Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Janus kinase inhibitors for the treatment of myeloproliferative neoplasias and beyond

An Erratum to this article was published on 01 April 2011

This article has been updated

Key Points

  • The discovery of the V617F mutation in Janus kinase 2 (JAK2) in 2005 provided, for the first time, a molecular taxonomic nexus that definitively linked the myeloproliferative neoplasms (MPNs) polycythaemia vera, essential thrombocythaemia and primary myelofibrosis.

  • JAK2V617F is constitutively activated, and so also provides the rationale for the development of small molecular mass compounds targeted at disrupting such activity in the mutated enzyme.

  • A growing number of JAK inhibitors are being developed for the treatment of MPNs; the JAK1 and JAK2 inhibitor ruxolitinib and the selective JAK2 inhibitor TG101348 are furthest along in clinical development, but many others are undergoing clinical testing.

  • JAK2 inhibitors produce remarkable improvements in spleen size and constitutional symptoms of MPNs but have limited activity in improving cytopaenias, decreasing the mutant JAK2V617F allelic burden or improving marrow fibrosis.

  • The mechanism of action of JAK inhibitors in patients with MPNs is not fully understood as responses are seen both in patients with and without the JAK2V617F mutation.

  • Recently reported knock-in mouse models, in which JAK2V617F is expressed from the endogenous promoter, will become invaluable tools for the development of novel therapies for MPNs and for gaining further understanding of the biology of these malignancies.

  • A series of novel mutant alleles (TET2, ASXL1, CBL, IDH1/IDH2, IKZF1, EZH2 and LNK) have been reported in the last 24 months in subsets of patients with MPNs. However, the role of these alleles in those malignancies remains to be determined.

  • Because JAKs are involved in the pathogenesis of inflammatory and immune-mediated disorders, JAK inhibitors are also being tested in clinical trials for these indications and have shown remarkable results in rheumatoid arthritis and psoriasis as well as in prevention of allograft rejection.

Abstract

Recent advances in our understanding of the pathogenesis of the Philadelphia chromosome-negative myeloproliferative neoplasms, polycythaemia vera, essential thrombocythaemia and myelofibrosis have led to the identification of the mutation V617F in Janus kinase (JAK) as a potential therapeutic target. This information has prompted the development of ATP-competitive JAK2 inhibitors. Therapy with JAK2 inhibitors may induce rapid and marked reductions in spleen size and can lead to remarkable improvements in constitutional symptoms and overall quality of life. Because JAKs are involved in the pathogenesis of inflammatory and immune-mediated disorders, JAK inhibitors are also being tested in clinical trials in patients with rheumatoid arthritis and psoriasis, as well as for the treatment of other autoimmune diseases and for the prevention of allograft rejection. Preliminary results indicate that these agents hold great promise for the treatment of JAK-driven disorders.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Cytokine receptors and JAK2.
Figure 2: JAK2V617F signalling pathways in myeloproliferative neoplasms.
Figure 3: Nuclear activity of JAK2 and JAK2V617F.

Similar content being viewed by others

Change history

  • 25 March 2011

    The information presented in Table 2 on the compound SB1518 was incorrect; the correct information is provided, and has been corrected online.

References

  1. Spivak, J. L. The chronic myeloproliferative disorders: clonality and clinical heterogeneity. Semin. Hematol. 41, 1–5 (2004).

    Article  CAS  PubMed  Google Scholar 

  2. Tefferi, A. & Vardiman, J. W. Classification and diagnosis of myeloproliferative neoplasms: the World Health Organization criteria and point-of-care diagnostic algorithms. Leukemia 22, 14–22 (2008).

    Article  CAS  PubMed  Google Scholar 

  3. Spivak, J. L. Polycythemia vera: myths, mechanisms, and management. Blood 100, 4272–4290 (2002).

    Article  CAS  PubMed  Google Scholar 

  4. Beer, P. A. & Green, A. R. Pathogenesis and management of essential thrombocythemia. Hematology Am. Soc. Hematol. Educ. Program 2009, 621–628 (2009).

    Article  Google Scholar 

  5. Finazzi, G. & Barbui, T. How I treat patients with polycythemia vera. Blood 109, 5104–5111 (2007).

    Article  CAS  PubMed  Google Scholar 

  6. Passamonti, F. et al. A dynamic prognostic model to predict survival in primary myelofibrosis: a study by the IWG-MRT (International Working Group for Myeloproliferative Neoplasms Research and Treatment). Blood 115, 1703–1708 (2010).

    Article  CAS  PubMed  Google Scholar 

  7. Schindler, C. & Darnell, J. E. Jr. Transcriptional responses to polypeptide ligands: the JAK-STAT pathway. Annu. Rev. Biochem. 64, 621–651 (1995).

    Article  CAS  PubMed  Google Scholar 

  8. Prchal, J. F. & Axelrad, A. A. Letter: Bone-marrow responses in polycythemia vera. N. Engl. J. Med. 290, 1382 (1974).

    CAS  PubMed  Google Scholar 

  9. Lutton, J. D. & Levere, R. D. Endogenous erythroid colony formation by peripheral blood mononuclear cells from patients with myelofibrosis and polycythemia vera. Acta Haematol. 62, 94–99 (1979).

    Article  CAS  PubMed  Google Scholar 

  10. Adamson, J. W., Fialkow, P. J., Murphy S., Prchal, J. F. & Steinmann, L. Polycythemia vera: stem-cell and probable clonal origin of the disease. N. Engl. J. Med. 295, 913–916 (1976).

