Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

Advances in the preclinical testing of cancer therapeutic hypotheses

Abstract

The genetic and epigenetic underpinnings of cancer are becoming increasingly clear owing to impressive and well-coordinated ventures occurring worldwide. As our understanding of the molecular alterations driving human cancer increases, there is an opportunity to direct the clinical application of cancer therapeutics with improved accuracy. The often empirical treatment of cancer — which was initially based on inhibiting DNA synthesis and cellular division — while having led to a number of remarkable successes, remains prone to a high rate of clinical failure that results partly from a lack of understanding of how best to implement drugs in the clinic. Consequently, it is vital that robust translational strategies be developed preclinically to both reduce failure rates in the clinic and shorten the time required to identify patient populations most likely to benefit from a given therapeutic. Here, we review both historical and current uses of preclinical model systems, being mindful that a combination of approaches will be needed to address all meritorious therapeutic hypotheses.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The sensitivity of 602 cell lines to the kinase inhibitor TAE684 reveals a striking correlation with alterations in ALK.
Figure 2: The PI3K inhibitor BEZ235 regresses lung tumours bearing PI3K but not KRAS mutations.
Figure 3: Generation of chimeric mouse tumour models.

Similar content being viewed by others

References

  1. Hudson, T. J. et al. International network of cancer genome projects. Nature 464, 993–998 (2010).

    Article  CAS  PubMed  Google Scholar 

  2. Buchdunger, E. et al. Inhibition of the Abl protein-tyrosine kinase in vitro and in vivo by a 2-phenylaminopyrimidine derivative. Cancer Res. 56, 100–104 (1996).

    CAS  PubMed  Google Scholar 

  3. Miller-Moslin, K. et al. 1-amino-4-benzylphthalazines as orally bioavailable smoothened antagonists with antitumor activity. J. Med. Chem. 52, 3954–3968 (2009).

    Article  CAS  PubMed  Google Scholar 

  4. Robarge, K. D. et al. GDC-0449 — a potent inhibitor of the hedgehog pathway. Bioorg. Med. Chem. Lett. 19, 5576–5581 (2009).

    Article  CAS  PubMed  Google Scholar 

  5. Barrie, S. E. et al. Pharmacology of novel steroidal inhibitors of cytochrome P45017α (17 alpha-hydroxylase/C17–20 lyase). J. Steroid Biochem. Mol. Biol. 50, 267–273 (1994).

    Article  CAS  PubMed  Google Scholar 

  6. Bhatnagar, A. S., Hausler, A., Schieweck, K., Lang, M. & Bowman, R. Highly selective inhibition of estrogen biosynthesis by CGS 20267, a new non-steroidal aromatase inhibitor. J. Steroid Biochem. Mol. Biol. 37, 1021–1027 (1990).

    Article  CAS  PubMed  Google Scholar 

  7. Plourde, P. V., Dyroff, M. & Dukes, M. Arimidex: a potent and selective fourth-generation aromatase inhibitor. Breast Cancer Res. Treat. 30, 103–111 (1994).

    Article  CAS  PubMed  Google Scholar 

  8. Sasai, K. et al. Shh pathway activity is down-regulated in cultured medulloblastoma cells: implications for preclinical studies. Cancer Res. 66, 4215–4222 (2006).

    Article  CAS  PubMed  Google Scholar 

  9. Kelly, P. N., Dakic, A., Adams, J. M., Nutt, S. L. & Strasser, A. Tumor growth need not be driven by rare cancer stem cells. Science 317, 337 (2007).

    Article  CAS  PubMed  Google Scholar 

  10. Quintana, E. et al. Efficient tumour formation by single human melanoma cells. Nature 456, 593–598 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Chabner, B. A. & Roberts, T. G. Jr. Chemotherapy and the war on cancer. Nature Rev. Cancer 5, 65–72 (2005).

    Article  CAS  Google Scholar 

  12. DeVita, V. T. Jr & Chu, E. A history of cancer chemotherapy. Cancer Res. 68, 8643–8653 (2008).

    Article  CAS  PubMed  Google Scholar 

  13. Gilman, A. & Philips, F. S. The biological actions and therapeutic applications of the B-chloroethyl amines and sulfides. Science 103, 409–436 (1946).

    Article  CAS  PubMed  Google Scholar 

  14. Goodman, L. S. et al. Nitrogen mustard therapy; use of methyl-bis(beta-chloroethyl)amine hydrochloride and tris(beta-chloroethyl)amine hydrochloride for Hodgkin's disease, lymphosarcoma, leukemia and certain allied and miscellaneous disorders. JAMA 132, 126–132 (1946).

