Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Dissecting fibrosis: therapeutic insights from the small-molecule toolbox

Key Points

  • The search for new therapeutics for fibrosis has recently increased owing to recent drug approvals coupled with advances in mechanistic insight and a high unmet need. This Review provides a summary of clinical, pharmacological and structural data relating to small molecules for treating fibrosis of the lung, liver, kidney and skin.

  • Dysregulated extracellular matrix (ECM) turnover can lead to the net accumulation of connective tissue and fibrosis — a frequent, pathological route to organ failure. Much more attention is now being paid to the pathobiology of fibrosis in different organs, with a view to understanding the common mechanisms that drive excessive tissue scarring.

  • A 'fibrosis toolbox' consisting of small molecules at various stages of drug development has been collated and may be used to perturb the vast array of targets and pathways implicated in fibroproliferative diseases. Compounds in preclinical and clinical research are described together with small molecules that are administered as combination therapy.

  • Although there are no approved therapies for advanced liver or kidney fibrosis, two small molecules, pirfenidone and nintedanib, were recently approved for idiopathic pulmonary fibrosis. These medicines are discussed with respect to mode of action, selectivity profile and, in the case of pirfenidone, entry into other fibrotic conditions outside the lung.

  • Transforming growth factor-β (TGFβ) is the cardinal pro-fibrotic mediator, and modulation of signalling or blocking activation of the latent TGFβ complex are possible intervention strategies. Components of the ECM can be directly targeted, and our knowledge of the contribution of mechanobiology and tissue compliance to chronic remodelling is just starting to evolve.

  • Current drug discovery approaches such as phenotypic screening, polypharmacology and combination therapy may identify the next wave of efficacious small molecules needed to treat fibrotic conditions. Whereas halting disease progression seems feasible, a cure or even reversal of established disease requires much more attention, and research in these areas is just beginning.

Abstract

Fibrosis, which leads to progressive loss of tissue function and eventual organ failure, has been estimated to contribute to ~45% of deaths in the developed world, and so new therapeutics to modulate fibrosis are urgently needed. Major advances in our understanding of the mechanisms underlying pathological fibrosis are supporting the search for such therapeutics, and the recent approval of two anti-fibrotic drugs for idiopathic pulmonary fibrosis has demonstrated the tractability of this area for drug discovery. This Review examines the pharmacology and structural information for small molecules being evaluated for lung, liver, kidney and skin fibrosis. In particular, we discuss the insights gained from the use of these pharmacological tools, and how these entities can inform, and probe, emerging insights into disease mechanisms, including the potential for future drug combinations.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Raghu, G., Weycker, D., Edelsberg, J., Bradford, W. Z. & Oster, G. Incidence and prevalence of idiopathic pulmonary fibrosis. Am. J. Respir. Crit. Care Med. 174, 810–816 (2006).

    Article  PubMed  Google Scholar 

  2. Olson, A. L. et al. Mortality from pulmonary fibrosis increased in the United States from 1992 to 2003. Am. J. Respir. Crit. Care Med. 176, 277–284 (2007).

    Article  PubMed  Google Scholar 

  3. Allison, M. Stromedix acquisition signals growing interest in fibrosis. Nat. Biotechnol. 30, 375–376 (2012).

    Article  CAS  PubMed  Google Scholar 

  4. King, T. E. Jr. et al. A phase 3 trial of pirfenidone in patients with idiopathic pulmonary fibrosis. N. Engl. J. Med. 370, 2083–2092 (2014). This article reports pivotal Phase III data for pirfenidone in patients with IPF; these data subsequently led to FDA approval of the drug as Esbriet in the United States.

    Article  PubMed  CAS  Google Scholar 

  5. Datta, A., Scotton, C. J. & Chambers, R. C. Novel therapeutic approaches for pulmonary fibrosis. Br. J. Pharmacol. 163, 141–172 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Winstone, T. et al. Predictors of mortality and progression in scleroderma-associated interstitial lung disease: a systematic review. Chest 13, 2626 (2014).

    Google Scholar 

  7. Kim, D. Interstitial lung disease in rheumatoid arthritis: recent advances. Curr. Opin. Pulm. Med. 12, 346–353 (2006).

    Article  PubMed  Google Scholar 

  8. Hart, S. P. Understanding CT patterns in idiopathic pulmonary fibrosis. Lancet Respir. Med. 2, 249–250 (2014).

    Article  PubMed  Google Scholar 

  9. Hosenpud, J. D., Bennett, L. E., Keck, B. M., Edwards, E. B. & Novick, R. J. Effect of diagnosis on survival benefit of lung transplantation for end-stage lung disease. Lancet 351, 24–27 (1998).

    Article  CAS  PubMed  Google Scholar 

  10. Raghu, G., Anstrom, K. J., King, T. E. Jr., Lasky, J. A. & Martinez, F. J. Prednisone, azathioprine and N acetylcysteine for pulmonary fibrosis. N. Engl. J. Med. 366, 1968–1977 (2012). This paper published results from a planned interim analysis — known as the PANTHER trial — of patients with IPF who were administered a combination of prednisone, azathioprine and NAC, revealing increased hospitalization and risk of death in patients receiving the combination therapy.

    Article  CAS  PubMed  Google Scholar 

  11. Sharma, K. et al. Pirfenidone for diabetic nephropathy. J. Am. Soc. Nephrol. 22, 1144–1151 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Ma, Z. et al. Synthesis and biological evaluation of the pirfenidone derivatives as antifibrotic agents. Bioorg. Med. Chem. Lett. 24, 220–223 (2014).

    Article  CAS  PubMed  Google Scholar 

  13. Remuzzi, G., Schieppati, A. & Ruggenenti, P. Nephropathy in patients with type 2 diabetes. N. Engl. J. Med. 346, 1145–1151 (2002).

    Article  PubMed  Google Scholar 

  14. Meguid El Nahas, A. & Bello, A. K. Chronic kidney disease: the global challenge. Lancet 365, 331–340 (2005).

    Article  CAS  PubMed  Google Scholar 

  15. Parving, H., Persson, F., Lewis, J. B., Lewis, E. J. & Hollenberg, N. K. Aliskiren combined with losartan in type 2 diabetes and nephropathy. N. Engl. J. Med. 358, 2433–2446 (2008).

    Article  CAS  PubMed  Google Scholar 

  16. Colmenero, J. et al. Effects of losartan on hepatic expression of nonphagocytic NADPH oxidase and fibrogenic genes in patients with chronic hepatitis C. Am. J. Physiol. Gastrointest. Liver Physiol. 297, G726–G734 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Talmadge, E. et al. A randomized, controlled trial of bosentan in idiopathic pulmonary fibrosis. Am. J. Respir. Crit. Care Med. 184, 92–99 (2011).

    Article  Google Scholar 

  18. Schuppan, D. & Afdhal, N. H. Liver cirrhosis. Lancet 371, 838–851 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Ud Din, S. & Bayat, A. Strategic management of keloid disease in ethnic skin: a structured approach supported by emerging literature. Br. J. Dermatol. 169, 71–81 (2013).

    Article  PubMed  Google Scholar 

  20. Zurbig, P. et al. Urinary proteomics for early diagnosis in diabetic nephropathy. Diabetes 61, 3304–3313 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Maher, T. M. et al. Diminished prostaglandin E2 contributes to the apoptosis paradox in idiopathic pulmonary fibrosis. Am. J. Respir. Crit. Care Med. 182, 73–82 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Jin, Y. et al. A systems approach identifies HIPK2 as a key regulator of kidney fibrosis. Nat. Med. 18, 580–589 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Lamouille, S., Xu, J. & Derynck, R. Molecular mechanisms of epithelial-mesenchymal transition. Nat. Rev. Mol. Cell Biol. 15, 178–196 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Konigshoff, M. et al. Functional Wnt signalling is increased in idiopathic pulmonary fibrosis. PLoS ONE 3, e2142 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. LeBleu, V. S. et al. Origin and function of myofibroblasts in kidney fibrosis. Nat. Med. 19, 1047–1054 (2013). Fate-mapping studies show that 50% of myofibroblasts in experimental models of renal fibrosis are derived from resident fibroblast populations.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Humphreys, B. D. et al. Fate tracing reveals the pericyte and not epithelial origin of myofibroblasts in kidney fibrosis. Am. J. Pathol. 176, 85–97 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Rock, J. R. et al. Multiple stromal populations contribute to pulmonary fibrosis without evidence for epithelial to mesenchymal transition. Proc. Natl Acad. Sci. USA 108, E1475–E1483 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. The idiopathic pulmonary fibrosis clinical research network. Randomized trial of acetylcysteine in idiopathic pulmonary fibrosis. N. Engl. J. Med. 370, 2093–2101 (2014). This publication details the double-blind, placebo-controlled trial that evaluated NAC in IPF and reported no beneficial effect on FVC.

  29. De Zeeuw, D. et al. Bardoxolone methyl in type 2 diabetes and stage 4 chronic kidney disease. N. Engl. J. Med. 369, 2492–2503 (2013). This article describes the early termination of a Phase III trial where the nuclear factor erythroid 2-related factor 2 (NRF2) activator bardoxolone methyl was associated with increased cardiovascular events in patients with diabetic nephropathy.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Mitani, Y. et al. Superoxide scavenging activity of pirfenidone-iron complex. Biochem. Biophys. Res. Commun. 372, 19–23 (2008).

    Article  CAS  PubMed  Google Scholar 

  31. Selman, M. et al. Colchicine, D penicillamine and prednisone in the treatment of idiopathic pulmonary fibrosis: a controlled clinical trial. Chest 114, 507–512 (1998).

    Article  CAS  PubMed  Google Scholar 

  32. Collard, H. R. et al. Combined corticosteroid and cyclophosphamide therapy does not alter survival in idiopathic pulmonary fibrosis. Chest 125, 2169–2174 (2004).

    Article  CAS  PubMed  Google Scholar 

  33. Ud Din, S., Bowring, A., Derbyshire, A., Morris, J. & Bayat, A. Identification of steroid sensitive responders versus non-responders in the treatment of keloid disease. Arch. Dermatol. Res. 305, 423–432 (2013).