    Article  CAS  PubMed  Google Scholar 

  11. Gilliland, D. G., Blanchard, K. L., Levy J., Perrin S. & Bunn, H. F. Clonality in myeloproliferative disorders: analysis by means of the polymerase chain reaction. Proc. Natl Acad. Sci. USA 88, 6848–6852 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. el Kassar, N., Hetet, G., Li, Y., Briere J. & Grandchamp, B. Clonal analysis of haemopoietic cells in essential thrombocythaemia. Br. J. Haematol. 90, 131–137 (1995).

    Article  CAS  PubMed  Google Scholar 

  13. Tsukamoto, N. et al. Clonality in chronic myeloproliferative disorders defined by X-chromosome linked probes: demonstration of heterogeneity in lineage involvement. Br. J. Haematol. 86, 253–258 (1994).

    Article  CAS  PubMed  Google Scholar 

  14. Neubauer, H. et al. Jak2 deficiency defines an essential developmental checkpoint in definitive hematopoiesis. Cell 93, 397–409 (1998).

    Article  CAS  PubMed  Google Scholar 

  15. Parganas, E. et al. Jak2 is essential for signaling through a variety of cytokine receptors. Cell 93, 85–395 (1998).

    Article  Google Scholar 

  16. Levine, R. L., Pardanani, A., Tefferi, A. & Gilliland, D. G. Role of JAK2 in the pathogenesis and therapy of myeloproliferative disorders. Nature Rev. Cancer 7, 673–683 (2007).

    Article  CAS  Google Scholar 

  17. Moliterno, A. R., Hankins, W. D. & Spivak, J. L. Impaired expression of the thrombopoietin receptor by platelets from patients with polycythemia vera. N. Engl. J. Med. 338, 572–580 (1998).

    Article  CAS  PubMed  Google Scholar 

  18. Baxter, E. J. et al. Acquired mutation of the tyrosine kinase JAK2 in human myeloproliferative disorders. Lancet 365, 1054–1061 (2005).

    Article  CAS  PubMed  Google Scholar 

  19. James, C. et al. A unique clonal JAK2 mutation leading to constitutive signalling causes polycythaemia vera. Nature 434, 1144–1148 (2005).

    Article  CAS  PubMed  Google Scholar 

  20. Kralovics, R. et al. A gain-of-function mutation of JAK2 in myeloproliferative disorders. N. Engl. J. Med. 352, 1779–1790 (2005).

    Article  CAS  PubMed  Google Scholar 

  21. Levine, R. L. et al. Activating mutation in the tyrosine kinase JAK2 in polycythemia vera, essential thrombocythemia, and myeloid metaplasia with myelofibrosis. Cancer Cell 7, 387–397 (2005).

    Article  CAS  PubMed  Google Scholar 

  22. Zhao, R. et al. Identification of an acquired JAK2 mutation in polycythemia vera. J. Biol. Chem. 280, 22788–22792 (2005). References 18–22 provide the first description of the recurrent somatic mutation (JAK2V617F) in patients with PV, PMF and ET, thus molecularly linking all three disorders.

    Article  CAS  PubMed  Google Scholar 

  23. Lu, X. et al. Expression of a homodimeric type I cytokine receptor is required for JAK2V617F-mediated transformation. Proc. Natl Acad. Sci. USA 102, 18962–18967 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Dusa, A. et al. Substitution of pseudokinase domain residue Val-617 by large non-polar amino acids causes activation of JAK2. J. Biol. Chem. 283, 12941–12948 (2008).

    Article  CAS  PubMed  Google Scholar 

  25. Scott, L. M. et al. JAK2 exon 12 mutations in polycythemia vera and idiopathic erythrocytosis. N. Engl. J. Med. 356, 459–468 (2007). This is the first description of mutations mapping to exon 12 of the JAK2 gene in patients with PV who do not carry the JAK2V617F mutation.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Pietra, D. et al. Somatic mutations of JAK2 exon 12 in patients with JAK2 (V617F)-negative myeloproliferative disorders. Blood 111, 1686–1689 (2008).

    Article  CAS  PubMed  Google Scholar 

  27. Pardanani, A., Lasho, T. L., Finke, C., Hanson, C. A. & Tefferi, A. Prevalence and clinicopathologic correlates of JAK2 exon 12 mutations in JAK2V617F-negative polycythemia vera. Leukemia 21, 1960–1963 (2007).

    Article  CAS  PubMed  Google Scholar 

  28. Wang, Y. L. et al. JAK2 mutations are present in all cases of polycythemia vera. Leukemia 22, 1289 (2008).

    Article  CAS  PubMed  Google Scholar 

  29. Jones, A. V. et al. JAK2 haplotype is a major risk factor for the development of myeloproliferative neoplasms. Nature Genet. 41, 446–449 (2009).

    Article  CAS  PubMed  Google Scholar 

  30. Kilpivaara, O. et al. A germline JAK2 SNP is associated with predisposition to the development of JAK2V617F-positive myeloproliferative neoplasms. Nature Genet. 41, 455–459 (2009).

    Article  CAS  PubMed  Google Scholar 

  31. Olcaydu, D. et al. A common JAK2 haplotype confers susceptibility to myeloproliferative neoplasms. Nature Genet. 41, 450–454 (2009). References 29–31 describe the association between a specific haplotype and a high susceptibility risk to developing JAK2V617F-positive MPNs.

    Article  CAS  PubMed  Google Scholar 

  32. Saharinen, P., Takaluoma, K. & Silvennoinen, O. Regulation of the Jak2 tyrosine kinase by its pseudokinase domain. Mol. Cell Biol. 20, 3387–3395 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Lucet, I. S. et al. The structural basis of Janus kinase 2 inhibition by a potent and specific pan-Janus kinase inhibitor. Blood 107, 176–183 (2006).

