLV-I-associated myelopathy in Japan: association with blood transfusion. Ann. Neurol. 28, 50–56 (1990). This paper demonstrates that blood-donor screening can lead to a reduction in the incidence of HAM/TSP.

    Article  CAS  PubMed  Google Scholar 

  70. Emmanouilides, C. E. & Territo, M. HTLV-I-associated myelopathy following allogeneic bone marrow transplantation. Bone Marrow Transplant. 24, 205–206 (1999).

    Article  CAS  PubMed  Google Scholar 

  71. Kaplan, J. E. et al. HTLV-I-associated myelopathy associated with blood transfusion in the United States: epidemiologic and molecular evidence linking donor and recipient. Neurology 41, 192–197 (1991).

    Article  CAS  PubMed  Google Scholar 

  72. Journo, C. & Mahieux, R. HTLV-1 and innate immunity. Viruses 3, 1374–1394 (2011). A review of recent evidence on the role of innate immunity in HTLV-1 infection.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Kannagi, M., Hasegawa, A., Takamori, A., Kinpara, S. & Utsunomiya, A. The roles of acquired and innate immunity in human T-cell leukemia virus type 1-mediated diseases. Front. Microbiol. 3, 323 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Tattermusch, S. et al. Systems biology approaches reveal a specific IFN-inducible signature in HTLV-1 associated myelopathy. PLoS Pathog. 8, e1002480 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Araya, N. et al. HTLV-1 induces a TH1-like state in CD4+CCR4+ T cells. J. Clin. Invest. 124, 3431–3442 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Hanon, E. et al. High production of interferon γ but not interleukin-2 by human T-lymphotropic virus type I-infected peripheral blood mononuclear cells. Blood 98, 721–726 (2001).

    Article  CAS  PubMed  Google Scholar 

  77. Kinpara, S. et al. Stromal cell-mediated suppression of human T-cell leukemia virus type 1 expression in vitro and in vivo by type I interferon. J. Virol. 83, 5101–5108 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  78. Cachat, A. et al. Alpha interferon restricts human T-lymphotropic virus type 1 and 2 de novo infection through PKR activation. J. Virol. 87, 13386–13396 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Bangham, C. R. & Osame, M. Cellular immune response to HTLV-1. Oncogene 24, 6035–6046 (2005).

    Article  CAS  PubMed  Google Scholar 

  80. Jacobson, S. Immunopathogenesis of human T cell lymphotropic virus type I-associated neurologic disease. J. Infect. Dis. 186 (Suppl. 2), S187–S192 (2002).

    Article  PubMed  Google Scholar 

  81. Goon, P. K. et al. Human T cell lymphotropic virus (HTLV) type-1-specific CD8+ T cells: frequency and immunodominance hierarchy. J. Infect. Dis. 189, 2294–2298 (2004).

    Article  PubMed  Google Scholar 

  82. Jacobson, S., Shida, H., McFarlin, D. E., Fauci, A. S. & Koenig, S. Circulating CD8+ cytotoxic T lymphocytes specific for HTLV-I pX in patients with HTLV-I associated neurological disease. Nature 348, 245–248 (1990).

    Article  CAS  PubMed  Google Scholar 

  83. Kannagi, M. et al. Predominant recognition of human T cell leukemia virus type I (HTLV-I) pX gene products by human CD8+ cytotoxic T cells directed against HTLV-I-infected cells. Int. Immunol. 3, 761–767 (1991).

    Article  CAS  PubMed  Google Scholar 

  84. Kagi, D., Ledermann, B., Burki, K., Zinkernagel, R. M. & Hengartner, H. Molecular mechanisms of lymphocyte-mediated cytotoxicity and their role in immunological protection and pathogenesis in vivo .. Annu. Rev. Immunol. 14, 207–232 (1996).

    Article  CAS  PubMed  Google Scholar 

  85. Asquith, B. & Bangham, C. R. Quantifying HTLV-I dynamics. Immunol. Cell Biol. 85, 280–286 (2007).

    Article  CAS  PubMed  Google Scholar 

  86. Nowak, M. A. & Bangham, C. R. Population dynamics of immune responses to persistent viruses. Science 272, 74–79 (1996).

    Article  CAS  PubMed  Google Scholar 

  87. MacNamara, A. et al. HLA class I binding of HBZ determines outcome in HTLV-1 infection. PLoS Pathog. 6, e1001117 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Seich al Basatena, N. K. et al. KIR2DL2 enhances protective and detrimental HLA class I-mediated immunity in chronic viral infection. PLoS Pathog. 7, e1002270 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Goon, P. K. et al. High frequencies of TH1-type CD4+ T cells specific to HTLV-1 Env and Tax proteins in patients with HTLV-1-associated myelopathy/tropical spastic paraparesis. Blood 99, 3335–3341 (2002).

    Article  CAS  PubMed  Google Scholar 

  90. Ando, H. et al. Positive feedback loop via astrocytes causes chronic inflammation in virus-associated myelopathy. Brain 136, 2876–2887 (2013).

    Article  PubMed  Google Scholar 

  91. Hashioka, S., Klegeris, A., Schwab, C., Yu, S. & McGeer, P. L. Differential expression of interferon-γ receptor on human glial cells in vivo and in vitro.. J. Neuroimmunol. 225, 91–99 (2010).

    Article  CAS  PubMed  Google Scholar 

  92. Toulza, F., Heaps, A., Tanaka, Y., Taylor, G. P. & Bangham, C. R. High frequency of CD4+FoxP3+ cells in HTLV-1 infection: inverse correlation with HTLV-1-specific CTL response. Blood 111, 5047–5053 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Toulza, F. et al. FoxP3+ regulatory T cells are distinct from leukemia cells in HTLV-1-associated adult T-cell leukemia. Int. J. Cancer 125, 2375–2382 (2009).

    Article  CAS  PubMed  Google Scholar 

  94. Toulza, F. et al. Human T-lymphotropic virus type 1-induced CC chemokine ligand 22 maintains a high frequency of functional FoxP3+ regulatory T cells. J. Immunol. 185, 183–189 (2010).

    Article  CAS  PubMed  Google Scholar 

  95. Yamauchi, J. et al. Mogamulizumab, an anti-CCR4 antibody, targets human T-lymphotropic virus type 1-infected CD8+ and CD4+ T cells to treat associated myelopathy. J. Infect. Dis. 211, 238–248 (2015).

    Article  CAS  PubMed  Google Scholar 

  96. Tsukasaki, K. & Tobinai, K. Human T-cell lymphotropic virus type I-associated adult T-cell leukemia-lymphoma: new directions in clinical research. Clin. Cancer Res. 20, 5217–5225 (2014).

    Article  CAS  PubMed  Google Scholar 

  97. Hieshima, K. et al. Tax-inducible production of CC chemokine ligand 22 by human T cell leukemia virus type 1 (HTLV-1)-infected T cells promotes preferential transmission of HTLV-1 to CCR4-expressing CD4+ T cells. J. Immunol. 180, 931–939 (2008).

    Article  CAS  PubMed  Google Scholar 

  98. Yamano, Y. et al. Virus-induced dysfunction of CD4+CD25+ T cells in patients with HTLV-I-associated neuroimmunological disease. J. Clin. Invest. 115, 1361–1368 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Yamamoto-Taguchi, N. et al. HTLV-1 bZIP factor induces inflammation through labile Foxp3 expression. PLoS Pathog. 9, e1003630 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Fujihara, K., Itoyama, Y., Yu, F., Kubo, C. & Goto, I. Cellular immune surveillance against HTLV-I infected T lymphocytes in HTLV-I associated myelopathy/tropical spastic paraparesis (HAM/TSP). J. Neurol. Sci. 105, 99–107 (1991).

    Article  CAS  PubMed  Google Scholar 

  101. Saito, M. et al. Low frequency of CD94/NKG2A+ T lymphocytes in patients with HTLV-1-associated myelopathy/tropical spastic paraparesis, but not in asymptomatic carriers. Blood 102, 577–584 (2003).

    Article  CAS  PubMed  Google Scholar 

  102. Yu, F., Itoyama, Y., Fujihara, K. & Goto, I. Natural killer (NK) cells in HTLV-I-associated myelopathy/tropical spastic paraparesis-decrease in NK cell subset populations and activity in HTLV-I seropositive individuals. J. Neuroimmunol. 33, 121–128 (1991).

    Article  CAS  PubMed  Google Scholar 

  103. Hisada, M. et al. Virus markers associated with vertical transmission of human T lymphotropic virus type 1 in Jamaica. Clin. Infect. Dis. 34, 1551–1557 (2002).

    Article  PubMed  Google Scholar 

  104. Saito, M. et al. The neutralizing function of the anti-HTLV-1 antibody is essential in preventing in vivo transmission of HTLV-1 to human T cells in NOD-SCID/γcnull (NOG) mice. Retrovirology 11, 74 (2014).