    Article  CAS  PubMed  Google Scholar 

  34. Sidhu, S. S. et al. Corticosteroid plus pentoxifylline is not better than corticosteroid alone for improving survival in severe alcoholic hepatitis (COPE Trial). Dig. Dis. Sci. 57, 1664–1674 (2012).

    Article  CAS  PubMed  Google Scholar 

  35. Jackson, H. et al. Influence of ursodeoxycholic acid on the mortality and malignancy associated with primary biliary cirrhosis: a population-based cohort study. Hepatology 46, 1131–1137 (2007).

    Article  CAS  PubMed  Google Scholar 

  36. Seki, E. et al. CCR1 and CCR5 promote hepatic fibrosis in mice. J. Clin. Invest. 119, 1858–1870 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Seki, E. et al. CCR2 promotes hepatic fibrosis in mice. Hepatology 50, 185–197 (2009).

    Article  CAS  PubMed  Google Scholar 

  38. Nicholson, A. G. et al. The relationship between individual histologic features and disease progression in idiopathic pulmonary fibrosis. Am. J. Respir. Crit. Care Med. 166, 173–177 (2002).

    Article  PubMed  Google Scholar 

  39. Xia, H. et al. Identification of a cell of origin for fibroblasts comprising the fibrotic reticulum in idiopathic pulmonary fibrosis. Am. J. Pathol. 184, 1369–1383 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Andersson-Sjoland, A. et al. Fibrocytes are a potential source of lung fibroblasts in idiopathic pulmonary fibrosis. Int. J. Biochem. Cell Biol. 40, 2129–2140 (2008).

    Article  PubMed  CAS  Google Scholar 

  41. Hung, C. et al. Role of lung pericytes and resident fibroblasts in the pathogenesis of pulmonary fibrosis. Am. J. Respir. Crit. Care Med. 188, 820–830 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Friedman, S. L. Mechanisms of hepatic fibrogenesis. Gastroenterology 134, 1655–1669 (2008).

    Article  CAS  PubMed  Google Scholar 

  43. Keerthisingam, C. B. et al. Cyclooxygenase 2 deficiency results in a loss of the anti-proliferative response to transforming growth factor-β in human fibrotic lung fibroblasts and promotes bleomycin-induced pulmonary fibrosis in mice. Am. J. Pathol. 158, 1411–1422 (2001). Comparative studies demonstrating phenotypic differences between fibroblasts isolated from normal and fibrotic tissue cultured under resting conditions and in response to TGFβ1 stimulation.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Shi-Wen, X. et al. Scleroderma lung fibroblasts exhibit elevated and dysregulated type I collagen biosynthesis. Arthritis Rheum. 40, 1237–1244 (1997).

    Article  CAS  PubMed  Google Scholar 

  45. Tuan, T.-L. et al. Adenoviral overexpression and small interfering RNA suppression demonstrate that plasminogen activator inhibitor 1 produces elevated collagen accumulation in normal and keloid fibroblasts. Am. J. Pathol. 173, 1311–1325 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Huang, S. K. et al. Hypermethylation of PTGER2 confers prostaglandin E2 resistance in fibrotic fibroblasts from humans and mice. Am. J. Pathol. 177, 2245–2255 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Bechtel, W. et al. Methylation determines fibroblast activation and fibrogenesis in the kidney. Nat. Med. 16, 544–550 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Sandbo, N. et al. Delayed stress fiber formation mediates pulmonary myofibroblast differentiation in response to TGF-β. Am. J. Physiol. Lung Cell. Mol. Physiol. 301, L656–L666 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Thannickal, V. J. et al. Myofibroblast differentiation by transforming growth factor-β1 is dependent on cell adhesion and integrin signalling via focal adhesion kinase. J. Biol. Chem. 278, 12384–12389 (2003).

    Article  CAS  PubMed  Google Scholar 

  50. Iwaisako, K. et al. Protection from liver fibrosis by a peroxisome proliferator-activated receptor γ agonist. Proc. Natl Acad. Sci. USA 109, E1369–E1376 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Zeybel, M. et al. Multigenerational epigenetic adaption of the hepatic wound-healing response. Nat. Med. 18, 1369–1377 (2012). This publication describes an elegant study examining the potential for acquired protection from carbon tetrachloride 4 (CCl 4 )-induced liver injury in the offspring of injured animals as a consequence of epigenetic re-programming.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Mann, J. et al. MeCP2 controls an epigenetic pathway that promotes myofibroblast transdifferentiation and fibrosis. Gastroenterology 138, 705–714 (2010).

    Article  CAS  PubMed  Google Scholar 

  53. Kulkarni, A. A., Thatcher, T. H., Olsen, K. C., Maggirwar, S. B. & Phipps, R. P. PPAR-γ ligands repress TGF-β-induced myofibroblast differentiation by targeting the PI3k/Akt pathway: implications for therapy of fibrosis. PLoS ONE 6, 1–11 (2011).

    Google Scholar 

  54. Wei, J. et al. PPARγ downregulation by TGF β in fibroblast and impaired expression and function in systemic sclerosis: a novel mechanism for progressive fibrogenesis. PLoS ONE 5, 1–13 (2010).

    Google Scholar 

  55. Ratziu, V. et al. Long-term efficacy of rosiglitazone in non-alcoholic steatohepatitis: results of the fatty liver improvement by rosiglitazone therapy (FLIRT 2) extension trial. Hepatology 51, 445–453 (2010).

    Article  CAS  PubMed  Google Scholar 

  56. Belfort, R. et al. A placebo-controlled trial of pioglitazone in subjects with non-alcoholic steatohepatitis. N. Engl. J. Med. 355, 2297–2307 (2006).

    Article  CAS  PubMed  Google Scholar 

  57. Knight, S. D. et al. Discovery of GSK21246458, a highly potent inhibitor of PI3K and the mammalian target of rapamycin. Am. Chem. Soc. Chem. Lett. 1, 39–43 (2010).

    CAS  Google Scholar 

  58. Sabatini, D. M. mTOR and cancer: insights into a complex relationship. Nat. Rev. Cancer 6, 729–734 (2006).

    Article  CAS  PubMed  Google Scholar 

  59. Loewith, R. et al. Two TOR complexes, only one of which is rapamycin sensitive, have distinct roles in cell growth control. Mol. Cell 10, 457–468 (2002).

    Article  CAS  PubMed  Google Scholar 

  60. Malouf, M. A., Hopkins, P. & Glanville, A. R. Everolimus in IPF study investigators. An investigator-driven study of everolimus in surgical lung biopsy confirmed idiopathic pulmonary fibrosis. Respirology 16, 776–783 (2011).

    Article  PubMed  Google Scholar 

  61. Manley, P. W. et al. Imatinib: a selective tyrosine kinase inhibitor. Eur. J. Cancer 38, S19–S27 (2002).

    Article  PubMed  Google Scholar 

  62. Aono, Y. et al. Imatinib as a novel antifibrotic agent in bleomycin-induced pulmonary fibrosis in mice. Am. J. Respir. Crit. Care Med. 171, 1279–1285 (2005).

    Article  PubMed  Google Scholar 

  63. Daniels, C. E. et al. Imatinib treatment for idiopathic pulmonary fibrosis: randomized placebo-controlled trial results. Am. J. Respir. Crit. Care Med. 181, 604–610 (2010).

    Article  CAS  PubMed  Google Scholar 

  64. Prey, S. et al. Imatinib mesylate in scleroderma-associated diffuse skin fibrosis: a phase II multicentre randomized double-blinded controlled trial. Br. J. Dermatol. 167, 1138–1144 (2012).

    Article  CAS  PubMed  Google Scholar 

  65. Richeldi, L. et al. Efficacy and safety of nintedanib in idiopathic pulmonary fibrosis. N. Engl. J. Med. 370, 2071–2082 (2014). This paper describes the positive outcome of two Phase III trials in IPF (INPULSIS 1 and INPULSIS 2), where the receptor tyrosine kinase inhibitor nintedanib was shown to slow FVC decline.

    Article  PubMed  CAS  Google Scholar 

  66. Fernandez-Fernandez, B., Ortiz, A., Gomez-Guerro, C. & Egido, J. Therapeutic approaches to diabetic nephropathy-beyond the RAS. Nat. Rev. Nephrol. 10, 325–346 (2014).

    Article  CAS  PubMed  Google Scholar 

  67. Alcorn, J. F. et al. C Jun N terminal kinase 1 is required for the development of pulmonary fibrosis. Am. J. Respir. Cell. Mol. Biol. 40, 422–432 (2009).

    Article  CAS  PubMed  Google Scholar 

  68. Callahan, J. F. et al. Identification of novel inhibitors of the transforming growth factor β1 (TGF-β1) type I receptor (ALK5). J. Med. Chem. 45, 999–1001 (2002).

    Article  CAS  PubMed  Google Scholar 

  69. Inman, G. J. SB-431542 is a potent and specific inhibitor of transforming growth factor-β superfamily type 1 activin receptor-like kinase (ALK) receptors ALK4, ALK5 and ALK7. Mol. Pharmacol. 62, 65–74 (2002).

    Article  CAS  PubMed  Google Scholar 

  70. Anderton, M. J. et al. Induction of heart valve lesions by small-molecule ALK5 inhibitors. Toxicol. Pathol. 39, 916–924 (2011).

    Article  CAS  PubMed  Google Scholar 

  71. Akhurst, R. J. & Hata, A. Targeting the TGF-β signalling pathway in disease. Nat. Rev. Drug Discov. 11, 790–811 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Bonniaud, P. Smad3 null mice develop airspace enlargement and are resistant to TGF-β-mediated pulmonary fibrosis. J. Immunol. 173, 2099–2108 (2004).