    Article  CAS  PubMed  Google Scholar 

  34. Silva, M. et al. Expression of Bcl-x in erythroid precursors from patients with polycythemia vera. N. Engl. J. Med. 338, 564–571 (1998).

    Article  CAS  PubMed  Google Scholar 

  35. Jamieson, C. H. et al. The JAK2 V617F mutation occurs in hematopoietic stem cells in polycythemia vera and predisposes toward erythroid differentiation. Proc. Natl Acad. Sci. USA 103, 6224–6229 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Ishii, T., Bruno, E., Hoffman R. & Xu, M. Involvement of various hematopoietic-cell lineages by the JAK2V617F mutation in polycythemia vera. Blood 108, 3128–3134 (2006).

    Article  CAS  PubMed  Google Scholar 

  37. Delhommeau, F. et al. Evidence that the JAK2 G1849T (V617F) mutation occurs in a lymphomyeloid progenitor in polycythemia vera and idiopathic myelofibrosis. Blood 109, 71–77 (2007).

    Article  CAS  PubMed  Google Scholar 

  38. Lacout, C. et al. JAK2V617F expression in murine hematopoietic cells leads to MPD mimicking human PV with secondary myelofibrosis. Blood 108, 1652–1660 (2006).

    Article  CAS  PubMed  Google Scholar 

  39. Wernig, G. et al. Expression of Jak2V617F causes a polycythemia vera-like disease with associated myelofibrosis in a murine bone marrow transplant model. Blood 107, 4274–4281 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Zaleskas, V. M. et al. Molecular pathogenesis and therapy of polycythemia induced in mice by JAK2 V617F. PLoS ONE 1, e18 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Lippert, E. et al. The JAK2-V617F mutation is frequently present at diagnosis in patients with essential thrombocythemia and polycythemia vera. Blood 108, 1865–1867 (2006).

    Article  CAS  PubMed  Google Scholar 

  42. Tiedt, R. et al. Ratio of mutant JAK2-V617F to wild-type Jak2 determines the MPD phenotypes in transgenic mice. Blood 111, 3931–3940 (2008).

    Article  CAS  PubMed  Google Scholar 

  43. Nussenzveig, R. H. et al. Imatinib mesylate therapy for polycythemia vera: final result of a phase II study initiated in 2009. Int. J. Hematol. 90, 58–63 (2001).

    Article  CAS  Google Scholar 

  44. Shi, J. et al. An open-label assessment of the effects of CYP3A4 inhibitors on the PK/PD of INCB018424 in healthy subjects. J. Clin. Pharmacol. 49, (Abstr. 10) (2009).

  45. Shi, J. et al. An open-label assessment of the effects of rifampin, a potent CYP3A4 inducer on the PK/PD of INCB018424 in healthy subjects. J. Clin. Pharmacol. 49, (Abstr. 9) (2009).

  46. Verstovsek, S. et al. INCB018424, an oral, selective JAK2 inhibitor, shows significant clinical activity in a phase I/II study in patients with primary myelofibrosis (PMF) and post polycythemia vera/essential thrombocythemia myelofibrosis (post-PV/ET MF). Blood 110, Abstr. 558 (2007).

  47. Verstovsek, S. et al. Safety and efficacy of a JAK1 & JAK2 inhibitor, INCB018424, in myelofibrosis. N. Engl. J. Med. 363, 1117–1127 (2010). This report describes the remarkable clinical activity of the oral JAK1 and JAK2 inhibitor INCB018424 (now known as ruxolitinib) in patients with post-ET or post-PV myelofibrosis.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Verstovsek, S. et al. A phase 2 study of INCB018424, an oral, selective JAK1/JAK2 inhibitor, in patients with advanced polycythemia vera and essential thrombocythemia refractory to hydroxyurea. Blood 114, Abstr. 311 (2009).

  49. Barosi, G. et al. Response criteria for essential thrombocythemia and polycythemia vera: results of a European LeukemiaNet consensus conference. Blood 113, 4829–4833 (2009).

    Article  CAS  PubMed  Google Scholar 

  50. Wernig, G. et al. Efficacy of TG101348, a selective JAK2 inhibitor, in treatment of a murine model of JAK2V617F-induced polycythemia vera. Cancer Cell 13, 311–320 (2008).

    Article  CAS  PubMed  Google Scholar 

  51. Pardanani, A. JAK2 inhibitor therapy in myeloproliferative disorders: rationale, preclinical studies and ongoing clinical trials. Leukemia 22, 23–30 (2008).

    Article  PubMed  Google Scholar 

  52. Pardanani, A. et al. TG101209, a small molecule JAK2-selective kinase inhibitor potently inhibits myeloproliferative disorder-associated JAK2V617F and MPLW515L/K mutations. Leukemia 21, 1658–1668 (2007).

    Article  CAS  PubMed  Google Scholar 

  53. Pardanani, A. et al. A phase I study of TG101348, a selective JAK2 inhibitor, in myelofibrosis: clinical response is accompanied by significant reduction in JAK2V617F allele burden. Blood 114, Abstr. 755 (2009).

  54. Hexner, E. O. et al. Lestaurtinib (CEP701) is a JAK2 inhibitor that suppresses JAK2/STAT5 signaling and the proliferation of primary erythroid cells from patients with myeloproliferative disorders. Blood 111, 5663–5671 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Knapper, S. et al. A phase 2 trial of the FLT3 inhibitor lestaurtinib (CEP701) as first-line treatment for older patients with acute myeloid leukemia not considered fit for intensive chemotherapy. Blood 108, 3262–3270 (2006).