    PubMed  PubMed Central  Google Scholar 

  105. Tanaka, Y. et al. Induction of antibody responses that neutralize human T-cell leukemia virus type I infection in vitro and in vivo by peptide immunization. J. Virol. 68, 6323–6331 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Overbaugh, J. & Bangham, C. R. Selection forces and constraints on retroviral sequence variation. Science 292, 1106–1109 (2001).

    Article  CAS  PubMed  Google Scholar 

  107. Levin, M. C. et al. Autoimmunity due to molecular mimicry as a cause of neurological disease. Nat. Med. 8, 509–513 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Yukitake, M. et al. Significantly increased antibody response to heterogeneous nuclear ribonucleoproteins in cerebrospinal fluid of multiple sclerosis patients but not in patients with human T-lymphotropic virus type I-associated myelopathy/tropical spastic paraparesis. J. Neurovirol. 14, 130–135 (2008).

    Article  CAS  PubMed  Google Scholar 

  109. Furukawa, Y. et al. Frequent clonal proliferation of human T-cell leukemia virus type 1 (HTLV-1)-infected T cells in HTLV-1-associated myelopathy (HAM-TSP). Blood 80, 1012–1016 (1992).

    CAS  PubMed  Google Scholar 

  110. Bangham, C. R., Cook, L. B. & Melamed, A. HTLV-1 clonality in adult T-cell leukaemia and non-malignant HTLV-1 infection. Semin. Cancer Biol. 26, 89–98 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Ijichi, S. et al. An autoaggressive process against bystander tissues in HTLV-I-infected individuals: a possible pathomechanism of HAM/TSP. Med. Hypotheses 41, 542–547 (1993).

    Article  CAS  PubMed  Google Scholar 

  112. Daenke, S. & Bangham, C. R. Do T cells cause HTLV-1-associated disease?: a taxing problem. Clin. Exp. Immunol. 96, 179–181 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Nose, H. et al. Clinical symptoms and the odds of human T-cell lymphotropic virus type 1-associated myelopathy/tropical spastic paraparesis (HAM/TSP) in healthy virus carriers: application of best-fit logistic regression equation based on host genotype, age, and provirus load. J. Neurovirol. 12, 171–177 (2006).

    Article  CAS  PubMed  Google Scholar 

  114. Hodson, A., Laydon, D. J., Bain, B. J., Fields, P. A. & Taylor, G. P. Pre-morbid human T-lymphotropic virus type I proviral load, rather than percentage of abnormal lymphocytes, is associated with an increased risk of aggressive adult T-cell leukemia/lymphoma. Haematologica 98, 385–388 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  115. Osame, M. in Human Retrovirology: HTLV (ed. Blattner, W. A.) 191–197 (Raven Press, 1990). This book chapter provides the WHO criteria for the diagnosis of HAM/TSP; see also reference 116.

    Google Scholar 

  116. De Castro-Costa, C. M. et al. Proposal for diagnostic criteria of tropical spastic paraparesis/HTLV-I-associated myelopathy (TSP/HAM). AIDS Res. Hum. Retroviruses 22, 931–935 (2006). This paper provides the staged criteria for the diagnosis of HAM/TSP; see also reference 115.

    Article  CAS  PubMed  Google Scholar 

  117. Castillo, J. L., Cea, J. G., Verdugo, R. J. & Cartier, L. Sensory dysfunction in HTLV-I-associated myelopathy/tropical spastic paraparesis. A comprehensive neurophysiological study. Eur. Neurol. 42, 17–22 (1999).

    Article  CAS  PubMed  Google Scholar 

  118. Oliveira, P. et al. Prevalence of erectile dysfunction in HTLV-1-infected patients and its association with overactive bladder. Urology 75, 1100–1103 (2010).

    Article  PubMed  Google Scholar 

  119. World Health Organization. Weekly epidemiological record. Wkly Epidem. Rec. 49, 377–384 (1989).

    Google Scholar 

  120. Araujo, A. Q. & Silva, M. T. The HTLV-1 neurological complex. Lancet Neurol. 5, 1068–1076 (2006).

    Article  CAS  PubMed  Google Scholar 

  121. Franzoi, A. C. & Araujo, A. Q. Disability profile of patients with HTLV-I-associated myelopathy/tropical spastic paraparesis using the Functional Independence Measure (FIM). Spinal Cord 43, 236–240 (2005).