    Article  CAS  Google Scholar 

  15. Rutman, R. J., Cantarow, A. & Paschkis, K. E. Studies in 2-acetylaminofluorene carcinogenesis. III. The utilization of uracil-2-C14 by preneoplastic rat liver and rat hepatoma. Cancer Res. 14, 119–123 (1954).

    CAS  PubMed  Google Scholar 

  16. Heidelberger, C. et al. Fluorinated pyrimidines, a new class of tumour-inhibitory compounds. Nature 179, 663–666 (1957).

    Article  CAS  PubMed  Google Scholar 

  17. Fantini, A., Moser, L., Partridge, R. & Halliday, J. L. The effect of actinomycin D on several mouse tumors. Proc. Am. Assoc. Cancer Res. 2, 108 (1956).

    Google Scholar 

  18. Farber, S. Carcinolytic action of antibiotics: puromycin and actinomycin D. Am. J. Pathol. 31, 582 (1955).

    Google Scholar 

  19. Gregory, F. J., Hata, T., Pugh, L. H. & Thielen, R. The effect of actinomycin D on experimental ascitic tumors in the mouse. Cancer Res. 16, 985–987 (1956).

    CAS  PubMed  Google Scholar 

  20. Johnson, I. S., Armstrong, J. G., Gorman, M. & Burnett, J. P. Jr. The vinca alkaloids: a new class of oncolytic agents. Cancer Res. 23, 1390–1427 (1963).

    CAS  PubMed  Google Scholar 

  21. Pinkel, D. Actinomycin D in childhood cancer; a preliminary report. Pediatrics 23, 342–347 (1959).

    Article  CAS  PubMed  Google Scholar 

  22. Shoemaker, R. H. The NCI60 human tumour cell line anticancer drug screen. Nature Rev. Cancer 6, 813–823 (2006).

    Article  CAS  Google Scholar 

  23. Holbeck, S. L., Collins, J. M. & Doroshow, J. H. Analysis of Food and Drug Administration-approved anticancer agents in the NCI60 panel of human tumor cell lines. Mol. Cancer Ther. 9, 1451–1460 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Bussey, K. J. et al. Integrating data on DNA copy number with gene expression levels and drug sensitivities in the NCI-60 cell line panel. Mol. Cancer Ther. 5, 853–867 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Garraway, L. A. et al. Integrative genomic analyses identify MITF as a lineage survival oncogene amplified in malignant melanoma. Nature 436, 117–122 (2005).

    Article  CAS  PubMed  Google Scholar 

  26. Ma, Y. et al. Predicting cancer drug response by proteomic profiling. Clin. Cancer Res. 12, 4583–4589 (2006).

    Article  CAS  PubMed  Google Scholar 

  27. Ring, B. Z., Chang, S., Ring, L. W., Seitz, R. S. & Ross, D. T. Gene expression patterns within cell lines are predictive of chemosensitivity. BMC Genomics 9, 74 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Ross, D. T. et al. Systematic variation in gene expression patterns in human cancer cell lines. Nature Genet. 24, 227–235 (2000).

    Article  CAS  PubMed  Google Scholar 

  29. Scherf, U. et al. A gene expression database for the molecular pharmacology of cancer. Nature Genet. 24, 236–244 (2000).

    Article  CAS  PubMed  Google Scholar 

  30. Solit, D. B. et al. BRAF mutation predicts sensitivity to MEK inhibition. Nature 439, 358–362 (2006).

    Article  CAS  PubMed  Google Scholar 

  31. Weinstein, J. N. et al. An information-intensive approach to the molecular pharmacology of cancer. Science 275, 343–349 (1997).

    Article  CAS  PubMed  Google Scholar 

  32. Bai, R. L. et al. Halichondrin B and homohalichondrin B, marine natural products binding in the vinca domain of tubulin. Discovery of tubulin-based mechanism of action by analysis of differential cytotoxicity data. J. Biol. Chem. 266, 15882–15889 (1991).

    Article  CAS  PubMed  Google Scholar 

  33. Leteurtre, F., Kohlhagen, G., Paull, K. D. & Pommier, Y. Topoisomerase II inhibition and cytotoxicity of the anthrapyrazoles DuP 937 and DuP 941 (Losoxantrone) in the National Cancer Institute preclinical antitumor drug discovery screen. J. Natl Cancer Inst. 86, 1239–1244 (1994).