    Article  CAS  PubMed  Google Scholar 

  56. Smith, B. D. et al. Single-agent CEP-701, a novel FLT3 inhibitor, shows biologic and clinical activity in patients with relapsed or refractory acute myeloid leukemia. Blood 103, 3669–3676 (2004).

    Article  CAS  PubMed  Google Scholar 

  57. Marshall, J. L. et al. Phase I trial of orally administered CEP-701, a novel neurotrophin receptor-linked tyrosine kinase inhibitor. Invest. New Drugs 23, 31–37 (2005).

    Article  CAS  PubMed  Google Scholar 

  58. Santos, F. P. et al. Phase 2 study of CEP-701, an orally available JAK2 inhibitor, in patients with primary or post-polycythemia vera/essential thrombocythemia myelofibrosis. Blood 115, 1131–1136 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Hexner, E. et al. A multicenter, open label Phase I/II study of CEP701 (Lestaurtinib) in adults with myelofibrosis; a report on phase I: a study of the myeloproliferative disorders research consortium. Blood 114, Abstr. 754 (2009).

  60. Paquette, R. et al. A phase I study of XL019, a selective JAK2 inhibitor, in patients with polycythemia vera. Blood 112, Abstr. 2810 (2008).

  61. Shah, N. et al. A phase I study of XL019, a selective JAK2 inhibitor, in patients with primary myelofibrosis, post-polycythemia vera, or post-essential thrombocythemia myelofibrosis. Blood 112, Abstr. 98 (2008).

  62. Verstovsek, S. et al. Phase I dose-escalation trial of SB1518, a novel JAK2/FLT3 inhibitor, in acute and chronic myeloid diseases, including primary or post-essential thrombocythemia/polycythemia vera myelofibrosis. Blood 114, Abstr. 3905 (2009).

  63. Hedvat, M. et al. The JAK2 inhibitor AZD1480 potently blocks Stat3 signaling and oncogenesis in solid tumors. Cancer Cell 16, 487–497 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Pardanani, A. et al. CYT387, a selective JAK1/JAK2 inhibitor: in vitro assessment of kinase selectivity and preclinical studies using cell lines and primary cells from polycythemia vera patients. Leukemia 23, 1441–1445 (2009).

    Article  CAS  PubMed  Google Scholar 

  65. Tyner, J. W. et al. CYT387, a novel JAK2 inhibitor, induces hematologic responses and normalizes inflammatory cytokines in murine myeloproliferative neoplasms. Blood 115, 5232–5240 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Pardanani, A. et al. A Phase I/II study of CYT387, an oral JAK-1/2 inhibitor, in myelofibrosis: significant response rates in anemia, splenomegaly, and constitutional symptoms. Blood 117, Abstr. 460 (2010).

  67. Changelian, P. S. et al. Prevention of organ allograft rejection by a specific Janus kinase 3 inhibitor. Science 302, 875–878 (2003).

    Article  CAS  PubMed  Google Scholar 

  68. Williams, N. K. et al. Dissecting specificity in the Janus kinases: the structures of JAK-specific inhibitors complexed to the JAK1 and JAK2 protein tyrosine kinase domains. J. Mol. Biol. 387, 219–232 (2009).

    Article  CAS  PubMed  Google Scholar 

  69. Jiang, J. K. et al. Examining the chirality, conformation and selective kinase inhibition of 3-(3R, 4R)-4-methyl-3-(methyl(7H-pyrrolo[2, 3-d]pyrimidin-4-yl)amino)piperi din-1-yl)-3-oxopropanenitrile (CP-690,550). J. Med. Chem. 51, 8012–8018 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Yabu, J. M. & Vincenti, F. Novel immunosuppression: small molecules and biologics. Semin. Nephrol. 27, 479–486 (2007).

    Article  CAS  PubMed  Google Scholar 

  71. Manshouri, T. et al. The JAK kinase inhibitor CP-690, 550 suppresses the growth of human polycythemia vera cells carrying the JAK2V617F mutation. Cancer Sci. 99, 1265–1273 (2008).

    Article  CAS  PubMed  Google Scholar 

  72. Lacronique, V. et al. A TEL-JAK2 fusion protein with constitutive kinase activity in human leukemia. Science 278, 1309–1312 (1997).

    Article  CAS  PubMed  Google Scholar 

  73. Peeters, P. et al. Fusion of TEL, the ETS-variant gene 6 (ETV6), to the receptor-associated kinase JAK2 as a result of t(9;12) in a lymphoid and t(9;15;12) in a myeloid leukemia. Blood 90, 2535–2540 (1997).

    CAS  PubMed  Google Scholar 

  74. Schwaller, J. et al. Transformation of hematopoietic cell lines to growth-factor independence and induction of a fatal myelo- and lymphoproliferative disease in mice by retrovirally transduced TEL/JAK2 fusion genes. EMBO J. 17, 5321–5333 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Ho, J. M., Beattie, B. K., Squire, J. A., Frank, D. A. & Barber, D. L. Fusion of the ets transcription factor TEL to Jak2 results in constitutive Jak-Stat signaling. Blood 93, 4354–4364 (1999).

    CAS  PubMed  Google Scholar 

  76. Ward, A. C., Touw, I. & Yoshimura, A. The Jak-Stat pathway in normal and perturbed hematopoiesis. Blood 95, 19–29 (2000).