    Article  CAS  PubMed  Google Scholar 

  73. Sato, M., Muragaki, Y., Saika, S., Roberts, A. & Ooshima, A. Targeted disruption of TGF-β1/Smad3 signalling protects against renal tubulointerstitial fibrosis induced by unilateral ureteral obstruction. J. Clin. Invest. 112, 1486–1494 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Munger, J. A. Huang, X. et al. The integrin αvβ6 binds and activates latent TGF-β1: a mechanism for regulating pulmonary fibrosis. Cell 96, 319–328 (1999).

    Article  CAS  PubMed  Google Scholar 

  75. Patsenker, E. et al. Inhibition of integrin αvβ6 on cholangiocytes blocks transforming growth factor b activation and retards biliary fibrosis progression. Gastroenterology 135, 660–670 (2008).

    Article  CAS  PubMed  Google Scholar 

  76. Henderson, N. C. et al. Targeting of av integrin identifies a core molecular pathway that regulates fibrosis in several organs. Nat. Med. 19, 1617–1624 (2013). Using transgenic mice, myofibroblast-specific αv integrin deletion afforded protection from experimentally induced hepatic, pulmonary and renal fibrosis. A small-molecule α V integrin inhibitor also blocked liver and lung fibrosis.

    Article  CAS  PubMed  Google Scholar 

  77. Barry-Hamilton, V. et al. Allosteric inhibition of lysyl oxidase like 2 impedes the development of a pathologic microenvironment. Nat. Med. 16, 1009–1017 (2010). Attenuation of LOXL2 activity represents one of the few approaches whereby the ECM is directly targeted. This paper describes the preclinical validation providing evidence to support the anti-fibrotic activity of simtuzumab, a humanized monoclonal antibody against LOXL2.

    Article  CAS  PubMed  Google Scholar 

  78. Rodriguez, H. M. et al. Modulation of lysyl oxidase like 2 enzymatic activity by an allosteric antibody inhibitor. J. Biol. Chem. 285, 20964–20974 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Olsen, K. C. et al. Transglutaminase 2 and its role in pulmonary fibrosis. Am. J. Respir. Crit. Care Med. 184, 699–707 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Johnson, T. S. et al. Tissue transglutaminase and the progression of human renal scarring. J. Am. Soc. Nephrol. 14, 2052–2062 (2003).

    Article  CAS  PubMed  Google Scholar 

  81. Telci, D., Collighan, R. J., Basaga, H. & Griffin, M. Increased TG2 expression can result in induction of transforming growth factor 1, causing increased synthesis and deposition of matrix proteins, which can be regulated by nitric oxide. J. Biol. Chem. 284, 29547–29558 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. McKleroy, W., Lee, T.-H. & Atabai, K. Always cleave up your mess: targeting collagen degradation to treat tissue fibrosis. Am. J. Physiol. Lung Cell. Mol. Physiol. 304, L709–L721 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Tang, X. et al. Assessment of Brd4 inhibition in idiopathic pulmonary fibrosis lung fibroblasts and in vivo models of lung fibrosis. Am. J. Pathol. 183, 470–479 (2013).

    Article  CAS  PubMed  Google Scholar 

  84. Nakayama, S. et al. Pirfenidone inhibits the expression of HSP47 in TGF-β1-stimulated human lung fibroblasts. Life Sci. 82, 210–217 (2008).

    Article  CAS  PubMed  Google Scholar 

  85. Ziol, M. et al. Noninvasive assessment of liver fibrosis by measurement of stiffness in patients with chronic hepatitis C. Hepatology 41, 48–54 (2005).

    Article  PubMed  Google Scholar 

  86. Hinz, B. Tissue stiffness, latent TGF-β1 activation and mechanical signal transduction: implications for the pathogenesis and treatment of fibrosis. Curr. Rheumatol. Rep. 11, 120–126 (2009).

    Article  CAS  PubMed  Google Scholar 

  87. Mih, J. D. et al. A multiwall platform for studying stiffness dependant cell biology. PLoS ONE 6, 1–10 (2011).

    Article  CAS  Google Scholar 

  88. Liu, F. et al. Feedback amplification of fibrosis through matrix stiffening and COX 2 suppression. J. Cell Biol. 190, 693–706 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Olsen, A. L. et al. Hepatitic stellate cells require a stiff environment for myofibroblastic differentiation. Am. J. Physiol. Lung Cell. Mol. Physiol. 301, G110–G118 (2011).

    Article  CAS  Google Scholar 

  90. Vittal, R. et al. Peptide-mediated inhibition of mitogen-activated protein kinase 2 ameliorates bleomycin-induced pulmonary fibrosis. Am. J. Respir. Cell. Mol. Biol. 49, 47–57 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Moeller, A., Ask, K., Warburton, D., Gauldie, J. & Kolb, M. The bleomycin animal model: a useful tool to investigate treatment options for idiopathic pulmonary fibrosis? Int. J. Biochem. Cell Biol. 40, 362–382 (2008). This is a seminal review that identifies over 200 publications reporting agents that demonstrate efficacy in the bleomycin model of pulmonary fibrosis; from these, only ten compounds were administered during the fibrotic phase of the model. The authors highlight the need to evaluate compounds in this animal model once fibrosis is established to improve clinical translatability.

    Article  CAS  PubMed  Google Scholar 

  92. Edwards, A. M., Bountra, C., Kerr, D. J. & Willson, T. M. Open access chemical and clinical probes to support drug discovery. Nat. Chem. Biol. 5, 436–440 (2009).

    Article  CAS  PubMed  Google Scholar 

  93. Peters, J.-U. (Ed.) Polypharmacology in Drug Discovery (Wiley, 2012).

    Book  Google Scholar 

  94. Morphy, J. R., Harris, J. C. (Eds) Designing multi-target drugs (RSC Publishing, 2012).

    Book  Google Scholar 

  95. Morphy, R. & Rankovic, Z. Designed multiple ligands. An emerging drug discovery paradigm. J. Med. Chem. 48, 6523–6543 (2005).

    Article  CAS  PubMed  Google Scholar 

  96. Hilberg, F., Roth, G. J., Krssak, M., Kautschitsch, S. & Sommergruber, W. BIBF-1120: triple angiokinase inhibitor with sustained receptor blockade and good antitumour efficacy. Cancer Res. 68, 4774–4782 (2008).

    Article  CAS  PubMed  Google Scholar 

  97. Hopkins, A. L. Network pharmacology: the next paradigm in drug discovery. Nat. Chem. Biol. 4, 682–690 (2008).

    Article  CAS  PubMed  Google Scholar 

  98. Dar, A. C., Das, T. K., Shokat, K. M. & Cagan, R. L. Chemical genetic discovery of targets and anti-targets for cancer polypharmacology. Nature 486, 80–84 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Besnard, J. Automated design of ligands to polypharmacological ligands. Nature 492, 215–220 (2011).

    Article  CAS  Google Scholar 

  100. Moffat, J. G., Rudolph, J. & Bailey, D. Phenotypic screening in cancer drug discovery-past, present and future. Nat. Rev. Drug Discov. 13, 588–602 (2014).

    Article  CAS  PubMed  Google Scholar 

  101. Eggert, U. S. The why and how of phenotypic small molecule screens. Nat. Chem. Biol. 9, 206–209 (2013).

    Article  CAS  PubMed  Google Scholar 

  102. Swinney, D. C. & Anthony, J. How were new medicines discovered? Nat. Review Drug Discov. 10, 507–519 (2011).

    Article  CAS  Google Scholar 

  103. Tamayo, R. P. Is cirrhosis of the liver experimentally produced by CCl4 an adequate model of human cirrhosis? Hepatology 3, 112–120 (1983).

    Article  CAS  Google Scholar 

  104. Constandinou, C., Henderson, N. & Iredale, J. P. Modeling liver fibrosis in rodents. Methods Mol. Med. 117, 237–250 (2005).

    PubMed  Google Scholar 

  105. Crystal, R. G. et al. Idiopathic pulmonary fibrosis. Clinical, histologic, radiographic, physiologic, scintigraphic, cytologic and biochemical aspects. Ann. Intern. Med. 85, 769–788 (1976).

    Article  CAS  PubMed  Google Scholar 

  106. Shihab, F. S., Bennett, W. M., Yi, H. & Andoh, T. F. Pirfenidone treatment decreases transforming growth factor-β1 and matrix proteins and ameliorates fibrosis in chronic cyclosporine nephrotoxicity. Am. J. Transplant. 2, 111–119 (2002).

    Article  CAS  PubMed  Google Scholar 

  107. Iyer, S. N., Gurujeyalakshmi, G. & Giri, S. N. Effects of pirfenidone on transforming growth factor-β gene expression at the transcriptional level in bleomycin hamster model of lung fibrosis. J. Pharmacol. Exp. Ther. 291, 367–373 (1999).

    CAS  PubMed  Google Scholar 

  108. Nakazato, H., Oku, H., Yamane, S., Tsuruta, Y. & Suzuki, R. A novel anti-fibrotic agent pirfenidone suppresses tumor necrosis factor-α at the translational level. Eur. J. Pharmacol. 446, 177–185 (2002).

    Article  CAS  PubMed  Google Scholar 

  109. Oku, H., Nakazato, H., Horikawa, T., Tsuruta, Y. & Suzuki, R. Pirfenidone suppresses tumor necrosis factor-α, enhances interleukin 10 and protects mice from endotoxic shock. Eur. J. Pharmacol. 446, 167–176 (2002).

    Article  CAS  PubMed  Google Scholar 

  110. Seiwert, S. D., Kossen, K. & Serebryany, V. Method of modulating stress-activated protein kinase system. Patent WO2007062167A2 (2006).

  111. Schaefer, C. J., Ruhrmund, D. W., Pan, L., Seiwert, S. D. & Kossen, K. Antifibrotic activities of pirfenidone in animal models. Eur. Respir. Rev. 20, 85–97 (2011).

    Article  CAS  PubMed  Google Scholar 

  112. Noble, P. W. et al. Pirfenidone in patients with idiopathic pulmonary fibrosis (CAPACITY): two randomised trials. Lancet 377, 1760–1769 (2011).