    Article  CAS  PubMed  Google Scholar 

  122. Silva, M. T., Mattos, P., Alfano, A. & Araujo, A. Q. Neuropsychological assessment in HTLV-1 infection: a comparative study among TSP/HAM, asymptomatic carriers, and healthy controls. J. Neurol. Neurosurg. Psychiatry 74, 1085–1089 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Leon-Sarmiento, F. E., Calderon, A. & Hernandez, H. G. Two Babinski signs in seropositive (HAM) and seronegative tropical spastic paraparesis. Arq. Neuropsiquiatr. 66, 695–697 (2008).

    Article  PubMed  Google Scholar 

  124. Lezin, A. et al. Human T lymphotropic virus type I (HTLV-I) proviral load in cerebrospinal fluid: a new criterion for the diagnosis of HTLV-I-associated myelopathy/tropical spastic paraparesis? J. Infect. Dis. 191, 1830–1834 (2005).

    Article  PubMed  Google Scholar 

  125. Puccioni-Sohler, M. et al. Diagnosis of HAM/TSP based on CSF proviral HTLV-I DNA and HTLV-I antibody index. Neurology 57, 725–727 (2001).

    Article  CAS  PubMed  Google Scholar 

  126. Narikawa, K. et al. CSF-chemokines in HTLV-I-associated myelopathy: CXCL10 up-regulation and therapeutic effect of interferon-α. J. Neuroimmunol. 159, 177–182 (2005). This paper proposes CXCL10 in CSF as a biomarker of HAM/TSP.

    Article  CAS  PubMed  Google Scholar 

  127. Sato, T. et al. CSF CXCL10, CXCL9, and neopterin as candidate prognostic biomarkers for HTLV-1-associated myelopathy/tropical spastic paraparesis. PLoS Negl. Trop. Dis. 7, e2479 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Guerreiro, J. B. et al. Levels of serum chemokines discriminate clinical myelopathy associated with human T lymphotropic virus type 1 (HTLV-1)/tropical spastic paraparesis (HAM/TSP) disease from HTLV-1 carrier state. Clin. Exp. Immunol. 145, 296–301 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Kirk, P. D. W. et al. Plasma proteome analysis in HTLV-1-associated myelopathy/tropical spastic paraparesis. Retrovirology 8, 81 (2011). This paper identifies plasma biomarkers of HAM/TSP.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Umehara, F. et al. Chronic progressive cervical myelopathy with HTLV-I infection: variant form of HAM/TSP? Neurology 63, 1276–1280 (2004).

    Article  CAS  PubMed  Google Scholar 

  131. Umehara, F. et al. Abnormalities of spinal magnetic resonance images implicate clinical variability in human T-cell lymphotropic virus type I-associated myelopathy. J. Neurovirol. 13, 260–267 (2007).

    Article  PubMed  Google Scholar 

  132. Yukitake, M. et al. Incidence and clinical significances of human T-cell lymphotropic virus type I-associated myelopathy with T2 hyperintensity on spinal magnetic resonance images. Intern. Med. 47, 1881–1886 (2008).

    Article  PubMed  Google Scholar 

  133. Pennington, J. et al. Persistence of HTLV-I in blood components after leukocyte depletion. Blood 100, 677–681 (2002).

    Article  CAS  PubMed  Google Scholar 

  134. Ozden, S., Seilhean, D., Gessain, A., Hauw, J. J. & Gout, O. Severe demyelinating myelopathy with low human T cell lymphotropic virus type 1 expression after transfusion in an immunosuppressed patient. Clin. Infect. Dis. 34, 855–860 (2002).

    Article  PubMed  Google Scholar 

  135. Hino, S. Establishment of the milk-borne transmission as a key factor for the peculiar endemicity of human T-lymphotropic virus type 1 (HTLV-1): the ATL Prevention Program Nagasaki. Proc. Jpn Acad. Ser. B Phys. Biol. Sci. 87, 152–166 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  136. Oki, T. et al. A sero-epidemiological study on mother-to-child transmission of HTLV-I in southern Kyushu, Japan. Asia Oceania J. Obstet. Gynaecol. 18, 371–377 (1992).

    Article  CAS  PubMed  Google Scholar 

  137. Takezaki, T. et al. Short-term breast-feeding may reduce the risk of vertical transmission of HTLV-I. The Tsushima ATL Study Group. Leukemia 11 (Suppl. 3), 60–62 (1997).

    PubMed  Google Scholar 

  138. Gotuzzo, E. et al. Clinical characteristics of patients in Peru with human T cell lymphotropic virus type 1-associated tropical spastic paraparesis. Clin. Infect. Dis. 39, 939–944 (2004).

    Article  CAS  PubMed  Google Scholar 

  139. Nakagawa, M. et al. HTLV-I-associated myelopathy: analysis of 213 patients based on clinical features and laboratory findings. J. Neurovirol. 1, 50–61 (1995).

    Article  CAS  PubMed  Google Scholar 

  140. Araujo, A. Q., Leite, A. C., Dultra, S. V. & Andrada-Serpa, M. J. Progression of neurological disability in HTLV-I-associated myelopathy/tropical spastic paraparesis (HAM/TSP). J. Neurol. Sci. 129, 147–151 (1995).

    Article  CAS  PubMed  Google Scholar 

  141. Nakagawa, M. et al. Therapeutic trials in 200 patients with HTLV-I-associated myelopathy/ tropical spastic paraparesis. J. Neurovirol. 2, 345–355 (1996).

    Article  CAS  PubMed  Google Scholar 

  142. Croda, M. G. et al. Corticosteroid therapy in TSP/HAM patients: the results from a 10 years open cohort. J. Neurol. Sci. 269, 133–137 (2008).

    Article  CAS  PubMed  Google Scholar 

  143. Macchi, B. et al. Susceptibility of primary HTLV-1 isolates from patients with HTLV-1-associated myelopathy to reverse transcriptase inhibitors. Viruses 3, 469–483 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Taylor, G. P. et al. Zidovudine plus lamivudine in human T-lymphotropic virus type-I-associated myelopathy: a randomised trial. Retrovirology 3, 63 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  145. Lezin, A. et al. Histone deacetylase mediated transcriptional activation reduces proviral loads in HTLV-1 associated myelopathy/tropical spastic paraparesis patients. Blood 110, 3722–3728 (2007).

    Article  CAS  PubMed  Google Scholar 

  146. Kuroda, Y. et al. Systemic interferon-α in the treatment of HTLV-I-associated myelopathy. Acta Neurol. Scand. 86, 82–86 (1992).

    Article  CAS  PubMed  Google Scholar 

  147. Yamasaki, K. et al. Long-term, high dose interferon-α treatment in HTLV-I-associated myelopathy/tropical spastic paraparesis: a combined clinical, virological and immunological study. J. Neurol. Sci. 147, 135–144 (1997).

    Article  CAS  PubMed  Google Scholar 

  148. Martin, F. et al. Ciclosporin. A proof of concept study in patients with active, progressive HTLV-1 associated myelopathy/tropical spastic paraparesis. PLoS Negl. Trop. Dis. 6, e1675 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Ahmed, S. et al. Treatment of patients with HTLV-1-associated myelopathy with methotrexate. Retrovirology 11 (Suppl.1), 33 (2014).

    Article  Google Scholar 

  150. Shirabe, S. et al. Successful application of pentoxifylline in the treatment of HTLV-I associated myelopathy. J. Neurol. Sci. 151, 97–101 (1997).

    Article  CAS  PubMed  Google Scholar 

  151. Harrington, W. J. Jr et al. Tropical spastic paraparesis/HTLV-1-associated myelopathy (TSP/HAM): treatment with an anabolic steroid danazol. AIDS Res. Hum. Retroviruses 7, 1031–1034 (1991).

    Article  PubMed  Google Scholar 

  152. Nakamura, T. et al. Efficacy of prosultiamine treatment in patients with human T lymphotropic virus type I-associated myelopathy/tropical spastic paraparesis: results from an open-label clinical trial. BMC Med. 11, 182 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Nakamura, T. et al. Pentosan polysulfate treatment ameliorates motor function with increased serum soluble vascular cell adhesion molecule-1 in HTLV-1-associated neurologic disease. J. Neurovirol. 20, 269–277 (2014).

    Article  CAS  PubMed  Google Scholar 

  154. Araujo, A., Lima, M. A. & Silva, M. T. Human T-lymphotropic virus 1 neurologic disease. Curr. Treat. Opt. Neurol. 10, 193–200 (2008). A review of treatment regimens for HAM/TSP.

    Article  Google Scholar 

  155. Martin, F. & Taylor, G. P. Prospects for the management of human T-cell lymphotropic virus type 1-associated myelopathy. AIDS Rev. 13, 161–170 (2011).

    PubMed  Google Scholar 

  156. Mi, S., Pepinsky, R. B. & Cadavid, D. Blocking LINGO-1 as a therapy to promote CNS repair: from concept to the clinic. CNS Drugs 27, 493–503 (2013).

    Article  CAS  PubMed  Google Scholar 

  157. Martins, J. V., Baptista, A. F. & Araujo Ade, Q. Quality of life in patients with HTLV-I associated myelopathy/tropical spastic paraparesis. Arq. Neuropsiquiatr. 70, 257–261 (2012).

    Article  PubMed  Google Scholar 

  158. Shublaq, M., Orsini, M. & Puccioni-Sohler, M. Implications of HAM/TSP functional incapacity in the quality of life. Arq. Neuropsiquiatr. 69, 208–211 (2011).

    Article  PubMed  Google Scholar 

  159. Strober, L. B. Fatigue in multiple sclerosis: a look at the role of poor sleep. Front. Neurol. 6, 21 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  160. Diniz, M. S., Feldner, P. C., Castro, R. A., Sartori, M. G. & Girao, M. J. Impact of HTLV-I in quality of life and urogynecologic parameters of women with urinary incontinence. Eur. J. Obstet. Gynecol. Reprod. Biol. 147, 230–233 (2009).

    Article  PubMed  Google Scholar 

  161. Netto, E. C. & Brites, C. Characteristics of chronic pain and its impact on quality of life of patients with HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP). Clin. J. Pain 27, 131–135 (2011).

    Article  PubMed  Google Scholar 

  162. de Castro-Costa, C. M. et al. Pain in tropical spastic paraparesis/HTLV-I associated myelopathy patients. Arq. Neuropsiquiatr. 67, 866–870 (2009).

    Article  PubMed  Google Scholar 

  163. Donnelly, E. M., Lamanna, J. & Boulis, N. M. Stem cell therapy for the spinal cord. Stem Cell Res. Ther. 3, 24 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Hallbergson, A. F., Gnatenco, C. & Peterson, D. A. Neurogenesis and brain injury: managing a renewable resource for repair. J. Clin. Invest. 112, 1128–1133 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Steward, M. M. Sridhar, A. & Meyer, J. S. Neural regeneration. Curr. Top. Microbiol. Immunol. 367, 163–191 (2013).

    CAS  PubMed  Google Scholar 

  166. Coffin, J., Hughes, S. E. & Varmus, H. E. (eds) Retroviruses (Cold Spring Harbor Laboratory Press, 1997).

    Google Scholar 

  167. Bai, X. T. & Nicot, C. Overview on HTLV-1 p12, p8, p30, p13: accomplices in persistent infection and viral pathogenesis. Front. Microbiol. 3, 400 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Boxus, M. & Willems, L. Mechanisms of HTLV-1 persistence and transformation. Br. J. Cancer 101, 1497–1501 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Matsuoka, M. & Jeang, K. T. Human T-cell leukemia virus type 1 (HTLV-1) and leukemic transformation: viral infectivity, Tax, HBZ and therapy. Oncogene 30, 1379–1389 (2011).

    Article  CAS  PubMed  Google Scholar 

  170. Matsuoka, M. & Yasunaga, J. Human T-cell leukemia virus type 1: replication, proliferation and propagation by Tax and HTLV-1 bZIP factor. Curr. Opin. Virol. 3, 684–691 (2013). A review that emphasizes the complementary and sometimes opposing roles of Tax and HBZ.

    Article  CAS  PubMed  Google Scholar 

  171. Yoshida, M. Multiple viral strategies of HTLV-1 for dysregulation of cell growth control. Annu. Rev. Immunol. 19, 475–496 (2001). A classic review of the molecular mechanisms of the effects of Tax and other HTLV-1 proteins on cell growth and transformation.

    Article  CAS  PubMed  Google Scholar 

  172. Satou, Y., Yasunaga, J., Yoshida, M. & Matsuoka, M. HTLV-I basic leucine zipper factor gene mRNA supports proliferation of adult T cell leukemia cells. Proc. Natl Acad. Sci. USA 103, 720–725 (2006). This paper shows that the HBZ gene of HTLV-1 is persistently expressed, even when the proviral plus-strand is silent; the HBZ gene products promote clonal persistence.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Igakura, T. et al. Spread of HTLV-I between lymphocytes by virus-induced polarization of the cytoskeleton. Science 299, 1713–1716 (2003). This paper identifies the virological synapse: a specialized cell–cell contact, induced by HTLV-1, across which the virus spreads from cell to cell.

    Article  CAS  PubMed  Google Scholar 

  174. Barnard, A. L., Igakura, T., Tanaka, Y., Taylor, G. P. & Bangham, C. R. Engagement of specific T-cell surface molecules regulates cytoskeletal polarization in HTLV-1-infected lymphocytes. Blood 106, 988–995 (2005).

    Article  CAS  PubMed  Google Scholar 

  175. Nejmeddine, M., Barnard, A. L., Tanaka, Y., Taylor, G. P. & Bangham, C. R. Human T-lymphotropic virus, type 1, tax protein triggers microtubule reorientation in the virological synapse. J. Biol. Chem. 280, 29653–29660 (2005).

    Article  CAS  PubMed  Google Scholar 

  176. Majorovits, E. et al. Human T-lymphotropic virus-1 visualized at the virological synapse by electron tomography. PLoS ONE 3, e2251 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Pais-Correia, A. M. et al. Biofilm-like extracellular viral assemblies mediate HTLV-1 cell-to-cell transmission at virological synapses. Nat. Med. 16, 83–89 (2010).

    Article  CAS  PubMed  Google Scholar 

  178. Maertens, G. N., Hare, S. & Cherepanov, P. The mechanism of retroviral integration from X-ray structures of its key intermediates. Nature 468, 326–329 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Morgan, O. S. et al. Abnormal peripheral lymphocytes in tropical spastic paraparesis. Lancet 2, 403–404 (1987).

    Article  CAS  PubMed  Google Scholar 

  180. Sacher, R. A. et al. Low prevalence of flower cells in U.S.A. blood donors infected with human T-lymphotrophic virus types I and II. Br. J. Haematol. 105, 758–763 (1999).

    Article  CAS  PubMed  Google Scholar 

  181. [No authors listed.] Flower cells of leukemia. Blood 115, 1668 (2010).

  182. Izumo, S. et al. Interferon-α is effective in HTLV-I-associated myelopathy: a multicenter, randomized, double-blind, controlled trial. Neurology 46, 1016–1021 (1996).

    Article  CAS  PubMed  Google Scholar 

  183. Arimura, K. et al. Safety and efficacy of interferon-α in 167 patients with human T-cell lymphotropic virus type 1-associated myelopathy. J. Neurovirol. 13, 364–372 (2007).

    Article  CAS  PubMed  Google Scholar 

  184. Oh, U. et al. Interferon-β1a therapy in human T-lymphotropic virus type I-associated neurologic disease. Ann. Neurol. 57, 526–534 (2005).

    Article  CAS  PubMed  Google Scholar 

  185. Andrada-Serpa, M. J., Schor, D., Araujo, A. Q. & Rumjanek, V. M. Immunological features of HTLV-I myelopathy in Rio de Janeiro, Brazil, and in vitro effects of cyclosporin A. J. Neurol. Sci. 139, 7–14 (1996).

    Article  CAS  PubMed  Google Scholar 

  186. Melo, A., Moura, L., Meireles, A. & Costa, G. Danazol. A new perspective in the treatment of HTLV-1 associated myelopathy (preliminary report). Arq. Neuropsiquiatr. 50, 402–403 (1992).

    Article  CAS  PubMed  Google Scholar 

  187. Kataoka, A., Imai, H., Inayoshi, S. & Tsuda, T. Intermittent high-dose vitamin C therapy in patients with HTLV-I associated myelopathy. J. Neurol. Neurosurg. Psychiatry 56, 1213–1216 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Moens, B. et al. Ascorbic acid has superior ex vivo antiproliferative, cell death-inducing and immunomodulatory effects over IFN-α in HTLV-1-associated myelopathy. PLoS Negl. Trop. Dis. 6, e1729 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Matsuo, H. et al. Plasmapheresis in treatment of human T-lymphotropic virus type-I associated myelopathy. Lancet 2, 1109–1113 (1988).

    Article  CAS  PubMed  Google Scholar 

  190. Lehky, T. J. et al. Detection of human T-lymphotropic virus type I (HTLV-I) tax RNA in the central nervous system of HTLV-I-associated myelopathy/tropical spastic paraparesis patients by in situ hybridization. Ann. Neurol. 37, 167–175 (1995).

    Article  CAS  PubMed  Google Scholar 

  191. Hill, S. A., Lloyd, P. A., McDonald, S., Wykoff, J. & Derse, D. Susceptibility of human T cell leukemia virus type I to nucleoside reverse transcriptase inhibitors. J. Infect. Dis. 188, 424–427 (2003).

    Article  CAS  PubMed  Google Scholar 

  192. Olindo, S. et al. Safety of long-term treatment of HAM/TSP patients with valproic acid. Blood 118, 6306–6309 (2011).

    Article  CAS  PubMed  Google Scholar 

  193. Sonoda, J. et al. HTLV-1 provirus load in peripheral blood lymphocytes of HTLV-1 carriers is diminished by green tea drinking. Cancer Sci. 95, 596–601 (2004).

    Article  CAS  PubMed  Google Scholar 

  194. Matsuzaki, T. et al. A prospective uncontrolled trial of fermented milk drink containing viable Lactobacillus casei strain Shirota in the treatment of HTLV-1 associated myelopathy/tropical spastic paraparesis. J. Neurol. Sci. 237, 75–81 (2005).

    Article  PubMed  Google Scholar 

  195. Nagasato, K. et al. Heparin treatment in patients with human T-lymphotropic virus type I (HTLV-I)-associated myelopathy: a preliminary study. J. Neurol. Sci. 115, 161–168 (1993).

    Article  CAS  PubMed  Google Scholar 

  196. Yamano, Y. & Sato, T. Clinical pathophysiology of human T-lymphotropic virus-type 1-associated myelopathy/tropical spastic paraparesis. Front. Microbiol. 3, 389 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. Ghai, A., Garg, N., Hooda, S. & Gupta, T. Spasticity — pathogenesis, prevention and treatment strategies. Saudi J. Anaesth. 7, 453–460 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  198. Dorsher, P. T. & McIntosh, P. M. Neurogenic bladder. Adv. Urol. 2012, 816274 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  199. Bove, A. et al. Consensus statement AIGO/SICCR diagnosis and treatment of chronic constipation and obstructed defecation (part II: treatment). World J. Gastroenterol. 18, 4994–5013 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  200. Dworkin, R. H., Jensen, M. P., Gammaitoni, A. R., Olaleye, D. O. & Galer, B. S. Symptom profiles differ in patients with neuropathic versus non-neuropathic pain. J. Pain 8, 118–126 (2007).

    Article  PubMed  Google Scholar 

  201. Moulin, D. E. et al. Pharmacological management of chronic neuropathic pain — consensus statement and guidelines from the Canadian Pain Society. Pain Res. Manag. 12, 13–21 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  202. White, A. P., Arnold, P. M., Norvell, D. C., Ecker, E. & Fehlings, M. G. Pharmacologic management of chronic low back pain: synthesis of the evidence. Spine 36, S131–S143 (2011).

    Article  PubMed  Google Scholar 

  203. Britto, V. L., Correa, R. & Vincent, M. B. Proprioceptive neuromuscular facilitation in HTLV-I-associated myelopathy/tropical spastic paraparesis. Rev. Soc. Bras. Med. Trop. 47, 24–29 (2014).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank A. Coler-Reilly, A. Rowan and M. Bangham for comments on the manuscript. C.R.M.B. is a Wellcome Trust Senior Investigator and is supported by the Imperial College National Institute for Health Research Biomedical Research Centre, the Medical Research Council, and Leukaemia and Lymphoma Research. This work was partially supported by the project “Research on Measures for Intractable Disease” by a matching fund subsidy from the Ministry of Health, Labour and Welfare, Japan.

Author information

Authors and Affiliations

Authors

Contributions

Introduction (C.R.M.B.); Epidemiology (G.P.T.); Mechanisms/pathophysiology (C.R.M.B. and Y.Y.); Diagnosis, screening and prevention (G.P.T. and A.A.); Management (A.A. and Y.Y); Quality of life (Y.Y.); Outlook (C.R.M.B.); overview of Primer (C.R.M.B., G.P.T., Y.Y. and A.A.).

Corresponding author

Correspondence to Charles R. M. Bangham.

Ethics declarations

Competing interests

The authors declare no competing interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bangham, C., Araujo, A., Yamano, Y. et al. HTLV-1-associated myelopathy/tropical spastic paraparesis. Nat Rev Dis Primers 1, 15012 (2015). https://doi.org/10.1038/nrdp.2015.12

Download citation

  • Published:

  • DOI: https://doi.org/10.1038/nrdp.2015.12

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing