Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

Pharmacogenetics in the evaluation of new drugs: a multiregional regulatory perspective

Abstract

Pharmacogenetics, one of the cornerstones of personalized medicine, has the potential to change the way in which health care is offered by stratifying patients into various pretreatment categories, such as likely responders, likely non-responders or likely to experience adverse drug reactions. In order to advance drug development and regulatory science, regulatory agencies globally have promulgated guidelines on pharmacogenetics for nearly a decade. The aim of this article is to provide an overview of new guidelines for the implementation of pharmacogenetics in drug development from a multiregional regulatory perspective — encompassing Europe, the United States and Japan — with an emphasis on clinical pharmacokinetics.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The European Medicine Agency's decision-making tree for in vitro studies prior to human exposure and Phase I studies.
Figure 2: The European Medicine Agency's decision-making tree for Phase I and Phase II studies.

Similar content being viewed by others

References

  1. Katz, D. A., Murray, B., Bhathena, A. & Sahelijo, L. Defining drug disposition determinants: a pharmacogenetic-pharmacokinetic strategy. Nature Rev. Drug Discov. 7, 293–305 (2008).

    Article  CAS  Google Scholar 

  2. Williams, J. A. et al. PhRMA white paper on ADME pharmacogenomics. J. Clin. Pharmacol. 48, 849–889 (2008).

    Article  CAS  PubMed  Google Scholar 

  3. Phillips, K. A. & Van Bebber, S. L. Measuring the value of pharmacogenomics. Nature Rev. Drug Discov. 4, 500–509 (2005).

    Article  CAS  Google Scholar 

  4. Weinshilboum, R. & Wang, L. Pharmacogenomics: bench to bedside. Nature Rev. Drug Discov. 3, 739–748 (2004).

    Article  CAS  Google Scholar 

  5. Zineh, I. & Pacanowski, M. A. Pharmacogenomics in the assessment of therapeutic risks versus benefits: inside the United States Food and Drug Administration. Pharmacotherapy 31, 729–735 (2011).

    Article  CAS  PubMed  Google Scholar 

  6. Ozsolak, F. Third-generation sequencing techniques and applications to drug discovery. Expert Opin. Drug Discov. 7, 231–243 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Frueh, F. W. et al. Pharmacogenomic biomarker information in drug labels approved by the United States Food and Drug Administration: prevalence of related drug use. Pharmacotherapy 28, 992–998 (2008).

    Article  PubMed  Google Scholar 

  8. Evans, W. E. & Relling, M. V. Pharmacogenomics: translating functional genomics into rational therapeutics. Science 286, 487–491 (1999).

    Article  CAS  PubMed  Google Scholar 

  9. Eichelbaum, M., Ingelman-Sundberg, M. & Evans, W. E. Pharmacogenomics and individualized drug therapy. Annu. Rev. Med. 57, 119–137 (2006).

    Article  CAS  PubMed  Google Scholar 

  10. Daly, A. K. Pharmacogenetics and human genetic polymorphisms. Biochem. J. 429, 435–449 (2010).

    Article  CAS  PubMed  Google Scholar 

  11. Lenzini, P. et al. Integration of genetic, clinical, and INR data to refine warfarin dosing. Clin. Pharmacol. Ther. 87, 572–578 (2010).

    Article  CAS  PubMed  Google Scholar 

  12. Teichert, M. et al. A genome-wide association study of acenocoumarol maintenance dosage. Hum. Mol. Genet. 18, 3758–3768 (2009).

    Article  CAS  PubMed  Google Scholar 

  13. Sim, S. C. & Ingelman-Sundberg, M. Pharmacogenomic biomarkers: new tools in current and future drug therapy. Trends Pharmacol. Sci. 32, 72–81 (2011).

    Article  CAS  PubMed  Google Scholar 

  14. Shuldiner, A. R. et al. Association of cytochrome P450 2C19 genotype with the antiplatelet effect and clinical efficacy of clopidogrel therapy. JAMA 302, 849–857 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Mega, J. L. et al. Reduced-function CYP2C19 genotype and risk of adverse clinical outcomes among patients treated with clopidogrel predominantly for PCI: a meta-analysis. JAMA 304, 1821–1830 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Mega, J. L. et al. Genetic variants in ABCB1 and CYP2C19 and cardiovascular outcomes after treatment with clopidogrel and prasugrel in the TRITON-TIMI 38 trial: a pharmacogenetic analysis. Lancet 376, 1312–1319 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Ishiguro, A., Toyoshima, S. & Uyama, Y. Current Japanese regulatory situations of pharmacogenomics in drug administration. Expert Rev. Clin. Pharmcol 1, 505–514 (2008).

    Article  CAS  Google Scholar 

  18. Uyama, Y., Ishiguro, A., Nakamura, H. & Nakamura, H. in Predictive Approaches in Drug Discovery and Development: Biomarkers and In Vitro/In Vivo CorrelationsCh. 11 (eds Williams, J., Lalonde, R.,Koup, J. & DD, C.) (John Wiley & Sons, 2012).

  19. Lesko, L. J. & Woodcock, J. Pharmacogenomic-guided drug development: regulatory perspective. Pharmacogenom. J. 2, 20–24 (2002).

    Article  CAS  Google Scholar 

  20. Goodsaid, F. & Papaluca, M. Evolution of biomarker qualification at the health authorities. Nature Biotechnol. 28, 441–443 (2010).

    Article  CAS  Google Scholar 

  21. Goodsaid, F. M. et al. Voluntary exploratory data submissions to the US FDA and the EMA: experience and impact. Nature Rev. Drug Discov. 9, 435–445 (2010).

    Article  CAS  Google Scholar 

  22. Issa, A. M. Ethical perspectives on pharmacogenomic profiling in the drug development process. Nature Rev. Drug Discov. 1, 300–308 (2002).

    Article  CAS  Google Scholar 

  23. Kohane, I. S., Hsing, M. & Kong, S. W. Taxonomizing, sizing, and overcoming the incidentalome. Genet. Med. 14, 399–404 (2012).

    Article  CAS  PubMed  Google Scholar 

  24. Kohane, I. S. (Mis)treating the pharmacogenetic incidentalome. Nature Rev. Drug Discov. 11, 89–90 (2012).

    Article  CAS  Google Scholar 

  25. Kohane, I. S., Masys, D. R. & Altman, R. B. The incidentalome: a threat to genomic medicine. JAMA 296, 212–215 (2006).

    Article  CAS  PubMed  Google Scholar 

  26. Kohane, I. S. et al. Medicine. Reestablishing the researcher–patient compact. Science 316, 836–837 (2007).

    Article  CAS  PubMed  Google Scholar 

  27. Shah, J. Economic and regulatory considerations in pharmacogenomics for drug licensing and healthcare. Nature Biotechnol. 21, 747–753 (2003).

    Article  CAS  Google Scholar 

  28. Paulmichl, M. et al. New mammalian chloride channel identified by expression cloning. Nature 356, 238–241 (1992).

    Article  CAS  PubMed  Google Scholar 

  29. Giacomini, K. M. et al. Membrane transporters in drug development. Nature Rev. Drug Discov. 9, 215–236 (2010).

    Article  CAS  Google Scholar 

  30. Pasanen, M. K., Neuvonen, M., Neuvonen, P. J. & Niemi, M. SLCO1B1 polymorphism markedly affects the pharmacokinetics of simvastatin acid. Pharmacogenet. Genom. 16, 873–879 (2006).

    Article  CAS  Google Scholar 

  31. Ho, R. H. et al. Drug and bile acid transporters in rosuvastatin hepatic uptake: function, expression, and pharmacogenetics. Gastroenterology 130, 1793–1806 (2006).

    Article  CAS  PubMed  Google Scholar 

  32. Link, E. et al. SLCO1B1 variants and statin-induced myopathy — a genomewide study. N. Engl. J. Med. 359, 789–799 (2008).

    Article  CAS  PubMed  Google Scholar 

  33. Furst, J. et al. The ICln interactome. Acta Physiol. (Oxf.) 187, 43–49 (2006).

    Article  CAS  Google Scholar 

  34. Ge, H., Liu, Z., Church, G. M. & Vidal, M. Correlation between transcriptome and interactome mapping data from Saccharomyces cerevisiae. Nature Genet. 29, 482–486 (2001).

    Article  CAS  PubMed  Google Scholar 

  35. Lim, J. et al. A protein–protein interaction network for human inherited ataxias and disorders of Purkinje cell degeneration. Cell 125, 801–814 (2006).

    Article  CAS  PubMed  Google Scholar 

  36. Rual, J. F. et al. Towards a proteome-scale map of the human protein–protein interaction network. Nature 437, 1173–1178 (2005).

    Article  CAS  PubMed  Google Scholar 

  37. Stumpf, M. P. et al. Estimating the size of the human interactome. Proc. Natl Acad. Sci. USA 105, 6959–6964 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Venkatesan, K. et al. An empirical framework for binary interactome mapping. Nature Methods 6, 83–90 (2009).

    Article  CAS  PubMed  Google Scholar 

  39. Vidal, M., Cusick, M. E. & Barabasi, A. L. Interactome networks and human disease. Cell 144, 986–998 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Yu, H. et al. Next-generation sequencing to generate interactome datasets. Nature Methods 8, 478–480 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Mirnezami, R., Nicholson, J. & Darzi, A. Preparing for precision medicine. N. Engl. J. Med. 366, 489–491 (2012).

    Article  PubMed  Google Scholar 

  42. [No authors listed]. Moving toward precision medicine. Lancet 378, 1678 (2011).

  43. Lesko, L. J. & Woodcock, J. Translation of pharmacogenomics and pharmacogenetics: a regulatory perspective. Nature Rev. Drug Discov. 3, 763–769 (2004).

    Article  CAS  Google Scholar 

  44. Lindpaintner, K. The impact of pharmacogenetics and pharmacogenomics on drug discovery. Nature Rev. Drug Discov. 1, 463–469 (2002).

    Article  CAS  Google Scholar 

  45. Ma, Q. & Lu, A. Y. Pharmacogenetics, pharmacogenomics, and individualized medicine. Pharmacol. Rev. 63, 437–459 (2011).

    Article  CAS  PubMed  Google Scholar 

  46. Wang, L., McLeod, H. L. & Weinshilboum, R. M. Genomics and drug response. N. Engl. J. Med. 364, 1144–1153 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Flaherty, K. T. et al. Inhibition of mutated, activated BRAF in metastatic melanoma. N. Engl. J. Med. 363, 809–819 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Karapetis, C. S. et al. K-ras mutations and benefit from cetuximab in advanced colorectal cancer. N. Engl. J. Med. 359, 1757–1765 (2008).

    Article  CAS  PubMed  Google Scholar 

  49. Duncan, S. R., Scott, S. & Duncan, C. J. Reappraisal of the historical selective pressures for the CCR5- Δ32 mutation. J. Med. Genet. 42, 205–208 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Roudier, J. HLA-DRB1 genes and extraarticular rheumatoid arthritis. Arthritis Res. Ther. 8, 103 (2006).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

The authors greatly appreciated helpful discussions with I. Kohane (Harvard, USA), R. Diasio (Mayo Clinic, USA) and F. Innocenti (University of North Carolina, Chapel Hill, USA). C.N. is supported by the Lise Meitner stipend of the Fonds zur Förderung der Wissenschaftlichen Forschung (FWF) (M11108-B11). Further support was given by the FWF and the FP-7 to M. Paulmichl (P18608; PIRSES-GA-2008-230661). The authors acknowledge the expert secretarial assistance of E. Mooslechner.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Markus Paulmichl.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

FURTHER INFORMATION

Committee for Medicinal Products for Human Use

EMA — Qualification of novel methodologies for medicine development

EMA workshop on pharmacogenomics: from science to clinical care

Innovation Task Force

International Conference on Harmonisation — Guidelines

Pharmacogenomics Working Party

Pharmacokinetics Working Party

Table of Pharmacogenomic Biomarkers in Drug Labels

Glossary

Adverse drug reactions

(ADRs). Noxious, undesired or unintended responses to pharmacological treatments that occur at dosages used for prophylaxis, diagnosis or therapy of diseases.

Enrichment studies

Clinical studies in which patient subsets are enrolled or analysed in order to increase the likelihood for demonstrating a specific treatment effect (if one exists).

Genetic subpopulations

Groups of individuals sharing the same genetic variants. Ethnicity is not included in the context here.

Interactome

The entire set of protein–protein interactions that occur in a cell.

Pharmacodynamics

(PD). The desired or adverse biological (for example, biochemical or physiological) effect of a drug on the body.

Pharmacogenetics

According to the definitions set by the International Conference on Harmonisation Topic E15 guideline, pharmacogenetics is a subset of pharmacogenomics that studies variations in DNA sequence as related to drug response.

Pharmacogenomics

According to the definitions set by the International Conference on Harmonisation Topic E15 guideline, pharmacogenomics is the study of variations in DNA and RNA characteristics as related to drug response.

Pharmacokinetics

(PK). How the body affects a drug over a period of time as a function of absorption, distribution, metabolism and excretion.

Pharmacovigilance

A pharmacological science related to the detection, assessment and prevention of adverse drug reactions in the post-marketing period of a drug's life cycle.

Phenotyping

Grouping of individuals based on measurement of an observable characteristic (for example, the extent to which they are able to metabolize a drug or other substrate).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Maliepaard, M., Nofziger, C., Papaluca, M. et al. Pharmacogenetics in the evaluation of new drugs: a multiregional regulatory perspective. Nat Rev Drug Discov 12, 103–115 (2013). https://doi.org/10.1038/nrd3931

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrd3931

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research