    Article  CAS  PubMed  Google Scholar 

  34. Solary, E. et al. Dual inhibition of topoisomerase II and tubulin polymerization by azatoxin, a novel cytotoxic agent. Biochem. Pharmacol. 45, 2449–2456 (1993).

    Article  CAS  PubMed  Google Scholar 

  35. Adams, J. Development of the proteasome inhibitor PS-341. Oncologist 7, 9–16 (2002).

    Article  CAS  PubMed  Google Scholar 

  36. Weir, B. A. et al. Characterizing the cancer genome in lung adenocarcinoma. Nature 450, 893–898 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Zhao, X. et al. Homozygous deletions and chromosome amplifications in human lung carcinomas revealed by single nucleotide polymorphism array analysis. Cancer Res. 65, 5561–5570 (2005).

    Article  CAS  PubMed  Google Scholar 

  38. Ding, L. et al. Somatic mutations affect key pathways in lung adenocarcinoma. Nature 455, 1069–1075 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Rodig, S. J. et al. Unique clinicopathologic features characterize ALK-rearranged lung adenocarcinoma in the western population. Clin. Cancer Res. 15, 5216–5223 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Soda, M. et al. Identification of the transforming EML4ALK fusion gene in non-small-cell lung cancer. Nature 448, 561–566 (2007).

    Article  CAS  PubMed  Google Scholar 

  41. McDermott, U. et al. Genomic alterations of anaplastic lymphoma kinase may sensitize tumors to anaplastic lymphoma kinase inhibitors. Cancer Res. 68, 3389–3395 (2008).

    Article  CAS  PubMed  Google Scholar 

  42. McDermott, U. et al. Identification of genotype-correlated sensitivity to selective kinase inhibitors by using high-throughput tumor cell line profiling. Proc. Natl Acad. Sci. USA 104, 19936–19941 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Kwak, E. L. et al. Anaplastic lymphoma kinase inhibition in non-small-cell lung cancer. N. Engl. J. Med. 363, 1693–1703 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Shaw, A. T. et al. Clinical features and outcome of patients with non-small-cell lung cancer who harbor EML4–ALK. J. Clin. Oncol. 27, 4247–4253 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Koivunen, J. P. et al. EML4ALK fusion gene and efficacy of an ALK kinase inhibitor in lung cancer. Clin. Cancer Res. 14, 4275–4283 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Soda, M. et al. A mouse model for EML4–ALK-positive lung cancer. Proc. Natl Acad. Sci. USA 105, 19893–19897 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Dry, J. R. et al. Transcriptional pathway signatures predict MEK addiction and response to selumetinib (AZD6244). Cancer Res. 70, 2264–2273 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Greshock, J. et al. Molecular target class is predictive of in vitro response profile. Cancer Res. 70, 3677–3686 (2010).

    Article  CAS  PubMed  Google Scholar 

  49. Lin, W. M. et al. Modeling genomic diversity and tumor dependency in malignant melanoma. Cancer Res. 68, 664–673 (2008).

    Article  CAS  PubMed  Google Scholar 

  50. Sos, M. L. et al. Predicting drug susceptibility of non-small cell lung cancers based on genetic lesions. J. Clin. Invest. 119, 1727–1740 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Davies, B. R. et al. AZD6244 (ARRY-142886), a potent inhibitor of mitogen-activated protein kinase/extracellular signal-regulated kinase kinase 1/2 kinases: mechanism of action in vivo, pharmacokinetic/pharmacodynamic relationship, and potential for combination in preclinical models. Mol. Cancer Ther. 6, 2209–2219 (2007).

    Article  CAS  PubMed  Google Scholar 

  52. Yeh, J. J. et al. KRAS/BRAF mutation status and ERK1/2 activation as biomarkers for MEK1/2 inhibitor therapy in colorectal cancer. Mol. Cancer Ther. 8, 834–843 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Engelman, J. A. et al. Effective use of PI3K and MEK inhibitors to treat mutant Kras G12D and PIK3CA H1047R murine lung cancers. Nature Med. 14, 1351–1356 (2008).

    Article  CAS  PubMed  Google Scholar 

  54. Wee, S. et al. PI3K pathway activation mediates resistance to MEK inhibitors in KRAS mutant cancers. Cancer Res. 69, 4286–4293 (2009).