    Article  CAS  PubMed  Google Scholar 

  113. Wollin, L., Maillet, I., Quesniaux, V., Holweg, A. & Ryffel, B. Anti-fibrotic and anti-inflammatory activity of the tyrosine kinase inhibitor, nintedanib, in experimental models of lung fibrosis. J. Pharmacol. Exp. Ther. 349, 209–220 (2014).

    Article  PubMed  CAS  Google Scholar 

  114. Wu, J., Luo, Y. & Zhou, T. Use of pyridone derivatives in the prevention or treatment of tissue or organ toxicity induced by cytotoxic agents and radiation. US Patent US20080161361A1 (2007).

  115. Yi, X. Derivatives of pyridone and use thereof. US Patent US20110124872A1 (2010).

  116. Burnier, M. Angiotensin II type 1 receptor blockers. Circulation 103, 904–912 (2001).

    Article  CAS  PubMed  Google Scholar 

  117. Wei, H. S. et al. Effects of AT1 receptor antagonist, losartan, on rat hepatic fibrosis induced by CCl4 . World J. Gastroenterol. 6, 540–545 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Opgenorth, T. J. et al. Pharmacological characterization of A-127722: an orally active and highly potent ETA-selective receptor antagonist. J. Pharmacol. Exp. Ther. 276, 473–481 (1996).

    CAS  PubMed  Google Scholar 

  119. Feng, H. Q., Weymouth, N. D. & Rockey, D. C. Endothelin antagonism in portal hypertensive mice: implications for endothelin receptor-specific signaling in liver disease. Am. J. Physiol. Gastrointest. Liver Physiol. 297, G27–G33 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Kohan, D. E. et al. Addition of atrasentan to renin-angiotensin system blockade reduces albuminuria in diabetic nephropathy. J. Am. Soc. Nephrol. 22, 763–772 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Melvin Jr., L. S., Ullrich, M., Hege, H. G. & Weymann, J. Metabolites and derivatives of ambrisentan. US Patent US20100204163A1 (2008).

  122. Uguccioni, M. et al. Endothelin 1 in idiopathic pulmonary fibrosis. J. Clin. Pathol. 48, 330–334 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Jain, R., Shaul, P. W., Borok, Z. & Willis, B. C. Endothelin 1 Induces alveolar epithelial–mesenchymal transition through endothelin type A receptor-mediated production of TGF-β1. Am. J. Respir. Cell. Mol. Biol. 37, 38–47 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Raghu, G. et al. Treatment of idiopathic pulmonary fibrosis with ambrisentan. Ann. Intern. Med. 158, 641–649 (2013).

    Article  PubMed  Google Scholar 

  125. Clozel, M. et al. Pharmacological characterization of bosentan, a new potent orally active nonpeptide endothelin receptor antagonist. J. Pharmacol. Exp. Ther. 270, 228–235 (1994).

    CAS  PubMed  Google Scholar 

  126. Park, S. H., Saleh, D., Giaid, A. & Michel, R. P. Increased endothelin 1 in bleomycin-induced pulmonary fibrosis and the effect of an endothelin receptor antagonist. Am. J. Respir. Crit. Care Med. 156, 600–608 (1997).

    Article  CAS  PubMed  Google Scholar 

  127. Korn, J. H. et al. Digital ulcers in systemic sclerosis: prevention by treatment with bosentan, an oral endothelin receptor antagonist. Arthritis Rheum. 50, 3985–3993 (2004).

    Article  CAS  PubMed  Google Scholar 

  128. Seibold, J. R. et al. Randomized, prospective, placebo-controlled trial of bosentan in interstitial lung disease secondary to systemic sclerosis. Arthritis Rheum. 62, 2101–2108 (2010).

    Article  CAS  PubMed  Google Scholar 

  129. Samuni, Y., Goldstein, S., Dean, O. M. & Berk, M. The chemistry and biological activities of N-acetylcysteine. Biochim. Biophys. Acta 1830, 4117–4129 (2013).

    Article  CAS  PubMed  Google Scholar 

  130. Zafarullaha, M., Li, W. Q., Sylvestera, J. & Ahmad, M. Molecular mechanisms of N-acetylcysteine actions. Cell. Mol. Life Sci. 60, 6–20 (2003).

    Article  Google Scholar 

  131. Jiang, J. X. et al. Liver fibrosis and hepatocyte apoptosis are attenuated by GKT137831, a novel NOX4/NOX1 inhibitor in vivo. Free Radic. Biol. Med. 53, 289–296 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Laleu, B. et al. First in class, potent, and orally bioavailable NADPH oxidase isoform 4 (Nox4) inhibitors for the treatment of idiopathic pulmonary fibrosis. J. Med. Chem. 53, 7715–7730 (2010).

    Article  CAS  PubMed  Google Scholar 

  133. Jha, J. C. et al. Genetic targeting or pharmacologic inhibition of NADPH oxidase Nox4 provides renoprotection in long-term diabetic nephropathy. J. Am. Soc. Nephrol. 25, 1237–1254 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Hecker, L. et al. Reversal of persistent fibrosis in aging by targeting Nox4–Nrf2 redox imbalance. Sci. Transl. Med. 6, 231ra47 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  135. Aoyama, T. et al. Nicotinamide adenine dinucleotide phosphate oxidase in experimental liver fibrosis: GKT137831 as a novel potential therapeutic agent. Hepatology 56, 2316–2327 (2012).

    Article  CAS  PubMed  Google Scholar 

  136. Reisman, S. A. et al. Bardoxolone methyl decreases megalin and activates Nrf2 in the kidney. J. Am. Soc. Nephrol. 23, 1663–1673 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Ahmad, R., Raina, D., Meyer, C., Kharbanda, S. & Kufe, D. Triterpenoid CDDO-Me blocks the NF-κB pathway by direct inhibition of IKKβ on Cys179. J. Biol. Chem. 281, 35764–35769 (2006).

    Article  CAS  PubMed  Google Scholar 

  138. Pergola, P. E. et al. Bardoxolone methyl and kidney function in CKD with type 2 diabetes. N. Engl. J. Med. 365, 327–336 (2011).

    Article  CAS  PubMed  Google Scholar 

  139. Lind, U. et al. Functional probing of the human glucocorticoid receptor steroid-interacting surface by site-directed mutagenesis. J. Biol. Chem. 275, 19041–19049 (2000).

    Article  CAS  PubMed  Google Scholar 

  140. Shetlar, M.R., Shetlar, D.J., Bloom, R.F., Shetlar, C.L. & Margolin, S.B. Involution of keloid implants in athymic mice treated with pirfenidone or with triamcinolone. J. Lab. Clin. Med. 132, 491–496 (1998).

    Article  CAS  PubMed  Google Scholar 

  141. Young, P. W. et al. Identification of high-affinity binding sites for the insulin sensitizer rosiglitazone (BRL 49653) in rodent and human adipocytes using a radioiodinated ligand for peroxisomal proliferator-activated receptor γ. J. Pharmacol. Exp. Ther. 284, 751–759 (1998).

    CAS  PubMed  Google Scholar 

  142. Samah, M., El Aidy, Ael-R., Tawfik, M. K. & Ewais, M. M. S. Evaluation of the antifibrotic effect of fenofibrate and rosiglitazone on bleomycin-induced pulmonary fibrosis in rats. Eur. J. Pharmacol. 689, 186–193 (2012).

    Article  CAS  PubMed  Google Scholar 

  143. Cariou, B. et al. Dual peroxisome proliferator–activated receptor α/δ agonist GFT505 improves hepatic and peripheral insulin sensitivity in abdominally obese subjects. Diabetes Care 36, 2923–2930 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Staels, B. et al. Hepatoprotective effects of the dual peroxisome proliferator-activated receptor α/δ agonist, GFT505, in rodent models of nonalcoholic fatty liver disease/nonalcoholic steatohepatitis. Hepatology 58, 1941–1952 (2013).

    Article  CAS  PubMed  Google Scholar 

  145. Jani, R. H., Kansagra, K., Jain, M. R. & Patel, H. Pharmacokinetics, safety, and tolerability of saroglitazar (ZYH1), a predominantly PPARα agonist with moderate PPARγ agonist activity in healthy human subjects. Clin. Drug. Investig. 33, 809–816 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Henke, B. R. et al. N-(2 benzoylphenyl)-L-tyrosine PPARγ agonists. 1. Discovery of a novel series of potent antihyperglycemic and antihyperlipidemic agents. J. Med. Chem. 41, 5020–5036 (1998).

    Article  CAS  PubMed  Google Scholar 

  147. Kawaguchi, K. et al. Pioglitazone prevents hepatic steatosis, fibrosis, and enzyme-altered lesions in rat liver cirrhosis induced by a choline-deficient L amino acid-defined diet. Biochem. Biophys. Res. Commun. 315, 187–195 (2004).

    Article  CAS  PubMed  Google Scholar 

  148. Son, M. K. et al. HS-173, a novel PI3K inhibitor, attenuates the activation of hepatic stellate cells in liver fibrosis. Scientif. Rep. 3, 3470 (2013).

    Article  Google Scholar 

  149. Sedrani, R., Cottens, S., Kallen, J. & Schuler, W. Chemical modification of rapamycin: the discovery of SDZ RAD Transplant. Proc. 30, 2192–2194 (1998).

    Article  CAS  PubMed  Google Scholar 

  150. März, A. M., Fabian, A. K., Kozany, C., Bracher, A. & Hausch, F. Large FK506 binding proteins shape the pharmacology of rapamycin. Mol. Cell. Biol. 33, 1357–1367 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  151. Korfhagen, T. R. et al. Rapamycin prevents transforming growth factor-α-induced pulmonary fibrosis. Am. J. Respir. Cell. Mol. Biol. 41, 562–572 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Wu, M. J. et al. Rapamycin attenuates unilateral ureteral obstruction-induced renal fibrosis. Kidney Int. 69, 2029–2036 (2006).

    Article  CAS  PubMed  Google Scholar 

  153. Duveau, D. Y. et al. Synthesis and biological evaluation of analogues of the kinase inhibitor nilotinib as Abl and Kit inhibitors. Bioorg. Med. Chem. Lett. 23, 682 (2013).

    Article  CAS  PubMed  Google Scholar 

  154. Weisberg, E. et al. Characterization of AMN107, a selective inhibitor of native and mutant Bcr-Abl. Cancer Cell 7, 129–141 (2005).

    Article  CAS  PubMed  Google Scholar 

  155. Liu, Y. et al. Inhibition of PDGF, TGF-β, and Abl signaling and reduction of liver fibrosis by the small molecule Bcr-Abl tyrosine kinase antagonist nilotinib. J. Hepatol. 55, 612–625 (2011).

    Article  CAS  PubMed  Google Scholar 

  156. Iyoda, M., Shibata, T., Hirai, Y., Kuno, Y. & Akizawa, T. Nilotinib attenuates renal injury and prolongs survival in chronic kidney disease. J. Am. Soc. Nephrol. 22, 1486–1496 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Rhee, C. K. et al. Effect of nilotinib on bleomycin-induced acute lung injury and pulmonary fibrosis in mice. Respiration 82, 273–287 (2011).

    Article  CAS  PubMed  Google Scholar 

  158. Wilhelm, S. M. et al. BAY 43–9006 exhibits broad spectrum oral anti-tumor activity and targets the Raf/MEK/ERK pathway and receptor tyrosine kinases involved in tumor progression and angiogenesis. Cancer Res. 64, 7099–7109 (2004).

    Article  CAS  PubMed  Google Scholar 

  159. Wang, Y. et al. New insights into the antifibrotic effects of sorafenib on hepatic stellate cells and liver fibrosis. J. Hepatol. 53, 132–144 (2010).

    Article  CAS  PubMed  Google Scholar 

  160. Chen, Y. L. et al. Sorafenib inhibits transforming growth factor β1-mediated epithelial–mesenchymal transition and apoptosis in mouse hepatocytes. Hepatology 53, 1708–1718 (2011).

    Article  CAS  PubMed  Google Scholar 

  161. Das, J. et al. 2-aminothiazole as a novel kinase inhibitor template. structure-activity relationship studies toward the discovery of n-(2-chloro-6 methylphenyl)-2-[[6-[4-(2-hydroxyethyl)-1-piperazinyl)]-2-methyl-4 pyrimidinyl]amino)]-1,3-thiazole-5 carboxamide (dasatinib, BMS 354825) as a potent pan-src kinase inhibitor. J. Med. Chem. 49, 6819 (2006).

    Article  CAS  PubMed  Google Scholar 

  162. Akhmetshina, A. et al. Dual inhibition of c-abl and PDGF receptor signaling by dasatinib and nilotinib for the treatment of dermal fibrosis. FASEB. 22, 2214–2222 (2008).

    Article  CAS  Google Scholar 

  163. Fridman, J. S. et al. Selective inhibition of JAK1 and JAK2 is efficacious in rodent models of arthritis: preclinical characterization of INCB028050. J. Immunol. 184, 5298–5307 (2010).

    Article  CAS  PubMed  Google Scholar 

  164. Dees, C. et al. JAK 2 as a novel mediator of the profibrotic effects of transforming growth factor β in systemic sclerosis. Arthritis Rheum. 64, 3006–3015 (2012).

    Article  CAS  PubMed  Google Scholar 

  165. Mesa, R. A., Yasothan, U. & Kirkpatrick, P. Ruxolitinib. Nat. Rev. Drug Discov. 11, 103–104 (2012).

    Article  CAS  PubMed  Google Scholar 

  166. Krenitsky, V. P. et al. Discovery of CC 930, an orally active anti-fibrotic JNK inhibitor. Bioorg. Med. Chem. Lett. 22, 1433–1438 (2012).

    Article  CAS  Google Scholar 

  167. Alcorn, J. F. et al. c Jun N terminal kinase 1 is required for the development of pulmonary fibrosis. Am. J. Respir. Cell. Mol. Biol. 40, 422–432 (2009).

    Article  CAS  PubMed  Google Scholar 

  168. Reich, N. et al. Jun N terminal kinase as a potential molecular target for prevention and treatment of dermal fibrosis. Ann. Rheum. Dis. 71, 737–745 (2012).

    Article  CAS  PubMed  Google Scholar 

  169. Ward, B. C. et al. Peptide inhibitors of MK2 show promise for inhibition of abdominal adhesions. J. Surg. Res. 169, e27–e36 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Xu, L. et al. MMI 0100 inhibits cardiac fibrosis in myocardial infarction by direct actions on cardiomyocytes and fibroblasts via MK2 inhibition. J. Mol. Cell. Cardiol. 77, 86–101 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  171. Muto, A. et al. Inhibition of mitogen activated protein kinase activated protein kinase II with MMI 0100 reduces intimal hyperplasia ex vivo and in vivo. Vascul. Pharmacol. 56, 47–55 (2012).

    Article  CAS  PubMed  Google Scholar 

  172. Iglarz, M. et al. Pharmacology of macitentan, an orally active tissue-targeting dual endothelin receptor antagonist. J. Pharmacol. Exp. Ther. 327, 736–745 (2008).

    Article  CAS  PubMed  Google Scholar 

  173. Iglarz, M. et al. Optimization of tissue targeting properties of macitentan, a new dual endothelin receptor antagonist, improves its efficacy in a rat model of pulmonary fibrosis associated with pulmonary arterial hypertension. Am. J. Respir. Crit. Care Med. 183, A6445 (2011).

    Google Scholar 

  174. Raghu, G. et al. Macitentan for the treatment of idiopathic pulmonary fibrosis: the randomised controlled MUSIC trial. Eur. Respir. J. 42, 1622–1632 (2013).

    Article  CAS  PubMed  Google Scholar 

  175. Bunnage, M. E. et al. Discovery of potent and selective inhibitors of activated thrombin-activatable fibrinolysis inhibitor for the treatment of thrombosis. J. Med. Chem. 50, 6095–6103 (2007).

    Article  CAS  PubMed  Google Scholar 

  176. Knoerzer, D. et al. Inhibition of activated thrombin activatable fibrinolysis inhibitor (TAFI) demonstrates therapeutic efficacy in bleomycin-induced pulmonary fibrosis in mice. Am. J. Respir. Crit. Care Med. 181, A2000 (2010).

    Google Scholar 

  177. Fujimoto, H. et al. Thrombin-activatable fibrinolysis inhibitor deficiency attenuates bleomycin-induced lung fibrosis. Am. J. Pathol. 168, 1086–1096 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Wong, M. G. et al. Cation-independent mannose-6-phosphate receptor inhibitor (PXS25) inhibits fibrosis in human proximal tubular cells by inhibiting conversion of latent to active TGF-β1. Am. J. Physiol. Renal. Physiol. 301, F84–F93 (2011).

    Article  CAS  PubMed  Google Scholar 

  179. Maldonado, F., Kottom, T. J. & Limper, A. H. PXS-25, a mannose-6-phosphate derivative, is effective in decreasing the production of extracellular matrix by TGF-β stimulated fibroblasts. Am. J. Respir. Crit. Care. Med. 179, A3471 (2009).

    Google Scholar 

  180. Pasquinelli, C. Safety and efficacy of a lysophosphatidic acid receptor antagonist (BMS 986020) in idiopathic pulmonary fibrosis. Pulmonary Fibrosis Foundation Summit [online] (2013)

    Google Scholar 

  181. Swaney, J. S. et al. A novel, orally active LPA(1) receptor antagonist inhibits lung fibrosis in the mouse bleomycin model. Br. J. Pharmacol. 160, 1699–1713 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Tager, A. M. et al. The lysophosphatidic acid receptor LPA1 links pulmonary fibrosis to lung injury by mediating fibroblast recruitment and vascular leak. Nat. Med. 14, 45–54 (2008).

    Article  CAS  PubMed  Google Scholar 

  183. Schaefer, M. et al. Acylamino-substituted fused cyclopentanecarboxylic acid derivatives and their use as pharmaceuticals. Patent WO2009135590A1 (2009).

  184. Illiano, S. et al. Protective effect of LPA1 and 3 receptor antagonism in experimental skin fibrosis is linked to LPA activity in dermal fibroblasts of SSc patients. Ann. Rheum. Dis. 72, 129 (2013).

    Article  Google Scholar 

  185. Sampaio, E. P. et al. Thalidomide selectively inhibits tumor necrosis factor α production by stimulated human monocytes. J. Exp. Med. 173, 699–703 (1991).

    Article  CAS  PubMed  Google Scholar 

  186. Tabata, C. et al. Thalidomide prevents bleomycin-induced pulmonary fibrosis in mice. J. Immunol. 179, 708–714 (2007).

    Article  CAS  PubMed  Google Scholar 

  187. Choe, J. Y. et al. Anti-fibrotic effect of thalidomide through inhibiting TGF-β-induced ERK1/2 pathways in bleomycin-induced lung fibrosis in mice. Inflamm. Res. 59, 177–188 (2010).

    Article  CAS  PubMed  Google Scholar 

  188. Ruchelman, A. L. et al. Isosteric analogs of lenalidomide and pomalidomide: synthesis and biological activity. Bioorg. Med. Chem. Lett. 23, 360–365 (2013).

    Article  CAS  PubMed  Google Scholar 

  189. Weingärtner, S. et al. Pomalidomide is effective for prevention and treatment of experimental skin fibrosis. Ann. Rheum. Dis. 71, 1895–1899 (2012).

    Article  PubMed  CAS  Google Scholar 

  190. Holsinger, L. J. et al. Efficacy of a reversible cathepsin B inhibitor in a rodent model of liver fibrosis and human pharmacokinetic profile (Poster). AASLD Annual Meeting [online] (2010).

    Google Scholar 

  191. Holsinger, L. Inhibitors of cathepsin B. Patent WO2009100225A1 (2009).

  192. Linton, S. D. et al. First in class pan caspase inhibitor developed for the treatment of liver disease. J. Med. Chem. 48, 6779–6782 (2005).

    Article  CAS  PubMed  Google Scholar 

  193. Canbay, A. et al. The caspase inhibitor IDN 6556 attenuates hepatic injury and fibrosis in the bile duct ligated mouse. J. Pharmacol. Exp. Ther. 308, 1191–1196 (2004).

    Article  CAS  PubMed  Google Scholar 

  194. Murphy, M. P. & Smith, R. A. J. Targeting antioxidants to mitochondria by conjugation to lipophilic cations. Annu. Rev. Pharmacol. Toxicol. 47, 629–656 (2007).

    Article  CAS  PubMed  Google Scholar 

  195. Chacko, B. K. et al. Prevention of diabetic nephropathy in Ins2+/−AkitaJ mice by the mitochondria-targeted therapy MitoQ. Biochem. J. 432, 9–19 (2010).

    Article  CAS  PubMed  Google Scholar 

  196. Kiriyama, M. et al. Ligand binding specificities of the eight types and subtypes of the mouse prostanoid receptors expressed in Chinese hamster ovary cells. Br. J. Pharmacol. 122, 217–224 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. Takenaka, M. et al. Effect of beraprost sodium (BPS) in a new rat partial unilateral ureteral obstruction model. Prostaglandins Leukot. Essent. Fatty Acids 80, 263–267 (2009).

    Article  CAS  PubMed  Google Scholar 

  198. Whittle, B. J., Silverstein, A. M., Mottola, D. M. & Clapp, L. H. Binding and activity of the prostacyclin receptor (IP) agonists, treprostinil and iloprost, at human prostanoid receptors: Treprostinil is a potent DP1 and EP2 agonist. Biochem. Pharmacol. 84, 68–75 (2012).

    Article  CAS  PubMed  Google Scholar 

  199. Stratton, R. et al. Iloprost suppresses connective tissue growth factor production in fibroblasts and in the skin of scleroderma patients. J. Clin. Invest. 108, 241–250 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. Zhu, Y. et al. A prostacyclin analogue, iloprost, protects from bleomycin-induced pulmonary fibrosis in mice. Respir. Res. 11, 34 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  201. Chung, L. & Fiorentino, D. A pilot trial of treprostinil for the treatment and prevention of digital ulcers in patients with systemic sclerosis. J. Am. Acad. Dermatol. 54, 880–882 (2006).

    Article  PubMed  Google Scholar 

  202. Ezquerro, I. J. et al. A synthetic peptide from transforming growth factor β type III receptor inhibits liver fibrogenesis in rats with carbon tetrachloride liver injury. Cytokine 22, 12–20 (2003).

    Article  CAS  PubMed  Google Scholar 

  203. Hermida, N. et al. A synthetic peptide from transforming growth factor-β1 type III receptor prevents myocardial fibrosis in spontaneously hypertensive rats. Cardiovasc. Res. 81, 601–609 (2009).

    Article  CAS  PubMed  Google Scholar 

  204. Santiago, B. et al. Topical application of a peptide inhibitor of transforming growth factor-β1 ameliorates bleomycin-induced skin fibrosis. J. Invest. Dermatol. 125, 450–455 (2005).

    Article  CAS  PubMed  Google Scholar 

  205. Björk, P. et al. Identification of human S100A9 as a novel target for treatment of autoimmune disease via binding to quinoline 3- carboxamides. PLoS Biol. 7, e97 (2009).

    Article  PubMed  CAS  Google Scholar 

  206. Hesselstrand, R. et al. An open-label study to evaluate biomarkers and safety in systemic sclerosis (SSc) patients treated with paquinimod (ABR 215757). Ann. Rheum. Dis. 73 (Suppl. 2), 566–567 (2014).

    Google Scholar 

  207. Stenström, M. et al. Paquinimod (ABR 215757), an immunomodulatory compound, reduces fibrosis in the tight skin 1 (TSK 1) model for systemic sclerosis. Ann. Rheum. Dis. 73 (Suppl. 2), 574 (2014).

    Google Scholar 

  208. Pellicciari, R. et al. 6α-ethyl-chenodeoxycholic acid (6-ECDCA), a potent and selective FXR agonist endowed with anticholestatic activity. J. Med. Chem. 45, 3569–3572 (2002).

    Article  CAS  PubMed  Google Scholar 

  209. Mudaliar, S. et al. Efficacy and safety of the farnesoid X receptor agonist obeticholic acid in patients with type 2 diabetes and nonalcoholic fatty liver disease. Gastroenterology 145, 574–582 (2013).

    Article  CAS  PubMed  Google Scholar 

  210. Wang, X. X. et al. The farnesoid X receptor modulates renal lipid metabolism and diet-induced renal inflammation, fibrosis, and proteinuria. Am. J. Physiol. Renal Physiol. 297, 1587–1596 (2009).

    Article  CAS  Google Scholar 

  211. Hambruch, E. et al. Synthetic farnesoid X receptor agonists induce high-density lipoprotein-mediated transhepatic cholesterol efflux in mice and monkeys and prevent atherosclerosis in cholesteryl ester transfer protein transgenic low-density lipoprotein receptor (−/−) mice. J. Pharmacol. Exp. Ther. 343, 556–567 (2012).

    Article  CAS  PubMed  Google Scholar 

  212. Lu, S. C. S. Adenosylmethionine. Int. J. Biochem. Cell Biol. 32, 391–395 (2000).

    Article  CAS  PubMed  Google Scholar 

  213. Corrales, F. et al. S-adenosylmethionine treatment prevents carbon tetrachloride-induced S-adenosylmethionine synthetase inactivation and attenuates liver injury. Hepatology 16, 1022–1027 (1992).

    Article  CAS  PubMed  Google Scholar 

  214. Nieto, N. & Cederbaum, A. I. S-adenosylmethionine blocks collagen 1 production by preventing transforming growth factor β induction of the COL1A2 promoter. J. Biol. Chem. 280, 30963–30974 (2005).

    Article  CAS  PubMed  Google Scholar 

  215. Katsnelson, A. Heavy drugs draw heavy interest from pharma backers. Nat. Med. 19, 656 (2013).

    Article  CAS  PubMed  Google Scholar 

  216. Aslanian, A., Hogan, K., West, K., Bridson, G. W. & Wu, L. CTP-499, a novel drug for the treatment of chronic kidney disease, ameliorates renal fibrosis and inflammation in vivo (Poster). J. Am. Soc. Nephrol. 23 (Suppl. 1) (2012).

  217. Onorato, J. M., Jenkins, A. J., Thorpe, S. R. & Baynes, J. W. Pyridoxamine, an inhibitor of advanced glycation reactions, also inhibits advanced lipoxidation reactions. J. Biol. Chem. 275, 21177–21184 (2000).

    Article  CAS  PubMed  Google Scholar 

  218. Voziyan, P. A., Metz, T. O., Baynes, J. W. & Hudson, B. G. A post-amadori inhibitor pyridoxamine also inhibits chemical modification of proteins by scavenging carbonyl intermediates of carbohydrate and lipid degradation. J. Biol. Chem. 277, 3397–3403 (2002).

    Article  CAS  PubMed  Google Scholar 

  219. Williams, M. E. et al. Effects of pyridoxamine in combined phase 2 studies of patients with type 1 and type 2 diabetes and overt nephropathy. Am. J. Nephrol. 27, 605–614 (2007).

    Article  CAS  PubMed  Google Scholar 

  220. Degenhardt, T. P. et al. Pyridoxamine inhibits early renal disease and dyslipidemia in the streptozotocin-diabetic rat. Kidney Int. 61, 939–950 (2002).

    Article  CAS  PubMed  Google Scholar 

  221. Marquardt, D. et al. Tocopherol activity correlates with its location in a membrane: a new perspective on the antioxidant vitamin E. J. Am. Chem. Soc. 135, 7523–7533 (2013).

    Article  CAS  PubMed  Google Scholar 

  222. Sanyal, A. J. et al. Pioglitazone, vitamin E, or placebo for nonalcoholic steatohepatitis. N. Engl. J. Med. 362, 1675–1685 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  223. Mirolo, M. et al. Impact of the anti-inflammatory agent bindarit on the chemokinome: selective inhibition of the monocyte chemotactic proteins. Eur. Cytokine Netw. 19, 119–122 (2008).

    PubMed  Google Scholar 

  224. Zhu, X. Y. et al. The chemokine monocyte chemoattractant protein 1 contributes to renal dysfunction in swine renovascular hypertension. J. Hypertens. 27, 2063–2073 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  225. Dorr, P. et al. Maraviroc (UK 427,857), a potent, orally bioavailable, and selective small-molecule inhibitor of chemokine receptor CCR5 with broad-spectrum anti-human immunodeficiency virus type 1 activity. Antimicrob. Agents Chemother. 49, 4721–4732 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  226. Ochoa-Callejero, L. et al. Maraviroc, a CCR5 antagonist, prevents development of hepatocellular carcinoma in a mouse model. PLoS ONE 8, e53992 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  227. Pérez-Martínez, L. et al. Maraviroc, a CCR5 antagonist, ameliorates the development of hepatic steatosis in a mouse model of non-alcoholic fatty liver disease (NAFLD). J. Antimicrob. Chemother. 69, 1903–1910 (2014).

    Article  PubMed  CAS  Google Scholar 

  228. Mirzadegan, T. et al. Identification of the binding site for a novel class of CCR2b chemokine receptor antagonists. J. Biol. Chem. 275, 25562–25571 (2000).

    Article  CAS  PubMed  Google Scholar 

  229. Kitagawa, K. et al. Blockade of CCR2 ameliorates progressive fibrosis in kidney. Am. J. Path. 165, 237–246 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  230. Ishizaki, T. et al. Pharmacological properties of Y-27632, a specific inhibitor of RHO-associated kinases. Am. Soc. Pharmacol. Exp. Ther. 57, 976–983 (2000).

    CAS  Google Scholar 

  231. Nagatoya, K. et al. Y-27632 prevents tubulointerstitial fibrosis in mouse kidneys with unilateral ureteral obstruction. Kidney Int. 61, 1684–1695 (2002).

    Article  CAS  PubMed  Google Scholar 

  232. Tada, S. et al. A selective ROCK inhibitor, Y27632, prevents dimethylnitrosamine-induced hepatic fibrosis in rats. J. Hepatol. 34, 529–536 (2001).

    Article  CAS  PubMed  Google Scholar 

  233. Ma, W. W. Development of focal adhesion kinase inhibitors in cancer therapy. Anticancer Agents Med. Chem. 11, 638–642 (2011).

    Article  CAS  PubMed  Google Scholar 

  234. Lagares, D. et al. Inhibition of focal adhesion kinase prevents experimental lung fibrosis and myofibroblast formation. Arthritis Rheum. 64 1653–1664 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  235. Mori, Y. et al. Selective inhibition of activin receptor-like kinase 5 signaling blocks profibrotic transforming growth factor β responses in skin fibroblasts. Arthritis Rheum. 50, 4008–4021 (2004).

    Article  CAS  PubMed  Google Scholar 

  236. Jinnin, M., Ihn, H. & Tamaki, K. Characterization of SIS3, a novel specific inhibitor of Smad3, and its effect on transforming growth factor-β1 induced extracellular matrix expression. Mol. Pharmacol. 69, 597–607 (2006).

    Article  CAS  PubMed  Google Scholar 

  237. Li, J. et al. Blockade of endothelial-mesenchymal transition by a Smad3 inhibitor delays the early development of streptozotocin-induced diabetic nephropathy. Diabetes 59, 2612–2624 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  238. Reed, N. I. et al. The αvβ1 integrin plays a critical in vivo role in tissue fibrosis. Sci. Transl. Med. 7, 288ra79 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  239. Munger, J. S., Harpel, J. G., Giancotti, F. G. & Rifkin, D. B. Interactions between growth factors and integrins: Latent forms of transforming growth factor-β are ligands for the integrin αvβ1. Mol. Biol. Cell 9, 2627–2638 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  240. Riley, D. J. et al. β-aminopropionitrile prevents bleomycin-induced pulmonary fibrosis in the hamster. Am. Rev. Respir. Dis. 125, 67–73 (1982).

    CAS  PubMed  Google Scholar 

  241. Johnson, T. S. et al. Transglutaminase inhibition reduces fibrosis and preserves function in experimental chronic kidney disease. J. Am. Soc. Nephrol. 18, 3078–3088 (2007).

    Article  CAS  PubMed  Google Scholar 

  242. Huang, L. et al. Transglutaminase inhibition ameliorates experimental diabetic nephropathy. Kidney Int. 76, 383–394 (2009).

    Article  CAS  PubMed  Google Scholar 

  243. Bickel, M. et al. Beneficial effects of inhibitors of prolyl 4 hydroxylase in carbon tetrachloride-induced fibrosis of the liver in rats. J. Hepatol. 13, S26–S34 (1991).

    Article  CAS  PubMed  Google Scholar 

  244. Sakaida, I. et al. The prolyl 4 hydroxylase inhibitor HOE 077 prevents activation of ito cells, reducing procollagen gene expression in rat liver fibrosis induced by choline-deficient L amino acid-defined diet. Hepatology 23, 755–763 (1996).

    CAS  PubMed  Google Scholar 

  245. Matsumura, Y. et al. Prolyl 4-hydroxylase inhibitor (HOE 077) inhibits pig serum-induced rat liver fibrosis by preventing stellate cell activation. J. Hepatol. 27, 185–192 (1997).

    Article  CAS  PubMed  Google Scholar 

  246. Fish, P. V. et al. Potent and selective nonpeptidic inhibitors of procollagen C proteinase. J. Med. Chem. 50, 3442–3456 (2007).

    Article  CAS  PubMed  Google Scholar 

  247. Ahn, H. S. et al. Inhibition of cellular action of thrombin by N3-cyclopropyl-7-[[4-(1 methylethyl)phenyl]methyl]-7H-pyrrolo[3,2 f]quinazoline-1,3-diamine (SCH 79797), a nonpeptide thrombin receptor antagonist. Biochem. Pharmacol. 60, 1425–1434 (2000).

    Article  CAS  PubMed  Google Scholar 

  248. Sonin, D. L. et al. Protease-activated receptor 1 inhibition by SCH79797 attenuates left ventricular remodeling and profibrotic activities of cardiac fibroblasts. J. Cardiovasc. Pharmacol. Ther. 18, 460–475 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  249. Izuhara, Y. et al. A novel inhibitor of plasminogen activator inhibitor-1 provides antithrombotic benefits devoid of bleeding effect in nonhuman primates. J. Cereb. Blood Flow Metab. 30, 904–912 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  250. Huang, W. T. et al. Therapeutic value of small molecule inhibitor to plasminogen activator inhibitor-1 for lung fibrosis. Am. J. Respir. Cell. Mol. Biol. 46, 87–95 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  251. Kawabata, K. et al. ONO 5046, a novel inhibitor of human neutrophil elastase. Biochem. Biophys. Res. Commun. 177, 814–820 (1991).

    Article  CAS  PubMed  Google Scholar 

  252. Taooka, Y. et al. Effects of neutrophil elastase inhibitor on bleomycin-induced pulmonary fibrosis in mice. Am. J. Respir. Crit. Care Med. 156, 260–265 (1997).

    Article  CAS  PubMed  Google Scholar 

  253. Takemasa, A., Ishii, Y. & Fukuda, T. A neutrophil elastase inhibitor prevents bleomycin-induced pulmonary fibrosis in mice. Eur. Respir. J. 40, 1475–1482 (2012).

    Article  CAS  PubMed  Google Scholar 

  254. McGaha, T. L., Phelps, R. G., Spiera, H. & Bona, C. Halofuginone, an inhibitor of type 1 collagen synthesis and skin sclerosis, blocks transforming-growth-factor-β-mediated Smad3 activation in fibroblasts. J. Invest. Dermatol. 118, 461–470 (2002).

    Article  CAS  PubMed  Google Scholar 

  255. Keller, T. L. et al. Halofuginone and other febrifugine derivatives inhibit prolyl-tRNA synthetase. Nat. Chem. Biol. 8, 311–317 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  256. Sundrud, M. S. et al. Halofuginone inhibits Th17 cell differentiation by activating the amino acid starvation response. Science 324, 1334 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  257. Bruck, R. et al. Halofuginone to prevent and treat thioacetamide-induced liver fibrosis in rats. Hepatology 33, 379–386 (2001).

    Article  CAS  PubMed  Google Scholar 

  258. Nagler, A. et al. Reduction in pulmonary fibrosis in vivo by halofuginone. Am. J. Respir. Crit. Care. Med. 154, 1082–1086 (1996).

    Article  CAS  PubMed  Google Scholar 

  259. Zhang, W. b. et al. A point mutation that confers constitutive activity to CXCR4 reveals that T140 is an inverse agonist and that AMD3100 and ALX40 4C are weak partial agonists. J. Biol. Chem. 277, 24515–24521 (2002).

    Article  CAS  PubMed  Google Scholar 

  260. Song, J. S. et al. Inhibitory effect of CXC chemokine receptor 4 antagonist AMD3100 on bleomycin induced murine pulmonary fibrosis. Exp. Mol. Med. 42, 465–476 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  261. Makino, H. et al. Antifibrotic effects of CXCR4 antagonist in bleomycin-induced pulmonary fibrosis in mice. J. Med. Invest. 60, 127–137 (2013).

    Article  PubMed  Google Scholar 

  262. Kliewer, S. A. et al. An orphan nuclear receptor activated by pregnanes defines a novel steroid signaling pathway. Cell 92, 73–82 (1998).

    Article  CAS  PubMed  Google Scholar 

  263. Marek, C. J. et al. Pregnenolone 16α carbonitrile inhibits rodent liver fibrogenesis via PXR (pregnane X receptor)-dependent and PXR-independent mechanisms. Biochem. J. 387, 601–608 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  264. Brinkmann, V. et al. The immune modulator FTY720 targets sphingosine 1 phosphate receptors. J. Biol. Chem. 277, 21453–21457 (2002).

    Article  CAS  PubMed  Google Scholar 

  265. Krämer, S. et al. The lymphocyte migration inhibitor FTY720 attenuates experimental hypertensive nephropathy. Am. J. Physiol. Renal Physiol. 297, F218–F227 (2009).

    Article  PubMed  CAS  Google Scholar 

  266. Brunati, A. M. et al. Cross-talk between PDGF and S1P signalling elucidates the inhibitory effect and potential antifibrotic action of the immunomodulator FTY720 in activated HSC-cultures. Biochim. Biophys. Acta. 1783, 347–359 (2008).

    Article  CAS  PubMed  Google Scholar 

  267. Huang, S. M. A. et al. Tankyrase inhibition stabilizes axin and antagonizes Wnt signalling. Nature 461, 614–620 (2009).

    Article  CAS  PubMed  Google Scholar 

  268. Distler, A. et al. Inactivation of tankyrases reduces experimental fibrosis by inhibiting canonical Wnt signalling. Ann. Rheum. Dis. 72, 1575–1580 (2013).

    Article  CAS  PubMed  Google Scholar 

  269. Eguchi, M., Nguyen, C., Lee, S. C. & Kahn, M. ICG-001, a novel small molecule regulator of TCF/β-catenin transcription. Med. Chem. 1, 467–472 (2005).

    Article  CAS  PubMed  Google Scholar 

  270. Henderson, W. R. et al. Inhibition of Wnt/β catenin/CREB binding protein (CBP) signaling reverses pulmonary fibrosis. Proc. Natl Acad. Sci. USA 107, 14309–14314 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  271. Beyer, C. et al. Blockade of canonical Wnt signalling ameliorates experimental dermal fibrosis. Ann. Rheum. Dis. 72, 1255–1258 (2013).

    Article  CAS  PubMed  Google Scholar 

  272. Abramovitz, M. et al. The utilization of recombinant prostanoid receptors to determine the affinities and selectivities of prostaglandins and related analogs. Biochim. Biophys. Acta 1483, 285–293 (2000).

    Article  CAS  PubMed  Google Scholar 

  273. Huang, S. et al. Prostaglandin E2 inhibits collagen expression and proliferation in patient-derived normal lung fibroblasts via E prostanoid 2 receptor and cAMP signalling. Am. J. Physiol. Lung Cell Mol. Physiol. 292, L405–L413 (2007).

    Article  CAS  PubMed  Google Scholar 

  274. Griffin, B. W., Klimko, P., Crider, J. Y. & Sharif, N. AAL-8810: a novel prostaglandin F2α analog with selective antagonist effects at the prostaglandin F2α (FP) receptor. J. Pharmacol. Exp. Ther. 290, 1278–1284 (1999).

    CAS  PubMed  Google Scholar 

  275. Ding, W. y. et al. Prostaglandin F2α facilitates collagen synthesis in cardiac fibroblasts via an F prostanoid receptor/protein kinase C/Rho kinase pathway independent of transforming growth factor β1. Int. J. Biochem. Cell Biol. 44, 1031–1039 (2012).

    Article  CAS  PubMed  Google Scholar 

  276. Nelson, D. W. et al. Structure-activity relationship studies on a series of novel, substituted 1 benzyl-5 phenyltetrazole P2X7 antagonists. J. Med. Chem. 49, 3659–3666 (2006).

    Article  CAS  PubMed  Google Scholar 

  277. Donnelly-Roberts, D. L. & Jarvis, M. F. Discovery of P2X7 receptor-selective antagonists offers new insights into P2X7 receptor function and indicates a role in chronic pain states. Br. J. Pharmacol. 151, 571–579 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  278. Ji, X. et al. P2X7 receptor antagonism attenuates the hypertension and renal injury in Dahl salt-sensitive rats. Hypertens. Res. 35, 173–179 (2012).

    Article  CAS  PubMed  Google Scholar 

  279. Wulff, H. et al. Design of a potent and selective inhibitor of the intermediate-conductance Ca21 activated K1 channel, IKCa1: a potential immunosuppressant. Proc. Natl Acad. Sci. USA 97, 8151–8156 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  280. Grgic, I. et al. Renal fibrosis is attenuated by targeted disruption of KCa3.1 potassium channels. Proc. Natl Acad. Sci. USA 106, 14518–14523 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  281. Huang, C. et al. Blockade of KCa3.1 ameliorates renal fibrosis through the TGF-β1/Smad pathway in diabetic mice. Diabetes 62, 2923–2934 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  282. Furukawa, T. et al. Identification of R()-isomer of efonidipine as a selective blocker of T type Ca2+ channels. Br. J. Pharmacol. 143, 1050–1057 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  283. Sugano, N. et al. T type calcium channel blockade as a therapeutic strategy against renal injury in rats with subtotal nephrectomy. Kidney Int. 73, 826–834 (2008).

    Article  CAS  PubMed  Google Scholar 

  284. Thomson, C. A., Atkinson, H. M. & Ananthanarayanan, V. S. Identification of small molecule chemical inhibitors of the collagen-specific chaperone Hsp47. J. Med. Chem. 48, 1680–1684 (2005).

    Article  CAS  PubMed  Google Scholar 

  285. Xia, Z. et al. Suppression of renal tubulointerstitial fibrosis by small interfering RNA targeting heat shock protein 47. Am. J. Nephrol. 28, 34–46 (2008).

    Article  CAS  PubMed  Google Scholar 

  286. MacKinnon, A. C. et al. Regulation of transforming growth factor-β1-driven lung fibrosis by galectin 3. Am. J. Respir. Crit. Care Med. 185, 537–546 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  287. Shen, G. X. Selective protein kinase C inhibitors and their applications. Curr. Drug Targets Cardiovasc. Haematol. Disord. 3, 301–307 (2003).

    Article  CAS  PubMed  Google Scholar 

  288. Lee, S. J. et al. PKCδ as a regulator for TGFβ1 induced α-SMA production in a murine nonalcoholic steatohepatitis model. PLoS ONE 8, e55979 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  289. Underwood, D. C. et al. SB 239063, a p38 MAPK inhibitor, reduces neutrophilia, inflammatory cytokines, MMP-9, and fibrosis in lung. Am. J. Physiol. Lung Cell Mol. Physiol. 279, L895–L902 (2000).

    Article  CAS  PubMed  Google Scholar 

  290. Patchett, A. A. et al. A new class of angiotensin-converting enzyme inhibitors. Nature 288, 280–283 (1980).

    Article  CAS  PubMed  Google Scholar 

  291. Kaneto, H. et al. Enalapril reduces collagen type IV synthesis and expansion of the interstitium in the obstructed rat kidney. Kidney Int. 45, 1637–1647 (1994).

    Article  CAS  PubMed  Google Scholar 

  292. Rashid, M. et al. Identification of the binding sites and selectivity of sarpogrelate, a novel 5-HT2 antagonist, to human 5-HT2A, 5-HT2B and 5-HT2C receptor subtypes by molecular modelling. Life Sci. 73, 193–207 (2003).

    Article  CAS  PubMed  Google Scholar 

  293. Kim, D. C. et al. 5-HT2A receptor antagonists inhibit hepatic stellate cell activation and facilitate apoptosis. Liver Int. 33, 535–543 (2013).

    Article  CAS  PubMed  Google Scholar 

  294. Hamasaki, Y. et al. A 5-hydroxytryptamine receptor antagonist, sarpogrelate, reduces renal tubulointerstitial fibrosis by suppressing PAI-1. Am. J. Physiol. Renal Physiol. 305, F1796–F1803 (2013).

    Article  CAS  PubMed  Google Scholar 

  295. Jiang, G., Madan, D. & Prestwich, G. D. Aromatic phosphonates inhibit the lysophospholipase D activity of autotaxin. Bioorg. Med. Chem. Lett. 21, 5098–5101 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  296. Oikonomou, N. et al. Pulmonary autotaxin expression contributes to the pathogenesis of pulmonary fibrosis. Am. J. Respir. Cell. Mol. Biol. 47, 566–574 (2012).

    Article  PubMed  CAS  Google Scholar 

  297. Xiao, J. et al. Identification and optimization of small-molecule agonists of the human relaxin hormone receptor RXFP1. Nat. Commun. 4, 1953 (2013).

    Article  PubMed  CAS  Google Scholar 

  298. Pini, A. et al. Prevention of bleomycin-induced pulmonary fibrosis by a novel antifibrotic peptide with relaxin-like activity. J. Pharmacol. Exp. Ther. 335, 589–599 (2010).

    Article  CAS  PubMed  Google Scholar 

  299. Filippakopoulos, P. et al. Selective inhibition of BET bromodomains. Nature 468, 1067–1073 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  300. Tang, X. et al. BET bromodomain proteins mediate downstream signaling events following growth factor stimulation in human lung fibroblasts and are involved in bleomycin-induced pulmonary fibrosis. Mol. Pharmacol. 83, 283–293 (2013).

    Article  CAS  PubMed  Google Scholar 

  301. Lee, T. H., Lympany, P., Crea, A. E. G. & Spur, B. W. Inhibition of leukotriene B4 induced neutrophil migration by lipoxin A4: structure–function relationships. Biochem. Biophys. Res. Commun. 180, 1416–1421 (1991).

    Article  CAS  PubMed  Google Scholar 

  302. Zhou, X. Y. et al. BML-11, a lipoxin receptor agonist, protected carbon tetrachloride-induced hepatic fibrosis in rats. Inflammation 36, 1101–1106 (2013).

    Article  CAS  PubMed  Google Scholar 

  303. Zhan, Y. et al. Cytosporone B is an agonist for nuclear orphan receptor Nur77. Nat. Chem. Biol. 4, 548–556 (2008).

    Article  CAS  PubMed  Google Scholar 

  304. Palumbo-Zerr, K. et al. Orphan nuclear receptor NR4A1 regulates transforming growth factor-ß signaling and fibrosis. Nat. Med. 21, 150–158 (2015).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank P. Aperghis, A. Blanchard and S. Kendrick.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard J. D. Hatley.

Ethics declarations

Competing interests

R.J.D.H., R.P.M., C.B.N., and S.J.F.M. are employees and stockholders of GlaxoSmithKline. J.G. is a consultant to GlaxoSmithKline.

Related links

PowerPoint slides

Supplementary information

Supplementary information S1 (table)

Selected small-molecule combinations tested clinically for fibrotic diseases (PDF 845 kb)

Supplementary information S2 (table)

Selected molecular targets* in fibrosis pathways, with exemplar probe small molecules, with full referencing (PDF 1213 kb)

Glossary

Focal segmental glomerulosclerosis

An important cause of kidney failure that is characterized by scar tissue in the filtering unit of the kidney, known as the glomerulus.

Tubulointerstitial fibrosis

Deposition of connective tissue in the kidney parenchyma. It is a feature of end-stage kidney disease.

Space of Disse

Also known as the perisinusoidal space. This space becomes filled with scar tissue during liver cirrhosis, as a result of myofibroblast expansion and extracellular matrix deposition.

Polypharmacology

A property ascribed to a single pharmacophore that binds more than one molecular target. The term is also used interchangeably to describe administering combinations of compounds.

Tractional force

The pulling force as transmitted by integrins during the activation of latent transforming growth factor-β (TGFβ).

Suicide inhibition

A form of irreversible enzyme inhibition following binding to substrate analogues and routine catalysis. Recovery requires the synthesis of new enzyme.

Bromodomain

A domain contained by epigenetic readers or modifiers that enable opening of the nucleosome to promote gene transcription.

Deformability

A biophysical or mechanical property of the extracellular matrix that can influence cellular function.

Endotypes

Subtypes of a condition defined by a particular phenotype or pathobiology

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nanthakumar, C., Hatley, R., Lemma, S. et al. Dissecting fibrosis: therapeutic insights from the small-molecule toolbox. Nat Rev Drug Discov 14, 693–720 (2015). https://doi.org/10.1038/nrd4592

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrd4592

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research