    CAS  PubMed  Google Scholar 

  77. Mullighan, C. G. et al. JAK mutations in high-risk childhood acute lymphoblastic leukemia. Proc. Natl Acad. Sci. USA 106, 9414–9418 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  78. Xiang, Z. et al. Identification of somatic JAK1 mutations in patients with acute myeloid leukemia. Blood 111, 4809–4812 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Walters, D. K. et al. Activating alleles of JAK3 in acute megakaryoblastic leukemia. Cancer Cell 10, 65–75 (2006).

    Article  CAS  PubMed  Google Scholar 

  80. Lee, J. W. et al. The JAK2 V617F mutation in de novo acute myelogenous leukemias. Oncogene 25, 1434–1436 (2006).

    Article  CAS  PubMed  Google Scholar 

  81. Jelinek, J. et al. JAK2 mutation 1849G>T is rare in acute leukemias but can be found in CMML, Philadelphia chromosome-negative CML, and megakaryocytic leukemia. Blood 106, 3370–3373 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Williams, R. T., Roussel, M. F. & Sherr, C. J. Arf gene loss enhances oncogenicity and limits imatinib response in mouse models of Bcr-Abl-induced acute lymphoblastic leukemia. Proc. Natl Acad. Sci. USA 103, 6688–6693 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Samanta, A. K. et al. Jak2 inhibition deactivates Lyn kinase through the SET-PP2A-SHP1 pathway, causing apoptosis in drug-resistant cells from chronic myelogenous leukemia patients. Oncogene 28, 1669–1681 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Vannucchi, A. M. et al. Clinical profile of homozygous JAK2V617F mutation in patients with polycythemia vera or essential thrombocythemia. Blood 110, 840–846 (2007).

    Article  CAS  PubMed  Google Scholar 

  85. Leonard, W. J. Cytokines and immunodeficiency diseases. Nature Rev. Immunol. 1, 200–208 (2001).

    Article  CAS  Google Scholar 

  86. Kawamura, M. et al. Molecular cloning of L-JAK, a Janus family protein-tyrosine kinase expressed in natural killer cells and activated leukocytes. Proc. Natl Acad. Sci. USA 91, 6374–6378 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. O'Shea, J. J., Pesu, M., Borie, D. C. & Changelian, P. S. A new modality for immunosuppression: targeting the JAK/STAT pathway. Nature Rev. Drug Discov. 3, 555–564 (2004).

    Article  CAS  Google Scholar 

  88. Fridman, J. S. et al. Selective inhibition of JAK1 and JAK2 is efficacious in rodent models of arthritis: preclinical characterization of INCB028050. J. Immunol. 184, 5298–5307 (2010).

    Article  CAS  PubMed  Google Scholar 

  89. Kremer, J. M. et al. The safety and efficacy of a JAK inhibitor in patients with active rheumatoid arthritis: results of a double-blind, placebo-controlled phase IIa trial of three dosage levels of CP-690,550 versus placebo. Arthritis Rheum. 60, 1895–1905 (2009).

    Article  CAS  PubMed  Google Scholar 

  90. Coombs, J. H. et al. Improved pain, physical functioning and health status in patients with rheumatoid arthritis treated with CP-690,550, an orally active Janus kinase (JAK) inhibitor: results from a randomised, double-blind, placebo-controlled trial. Ann. Rheum. Dis. 69, 413–416 (2010).

    Article  CAS  PubMed  Google Scholar 

  91. Fleischmann, R. et al. Safety and efficacy after 24 week (wk) dosing of the oral JAK inhibitor CP-690550 (CP) as monotherapy in patients (pts) with active rheumatoid arthritis (RA). Arthritis Rheum. 60 (Suppl.10), 1924 (2009).

    Google Scholar 

  92. Kremer, J. et al. Safety and efficacy after 24 week (WK) dosing of the oral JAK inhibitor CP-690550 (CP) in combination with methrotrexate (MTX) in patients (PTS) with active rheumatoid arthritis (RA). Arthritis Rheum. 60 (Suppl.10), 1925 (2009). References 89–92 describe a series of randomized, double-blind Phase II studies demonstrating remarkable activity of the potent JAK inhibitor tasocitinib (CP 690550) in patients with rheumatoid arthritis.

    Google Scholar 

  93. Williams, W. et al. A randomized placebo-controlled study of INCB018424, a selective Janus kinase 1 & 2 (JAK1 & 2) inhibitor in rheumatoid arthritis (RA). Arthritis Rheum. 58, Abstr. 714 (2008).

  94. Punwani, N. et al. Efficacy and safety of topical INCB018424, a selective Janus kinase 1 and 2 (JAK1 and 2) inhibitor in psoriasis. J. Am. Acad. Dermatol. 60, Abstr. 176 (2009).

  95. Callis Duffin, K. et al. JAK 1 / Jak 2 inhibition: a novel mechanism in the treatment of chronic plaque psoriasis. in Society for Investigative Dermatology Meeting, Atlanta, Georgia, USA (2010).

    Google Scholar 

  96. Pesu, M. et al. Jak3, severe combined immunodeficiency, and a new class of immunosuppressive drugs. Immunol. Rev. 203, 127–142 (2005).

    Article  CAS  PubMed  Google Scholar 

  97. Quaedackers, M. E. et al. Monitoring of the immunomodulatory effect of CP-690,550 by analysis of the JAK/STAT pathway in kidney transplant patients. Transplantation 88, 1002–1009 (2009).

    Article  CAS  PubMed  Google Scholar 

  98. Busque, S. et al. Calcineurin-inhibitor-free immunosuppression based on the JAK inhibitor CP-690,550: a pilot study in de novo kidney allograft recipients. Am. J. Transplant 9, 1936–1945 (2009).

    Article  CAS  PubMed  Google Scholar 

  99. van Gurp, E. A. et al. The effect of the JAK inhibitor CP-690,550 on peripheral immune parameters in stable kidney allograft patients. Transplantation 87, 79–86 (2009).

    Article  CAS  PubMed  Google Scholar 

  100. van Gurp, E. et al. Phase 1 dose-escalation study of CP-690550 in stable renal allograft recipients: preliminary findings of safety, tolerability, effects on lymphocyte subsets and pharmacokinetics. Am. J. Transplant. 8, 1711–1718 (2008).

    Article  CAS  PubMed  Google Scholar 

  101. Borie, D. C. et al. Combined use of the JAK3 inhibitor CP-690,550 with mycophenolate mofetil to prevent kidney allograft rejection in nonhuman primates. Transplantation 80, 1756–1764 (2005).

    Article  CAS  PubMed  Google Scholar 

  102. Tefferi, A. Novel mutations and their functional and clinical relevance in myeloproliferative neoplasms: JAK2, MPL, TET2, ASXL1, CBL, IDH and IKZF1. Leukemia 24, 1128–1138 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Dawson, M. A. et al. JAK2 phosphorylates histone H3Y41 and excludes HP1α from chromatin. Nature 461, 819–822 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Wang, Y. et al. Cotreatment with panobinostat and JAK2 inhibitor TG101209 attenuates JAK2V617F levels and signaling and exerts synergistic cytotoxic effects against human myeloproliferative neoplastic cells. Blood 114, 5024–5033 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Marubayashi, S. et al. HSP90 is a therapeutic target in JAK2-dependent myeloproliferative neoplasms in mice and humans. J. Clin. Invest. 120, 3578–3593 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Di Nisio, M. et al. The haematocrit and platelet target in polycythemia vera. Br. J. Haematol. 136, 249–259 (2007).

    Article  PubMed  Google Scholar 

  107. Najean, Y. & Rain, J. D. Treatment of polycythemia vera: use of 32P alone or in combination with maintenance therapy using hydroxyurea in 461 patients greater than 65 years of age. The French Polycythemia Study Group. Blood 89, 2319–2327 (1997).

    CAS  PubMed  Google Scholar 

  108. Cortelazzo, S. et al. Hydroxyurea for patients with essential thrombocythemia and a high risk of thrombosis. N. Engl. J. Med. 332, 1132–1136 (1995).

    Article  CAS  PubMed  Google Scholar 

  109. Harrison, C. N. et al. Hydroxyurea compared with anagrelide in high-risk essential thrombocythemia. N. Engl. J. Med. 353, 33–45 (2005).

    Article  CAS  PubMed  Google Scholar 

  110. Barbui, T. et al. Practice guidelines for the therapy of essential thrombocythemia. A statement from the Italian Society of Hematology, the Italian Society of Experimental Hematology and the Italian Group for Bone Marrow Transplantation. Haematologica 89, 215–232 (2004).

    CAS  PubMed  Google Scholar 

  111. Arana-Yi, C. et al. Advances in the therapy of chronic idiopathic myelofibrosis. Oncologist 11, 929–943 (2006).

    Article  CAS  PubMed  Google Scholar 

  112. Mesa, R. A. How I treat symptomatic splenomegaly in patients with myelofibrosis. Blood 113, 5394–5400 (2009).

    Article  CAS  PubMed  Google Scholar 

  113. Quintás-Cardama, A. et al. Lenalidomide plus prednisone results in durable clinical, histopathologic, and molecular responses in patients with myelofibrosis. J. Clin. Oncol. 27, 4760–4766 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Mesa, R. A. et al. Lenalidomide and prednisone for myelofibrosis: Eastern Cooperative Oncology Group (ECOG) phase-2 trial E4903. Blood 116, 4436–4438 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Cervantes, F. et al. New prognostic scoring system for primary myelofibrosis based on a study of the International Working Group for Myelofibrosis Research and Treatment. Blood 113, 2895–2901 (2009).

    Article  CAS  PubMed  Google Scholar 

  116. Bacigalupo, A. et al. Allogeneic hemopoietic SCT for patients with primary myelofibrosis: a predictive transplant score based on transfusion requirement, spleen size and donor type. Bone Marrow Transplant. 45, 458–463 (2010).

    Article  CAS  PubMed  Google Scholar 

  117. Stewart, W. A. et al. The role of allogeneic SCT in primary myelofibrosis: a British Society for Blood and Marrow Transplantation study. Bone Marrow Transplant. 45, 1587–1593 (2010).

    Article  CAS  PubMed  Google Scholar 

  118. Kroger, N. et al. Allogeneic stem cell transplantation after reduced-intensity conditioning in patients with myelofibrosis: a prospective, multicenter study of the Chronic Leukemia Working Party of the European Group for Blood and Marrow Transplantation. Blood 114, 5264–5270 (2009).

    Article  CAS  PubMed  Google Scholar 

  119. Kroger, N. & Mesa, R. A. Choosing between stem cell therapy and drugs in myelofibrosis. Leukemia 22, 474–486 (2008).

    Article  PubMed  Google Scholar 

  120. Rodig, S. J. et al. Disruption of the Jak1 gene demonstrates obligatory and nonredundant roles of the Jaks in cytokine-induced biologic responses. Cell 93, 373–383 (1998).

    Article  CAS  PubMed  Google Scholar 

  121. Nosaka, T. et al. Defective lymphoid development in mice lacking Jak3. Science 270, 800–802 (1995).

    Article  CAS  PubMed  Google Scholar 

  122. Karaghiosoff, M. et al. Partial impairment of cytokine responses in Tyk2-deficient mice. Immunity 13, 549–560 (2000).

    Article  CAS  PubMed  Google Scholar 

  123. Shimoda, K. et al. Tyk2 plays a restricted role in IFNα signaling, although it is required for IL-12-mediated T cell function. Immunity 13, 561–571 (2000).

    Article  CAS  PubMed  Google Scholar 

  124. Duerr, R. H. et al. A genome-wide association study identifies IL23R as an inflammatory bowel disease gene. Science 314, 1461–1463 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Burton, P. R. et al. Association scan of 14,500 nonsynonymous SNPs in four diseases identifies autoimmunity variants. Nature Genet. 39, 1329–1337 (2007).

    Article  CAS  PubMed  Google Scholar 

  126. Pikman, Y. et al. MPLW515L is a novel somatic activating mutation in myelofibrosis with myeloid metaplasia. PLoS Med. 3, e270 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Pardanani, A. D. et al. MPL515 mutations in myeloproliferative and other myeloid disorders: a study of 1182 patients. Blood 108, 3472–3476 (2006).

    Article  CAS  PubMed  Google Scholar 

  128. Vannucchi, A. M. et al. Characteristics and clinical correlates of MPL 515W>L/K mutation in essential thrombocythemia. Blood 112, 844–847 (2008).

    Article  CAS  PubMed  Google Scholar 

  129. Beer, P. A. et al. MPL mutations in myeloproliferative disorders: analysis of the PT-1 cohort. Blood 112, 141–149 (2008).

    Article  CAS  PubMed  Google Scholar 

  130. Chaligne, R. et al. Evidence for MPL W515L/K mutations in hematopoietic stem cells in primitive myelofibrosis. Blood 110, 3735–3743 (2007).

    Article  CAS  PubMed  Google Scholar 

  131. Pikman, Y. et al. MPLW515L is a novel somatic activating mutation in myelofibrosis with myeloid metaplasia. PLOS Med. 3, e270 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Bersenev, A. et al. Lnk constrains myeloproliferative diseases in mice. J. Clin. Invest. 120, 2058–2069 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Oh, S. T. et al. Novel mutations in the inhibitory adaptor protein LNK drive JAK-STAT signaling in patients with myeloproliferative neoplasms. Blood 116, 988–992 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Lasho, T. L., Pardanani, A. & Tefferi, A. LNK mutations in JAK2 mutation-negative erythrocytosis. N. Engl. J. Med. 363, 1189–1190 (2010).

    Article  CAS  PubMed  Google Scholar 

  135. Dupont, S. et al. The JAK2 617V>F mutation triggers erythropoietin hypersensitivity and terminal erythroid amplification in primary cells from patients with polycythemia vera. Blood 110, 1013–1021 (2007).

    Article  CAS  PubMed  Google Scholar 

  136. Theocharides, A. et al. Leukemic blasts in transformed JAK2-V617F-positive myeloproliferative disorders are frequently negative for the JAK2-V617F mutation. Blood 110, 375–379 (2007).

    Article  CAS  PubMed  Google Scholar 

  137. Kralovics, R. et al. Acquisition of the V617F mutation of JAK2 is a late genetic event in a subset of patients with myeloproliferative disorders. Blood 108, 1377–1380 (2006).

    Article  CAS  PubMed  Google Scholar 

  138. Delhommeau, F. et al. Mutation in TET2 in myeloid cancers. N. Engl. J. Med. 360, 2289–2301 (2009). This study is the first to describe mutations in TET2 in patients with myeloid cancers and proposes TET2 mutations as antecedent molecular events to the acquisition of the JAK2V617F mutation.

    Article  PubMed  Google Scholar 

  139. Tahiliani, M. et al. Conversion of 5-methylcytosine to 5-hydroxymethylcytosine in mammalian DNA by MLL partner TET1. Science 324, 930–935 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Ito, S. et al. Role of Tet proteins in 5mC to 5hmC conversion, ES-cell self-renewal and inner cell mass specification. Nature 466, 1129–1133 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Tefferi, A. et al. TET2 mutations and their clinical correlates in polycythemia vera, essential thrombocythemia and myelofibrosis. Leukemia 23, 905–911 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Carbuccia, N. et al. Mutations of ASXL1 gene in myeloproliferative neoplasms. Leukemia 23, 2183–2186 (2009).

    Article  CAS  PubMed  Google Scholar 

  143. Abdel-Wahab, O. et al. Genetic analysis of transforming events that convert chronic myeloproliferative neoplasms to leukemias. Cancer Res. 70, 447–452 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Grand, F. H. et al. Frequent CBL mutations associated with 11q acquired uniparental disomy in myeloproliferative neoplasms. Blood 113, 6182–6192 (2009).

    Article  CAS  PubMed  Google Scholar 

  145. Green, A. & Beer, P. Somatic mutations of IDH1 and IDH2 in the leukemic transformation of myeloproliferative neoplasms. N. Engl. J. Med. 362, 369–370 (2010).

    Article  CAS  PubMed  Google Scholar 

  146. Pardanani, A. et al. IDH1 and IDH2 mutation analysis in chronic- and blast-phase myeloproliferative neoplasms. Leukemia 24, 1146–1151 (2010).

    Article  CAS  PubMed  Google Scholar 

  147. Tefferi, A. et al. IDH1 and IDH2 mutation studies in 1473 patients with chronic-, fibrotic- or blast-phase essential thrombocythemia, polycythemia vera or myelofibrosis. Leukemia 24, 1302–1309 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Jager, R. et al. Deletions of the transcription factor Ikaros in myeloproliferative neoplasms. Leukemia 24, 1290–1298 (2010).

    Article  CAS  PubMed  Google Scholar 

  149. Ernst, T. et al. Inactivating mutations of the histone methyltransferase gene EZH2 in myeloid disorders. Nature Genet. 42, 722–726 (2010).

    Article  CAS  PubMed  Google Scholar 

  150. Bumm, T. G. et al. Characterization of murine JAK2V617F-positive myeloproliferative disease. Cancer Res. 66, 11156–11165 (2006).

    Article  CAS  PubMed  Google Scholar 

  151. Xing, S. et al. Transgenic expression of JAK2V617F causes myeloproliferative disorders in mice. Blood 111, 5109–5117 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Mullally, A. et al. Physiological Jak2V617F expression causes a lethal myeloproliferative neoplasm with differential effects on hematopoietic stem and progenitor cells. Cancer Cell 17, 584–596 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Akada, H. et al. Conditional expression of heterozygous or homozygous Jak2V617F from its endogenous promoter induces a polycythemia vera-like disease. Blood 115, 3589–3597 (2010). References 152 and 153 describe mouse models of JAK2V617F-positive MPNs in which the mutant JAK2V617F is expressed from its endogenous promoter, and the authors suggest that JAK2 inhibitor therapy does not eradicate the disease-initiating cells.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Levine, R. L. & Gilliland, D. G. Myeloproliferative disorders. Blood 112, 2190–2198 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Morgan, K. J. & Gilliland, D. G. A role for JAK2 mutations in myeloproliferative diseases. Annu. Rev. Med. 59, 213–222 (2008).

    Article  CAS  PubMed  Google Scholar 

  156. Roder, S., Steimle, C., Meinhardt, G. & Pahl, H. L. STAT3 is constitutively active in some patients with polycythemia rubra vera. Exp. Hematol. 29, 694–702 (2001).

    Article  CAS  PubMed  Google Scholar 

  157. Komura, E. et al. Spontaneous STAT5 activation induces growth factor independence in idiopathic myelofibrosis: possible relationship with FKBP51 overexpression. Exp. Hematol. 31, 622–630 (2003).

    Article  CAS  PubMed  Google Scholar 

  158. Jamieson, C. H., Barroga, C. F. & Vainchenker, W. P. Miscreant myeloproliferative disorder stem cells. Leukemia 22, 2011–2019 (2008).

    Article  PubMed  Google Scholar 

  159. Kota, J., Caceres, N. & Constantinescu, S. N. Aberrant signal transduction pathways in myeloproliferative neoplasms. Leukemia 22, 1828–1840 (2008).

    Article  PubMed  Google Scholar 

  160. Quintás-Cardama, A. et al. Preclinical characterization of the selective JAK1/2 inhibitor INCB018424: therapeutic implications for the treatment of myeloproliferative neoplasms. Blood 115, 3109–3117 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Ugo, V. et al. Multiple signaling pathways are involved in erythropoietin-independent differentiation of erythroid progenitors in polycythemia vera. Exp. Hematol. 32, 179–187 (2004).

    Article  CAS  PubMed  Google Scholar 

  162. Shi, S. et al. JAK signaling globally counteracts heterochromatic gene silencing. Nature Genet. 38, 1071–1076 (2006).

    Article  CAS  PubMed  Google Scholar 

  163. Liu, P. C. et al. Combined inhibition of Janus kinase 1/2 for the treatment of JAK2V617F-driven neoplasms: selective effects on mutant cells and improvements in measures of disease severity. Clin. Cancer Res. 15, 6891–6900 (2009).

    Article  CAS  PubMed  Google Scholar 

  164. Baffert, F. et al. Potent and selective inhibition of polycythemia by the quinoxaline JAK2 inhibitor NVP-BSK805. Mol. Cancer Ther. 9, 1945–1955 (2010).

    Article  CAS  PubMed  Google Scholar 

  165. Passamonti, F. et al. Molecular and clinical features of the myeloproliferative neoplasm associated with JAK2 exon 12 mutations. Blood 11 Jan 2011 [epub ahead of print]

  166. Scott, L. M. et al. JAK2 exon 12 mutations in polycythemia vera and idiopathic erythrocytosis. N. Engl. J. Med. 356, 459–468 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Moliterno, A. R. et al. An open-label study of CEP-701 in patients with JAK2 V617F-positive PV and ET: update of 39 enrolled patients. Blood 114, Abstr. 753 (2009).

  168. Seymour, F. et al. First report of the phase-I study of the novel oral JAK2 inhibitor sb1518 in patients with myelofibrosis. Haematologica 95 (Suppl. 2), Abstr. 1144 (2010).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alfonso Quintás-Cardama.

Ethics declarations

Competing interests

Srdan Verstovsek has received grant support from Incyte and AstraZeneca.

Related links

Related links

FURTHER INFORMATION

Author's homepage

Rights and permissions

Reprints and permissions

About this article

Cite this article

Quintás-Cardama, A., Kantarjian, H., Cortes, J. et al. Janus kinase inhibitors for the treatment of myeloproliferative neoplasias and beyond. Nat Rev Drug Discov 10, 127–140 (2011). https://doi.org/10.1038/nrd3264

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrd3264

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research