    Article  CAS  PubMed  Google Scholar 

  55. Borisy, A. A. et al. Systematic discovery of multicomponent therapeutics. Proc. Natl Acad. Sci. USA 100, 7977–7982 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Sos, M. L. et al. Identifying genotype-dependent efficacy of single and combined PI3K- and MAPK-pathway inhibition in cancer. Proc. Natl Acad. Sci. USA 106, 18351–18356 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Engelman, J. A. & Janne, P. A. Mechanisms of acquired resistance to epidermal growth factor receptor tyrosine kinase inhibitors in non-small cell lung cancer. Clin. Cancer Res. 14, 2895–2899 (2008).

    Article  PubMed  Google Scholar 

  58. Kobayashi, S. et al. EGFR mutation and resistance of non-small-cell lung cancer to gefitinib. N. Engl. J. Med. 352, 786–792 (2005).

    Article  CAS  PubMed  Google Scholar 

  59. Pao, W. et al. Acquired resistance of lung adenocarcinomas to gefitinib or erlotinib is associated with a second mutation in the EGFR kinase domain. PLoS Med. 2, e73 (2005).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. Engelman, J. A. et al. MET amplification leads to gefitinib resistance in lung cancer by activating ERBB3 signaling. Science 316, 1039–1043 (2007).

    Article  CAS  PubMed  Google Scholar 

  61. Turke, A. B. et al. Preexistence and clonal selection of MET amplification in EGFR mutant NSCLC. Cancer Cell 17, 77–88 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Beroukhim, R. et al. Assessing the significance of chromosomal aberrations in cancer: methodology and application to glioma. Proc. Natl Acad. Sci. USA 104, 20007–20012 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Li, A. et al. Genomic changes and gene expression profiles reveal that established glioma cell lines are poorly representative of primary human gliomas. Mol. Cancer Res. 6, 21–30 (2008).

    Article  CAS  PubMed  Google Scholar 

  64. Wakimoto, H. et al. Human glioblastoma-derived cancer stem cells: establishment of invasive glioma models and treatment with oncolytic herpes simplex virus vectors. Cancer Res. 69, 3472–3481 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Ellis, W. J. et al. Characterization of a novel androgen-sensitive, prostate-specific antigen-producing prostatic carcinoma xenograft: LuCaP 23. Clin. Cancer Res. 2, 1039–1048 (1996).

    CAS  PubMed  Google Scholar 

  66. Klein, K. A. et al. Progression of metastatic human prostate cancer to androgen independence in immunodeficient SCID mice. Nature Med. 3, 402–408 (1997).

    Article  CAS  PubMed  Google Scholar 

  67. Korenchuk, S. et al. VCaP, a cell-based model system of human prostate cancer. In Vivo 15, 163–168 (2001).

    CAS  PubMed  Google Scholar 

  68. Lee, Y. G. et al. Establishment and characterization of a new human prostatic cancer cell line: DuCaP. In Vivo 15, 157–162 (2001).

    CAS  PubMed  Google Scholar 

  69. Wainstein, M. A. et al. CWR22: androgen-dependent xenograft model derived from a primary human prostatic carcinoma. Cancer Res. 54, 6049–6052 (1994).

    CAS  PubMed  Google Scholar 

  70. Rong, S. et al. Tumorigenicity of the met proto-oncogene and the gene for hepatocyte growth factor. Mol. Cell Biol. 12, 5152–5158 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Tian, H. et al. Hedgehog signaling is restricted to the stromal compartment during pancreatic carcinogenesis. Proc. Natl Acad. Sci. USA 106, 4254–4259 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Yauch, R. L. et al. A paracrine requirement for hedgehog signalling in cancer. Nature 455, 406–410 (2008).

    Article  CAS  PubMed  Google Scholar 

  73. Sharpless, N. E. & Depinho, R. A. The mighty mouse: genetically engineered mouse models in cancer drug development. Nature Rev. Drug Discov. 5, 741–754 (2006).

    Article  CAS  Google Scholar 

  74. Olive, K. P. et al. Inhibition of Hedgehog signaling enhances delivery of chemotherapy in a mouse model of pancreatic cancer. Science 324, 1457–1461 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Buonamici, S. et al. Interfering with resistance to smoothened antagonists by inhibition of the PI3K pathway in medulloblastoma. Sci. Transl. Med. 2, 51ra70 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  76. Zhou, Y. et al. Chimeric mouse tumor models reveal differences in pathway activation between ERBB family- and KRAS-dependent lung adenocarcinomas. Nature Biotech. 28, 71–78 (2010).

    Article  CAS  Google Scholar 

  77. Kinzler, K. W. & Vogelstein, B. Landscaping the cancer terrain. Science 280, 1036–1037 (1998).

    Article  CAS  PubMed  Google Scholar 

  78. Kaiser, J. Cancer research. Looking for a target on every tumor. Science 326, 218–220 (2009).

    Article  CAS  PubMed  Google Scholar 

  79. Druker, B. J. et al. Efficacy and safety of a specific inhibitor of the BCR–ABL tyrosine kinase in chronic myeloid leukemia. N. Engl. J. Med. 344, 1031–1037 (2001).

    Article  CAS  PubMed  Google Scholar 

  80. Bollag, G. et al. Clinical efficacy of a RAF inhibitor needs broad target blockade in BRAF-mutant melanoma. Nature 467, 596–599 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Vogel, C. L. et al. Efficacy and safety of trastuzumab as a single agent in first-line treatment of HER2-overexpressing metastatic breast cancer. J. Clin. Oncol. 20, 719–726 (2002).

    Article  CAS  PubMed  Google Scholar 

  82. Fremin, C. & Meloche, S. From basic research to clinical development of MEK1/2 inhibitors for cancer therapy. J. Hematol. Oncol. 3, 8 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  83. Baum, M. et al. Anastrozole alone or in combination with tamoxifen versus tamoxifen alone for adjuvant treatment of postmenopausal women with early breast cancer: first results of the ATAC randomised trial. Lancet 359, 2131–2139 (2002).

    Article  CAS  PubMed  Google Scholar 

  84. Danila, D. C. et al. Phase II multicenter study of abiraterone acetate plus prednisone therapy in patients with docetaxel-treated castration-resistant prostate cancer. J. Clin. Oncol. 28, 1496–1501 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Reid, A. H. et al. Significant and sustained antitumor activity in post-docetaxel, castration-resistant prostate cancer with the CYP17 inhibitor abiraterone acetate. J. Clin. Oncol. 28, 1489–1495 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Ryan, C. J. et al. Phase I clinical trial of the CYP17 inhibitor abiraterone acetate demonstrating clinical activity in patients with castration-resistant prostate cancer who received prior ketoconazole therapy. J. Clin. Oncol. 28, 1481–1488 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Drew, Y. & Plummer, R. PARP inhibitors in cancer therapy: two modes of attack on the cancer cell widening the clinical applications. Drug Resist. Updat. 12, 153–156 (2009).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank C. Emery and W. Hable for providing constructive feedback during the writing of this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giordano Caponigro.

Ethics declarations

Competing interests

Giordano Caponigro and William R. Sellers are employees and shareholders of Novartis Pharmaceuticals.

Related links

Related links

FURTHER INFORMATION

DTP Human Tumor Cell Line Screen

Glossary

Caretaker genes

The primary function of caretaker genes is to maintain the integrity of the genome. When mutated these genes are tumour suppressor genes, whereby their loss of function can indirectly promote tumorigenesis by increasing the rate of DNA mutation in cells. Examples of genes in this class include ATM, BRCA1/2, MLH and MSH2. P53 can act as both a caretaker and as a gatekeeper gene.

Cell Line Encyclopedia Project

A collaborative project between the Novartis Institutes for BioMedical Research and the Broad Institute in which 1,000 cancer cell lines are being characterized in terms of mRNA expression, copy-number alterations and point mutations. The project also includes large-scale compound sensitivity profiling.

Driver mutation

This is a genetic event in cancer that is statistically enriched across many representatives of a tumour type. It is different to a 'passenger' mutation, which may be acquired and propagated in much fewer tumours by a chance linkage with a driver mutation. Well-established druggable driver oncogenes include BCR–ABL, human epidermal growth factor receptor 2 (HER2; also known as ERBB2), KIT, platelet-derived growth factor receptor (PDGFR), EGFR and BRAF.

GI50

The drug concentration required to causes a 50% growth inhibitory effect.

NCI60

A collection of 57 cancer cell lines developed and used for high-throughput cytotoxicity assays. More than 50,000 compounds have been tested in this cell line set.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Caponigro, G., Sellers, W. Advances in the preclinical testing of cancer therapeutic hypotheses. Nat Rev Drug Discov 10, 179–187 (2011). https://doi.org/10.1038/nrd3385

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrd3385

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer