Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Chloride channels as drug targets

Key Points

  • There are five main classes of chloride channels: cystic fibrosis transmembrane conductance regulator (CFTR), calcium-activated, voltage-dependent, ligand-gated and volume-sensitive. Chloride channels are attractive targets for drug development for a wide range of human disorders.

  • Fluorescence and electrophysiological high-throughput assays are now available for the discovery of chloride-channel modulators. Cell-based assays utilizing halide-sensing yellow fluorescent proteins are particularly useful for rapid, cost-effective screening.

  • Mutations in CFTR chloride channels cause the hereditary disease cystic fibrosis, and overactivation of CFTR causes secretory diarrhoeas. Small-molecule inhibitors of normal CFTR are in development, as are potentiators and correctors of cystic fibrosis-causing mutant CFTRs.

  • Calcium-activated chloride channels are involved in a wide range of physiological functions, including transepithelial fluid secretion, oocyte fertilization, olfactory and sensory signal transduction, smooth-muscle contraction, and neuronal and cardiac excitation. Recent advances have been made in the molecular identification of these channels and in the identification of channel activators and inhibitors.

  • Chloride channels activated by GABA (γ-aminobutyric acid) and glycine (ionotropic receptors) modulate important physiological functions in the central and peripheral nervous system. The large diversity of ionotropic GABA and glycine receptors provide an opportunity to develop drugs to treat various neurological disorders.

  • Volume-sensitive chloride channels remain to be identified at the molecular level. These channels may be important pharmacological targets in treating cancer and degenerative disorders.

Abstract

Chloride channels represent a relatively under-explored target class for drug discovery as elucidation of their identity and physiological roles has lagged behind that of many other drug targets. Chloride channels are involved in a wide range of biological functions, including epithelial fluid secretion, cell-volume regulation, neuroexcitation, smooth-muscle contraction and acidification of intracellular organelles. Mutations in several chloride channels cause human diseases, including cystic fibrosis, macular degeneration, myotonia, kidney stones, renal salt wasting and hyperekplexia. Chloride-channel modulators have potential applications in the treatment of some of these disorders, as well as in secretory diarrhoeas, polycystic kidney disease, osteoporosis and hypertension. Modulators of GABAA (γ-aminobutyric acid A) receptor chloride channels are in clinical use and several small-molecule chloride-channel modulators are in preclinical development and clinical trials. Here, we discuss the broad opportunities that remain in chloride-channel-based drug discovery.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Structures and mechanisms of regulation of chloride channels.
Figure 2: Cell-based screening assay of halide transport using a fluorescent protein mutant.
Figure 3: Cystic fibrosis transmembrane regulator (CFTR) inhibitors and their indications.
Figure 4: Lung pathophysiology in cystic fibrosis (CF) and activators of ΔF508-CFTR, the most common CF-causing mutation.
Figure 5: Cellular physiology of calcium-activated chloride channels (CaCCs) and small-molecule inhibitors.
Figure 6: Physiology of selected voltage-gated (ClC)-type chloride channels.
Figure 7: Ligand-gated chloride channels.

Similar content being viewed by others

References

  1. Norton, R. S. & Olivera, B. M. Conotoxins down under. Toxicon 48, 780–798 (2006).

    CAS  PubMed  Google Scholar 

  2. Catterall, W. A. et al. Voltage-gated ion channels and gating modifier toxins. Toxicon 49, 124–141 (2007).

    CAS  PubMed  Google Scholar 

  3. Wachter, R. M., Elsliger, M. A., Kallio, K., Hanson, G. T. & Remington, S. J. Structural basis of spectral shifts in the yellow-emission variants of green fluorescent protein. Structure 6, 1267–1277 (1998).

    CAS  PubMed  Google Scholar 

  4. Jayaraman, S., Haggie, P., Wachter, R. M., Remington, S. J. & Verkman, A. S. Mechanism and cellular applications of a green fluorescent protein-based halide sensor. J. Biol. Chem. 275, 6047–6050 (2000).

    CAS  PubMed  Google Scholar 

  5. Galietta, L. J., Haggie, P. M. & Verkman, A. S. Green fluorescent protein-based halide indicators with improved chloride and iodide affinities. FEBS Lett. 499, 220–224 (2001).

    CAS  PubMed  Google Scholar 

  6. Ma, T. et al. Thiazolidinone CFTR inhibitor identified by high-throughput screening blocks cholera toxin-induced intestinal fluid secretion. J. Clin. Invest. 110, 1651–1658 (2002). Identification of the first chloride-channel inhibitor with nanomolar potency and high selectivity. Proof of concept that CFTR inhibitors are useful for diarrhoea treatment.

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Galietta, L. V., Jayaraman, S. & Verkman, A. S. Cell-based assay for high-throughput quantitative screening of CFTR chloride transport agonists. Am. J. Physiol. 281, C1734–C1742 (2001).

    CAS  Google Scholar 

  8. De La Fuente, R., Namkung, W., Mills, A. & Verkman, A. S. Small-molecule screen identifies inhibitors of a human intestinal calcium-activated chloride channel. Mol. Pharmacol. 73, 758–768 (2008).

    CAS  PubMed  Google Scholar 

  9. Jentsch, T. J., Stein, V., Weinreich, F. & Zdebik, A. A. Molecular structure and physiological function of chloride channels. Physiol. Rev. 82, 503–568 (2002).

    CAS  PubMed  Google Scholar 

  10. Amaral, M. D. & Kunzelmann, K. Molecular targeting of CFTR as a therapeutic approach to cystic fibrosis. Trends Pharmacol. Sci. 28, 334–341 (2007).

    CAS  PubMed  Google Scholar 

  11. Sheppard, D. & Welsh, M. Structure and function of the CFTR chloride channel. Physiol. Rev. 79, S23–S45 (1999).

    Google Scholar 

  12. Gadsby, D., Vergani, P. & Csanády, L. The ABC protein turned chloride channel whose failure causes cystic fibrosis. Nature 440, 477–483 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Rommens, J. M. et al. Identification of the cystic fibrosis gene: chromosome walking and jumping. Science 245, 1059–1065 (1989).

    CAS  PubMed  Google Scholar 

  14. Wilschanski, M. & Durie, P. R. Patterns of GI disease in adulthood associated with mutations in the CFTR gene. Gut 56, 1153–1163 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Thiagarajah, J. R. & Verkman, A. S. CFTR pharmacology and its role in intestinal fluid secretion. Curr. Opin. Pharmacol. 3, 594–599 (2003).

    CAS  PubMed  Google Scholar 

  16. Farthing, M. J. Antisecretory drugs for diarrheal disease. Dig. Dis. 24, 47–58 (2006).

    PubMed  Google Scholar 

  17. Li, H., Findlay, I. A., & Sheppard, D. N. The relationship between cell proliferation, Cl secretion, and renal cyst growth: a study using CFTR inhibitors. Kidney Int. 66, 1926–1938 (2004).

    CAS  PubMed  Google Scholar 

  18. Davidow, C. J., Maser, R. L., Rome, L. A., Calvet, J. P. & Grantham, J. J. The cystic fibrosis transmembrane conductance regulator mediates transepithelial fluid secretion by human autosomal dominant polycystic kidney disease epithelium in vitro. Kidney Int. 50, 208–218 (1996).

    CAS  PubMed  Google Scholar 

  19. Schultz, B. D., Singh, A. K., Devor, D. C. & Bridges, R. J. Pharmacology of CFTR chloride channel activity. Physiol. Rev. 79, S109–S144 (1999).

    CAS  PubMed  Google Scholar 

  20. Taddei, A. et al. Altered channel gating mechanism for CFTR inhibition by a high-affinity thiazolidinone blocker. FEBS Lett. 558, 52–56 (2004).

    CAS  PubMed  Google Scholar 

  21. Caci, E. et al. Evidence for direct CFTR inhibition by CFTRinh-172 based on arginine 347 mutagenesis. Biochem. J. 413, 135–142 (2008).

    CAS  PubMed  Google Scholar 

  22. Sonawane, N. D., Muanprasat, C., Nagatani, R. Jr, Song, Y. & Verkman, A. S. In vivo pharmacology and antidiarrheal efficacy of a thiazolidinone CFTR inhibitor in rodents. J. Pharm. Sci. 94, 134–143 (2005).

    CAS  PubMed  Google Scholar 

  23. Sonawane, N. & Verkman, A. S. Thiazolidinone CFTR inhibitors with improved water solubility identified by structure-activity analysis. Bioorg. Med. Chem. 16, 8187–8195 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Muanprasat, C. et al. Discovery of glycine hydrazide pore-occluding CFTR inhibitors: mechanism, structure-activity analysis, and in vivo efficacy. J. Gen. Physiol. 124, 125–137 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Sonawane, N. D., Hu, J., Muanprasat, C. & Verkman, A. S. Luminally-active, nonabsorbable CFTR inhibitors as potential therapy to reduce intestinal fluid losses in cholera. FASEB J. 20, 130–132 (2006).

    CAS  PubMed  Google Scholar 

  26. Sonawane, N., Zhao, D., Zegarra-Mora, O., Galietta, L. J. V. & Verkman, A. S. Lectin conjugates as potent, nonabsorbable CFTR inhibitors for reducing intestinal fluid secretion in cholera. Gastroenterology 132, 1234–1244 (2007).

    CAS  PubMed  Google Scholar 

  27. Sonawane, N., Zhao, D., Zegarra-Mora, O., Galietta, L. J. V. & Verkman, A. S. Nanomolar CFTR inhibition by pore-occluding divalent polyethylene glycol-malonic acid hydrazides. Chem. Biol. 15, 718–728 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Thiagarajah, J. R., Broadbent, T., Hsieh, E. & Verkman, A. S. Prevention of toxin-induced intestinal ion and fluid secretion by a small-molecule CFTR inhibitor. Gastroenterology 126, 511–519 (2004).

    CAS  PubMed  Google Scholar 

  29. Yoder, B. K., Mulroy, S., Eustace, H., Boucher, C. & Sandford, R. Molecular pathogenesis of autosomal dominant polycystic kidney disease. Expert. Rev. Mol. Med. 8, 1–22 (2006).

    PubMed  Google Scholar 

  30. Grantham, J., Chapman, A. & Torres, V. Volume progression in autosomal dominant polycystic kidney disease: the major factor determining clinical outcomes. Clin. J. Am. Soc. Nephrol. 1, 148–157 (2006).

    PubMed  Google Scholar 

  31. Yang, B., Sonawane, N. D., Zhao, D., Somlo, S. & Verkman, A. S. Small-molecule CFTR inhibitors slow cyst growth in polycystic kidney disease. J. Am. Soc. Nephrol. 19, 1300–1310 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Levin, M. H. & Verkman, A. S. CFTR-regulated chloride transport at the ocular surface in living mice measured by potential differences. Invest. Opthalmol. Vis. Sci. 46, 1428–1434 (2005).

    Google Scholar 

  33. Ma, T. et al. High-affinity activators of cystic fibrosis transmembrane conductance regulator (CFTR) chloride conductance identified by high-throughput screening. J. Biol. Chem. 277, 37235–37241 (2002).

    CAS  PubMed  Google Scholar 

  34. Galietta, L. J. et al. Novel CFTR chloride channel activators identified by screening of combinatorial libraries based on flavone and benzoquinolizinium lead compounds. J. Biol. Chem. 276, 19723–19728 (2001).

    CAS  PubMed  Google Scholar 

  35. Denning, G. M. et al. Processing of mutant cystic fibrosis transmembrane conductance regulator is temperature-sensitive. Nature 358, 761–764 (1992).

    CAS  PubMed  Google Scholar 

  36. Du, K., Sharma, M. & Lukacs, G. L. The DF508 cystic fibrosis mutation impairs domain-domain interactions and arrests post-translational folding of CFTR. Nature Struct. Mol. Biol. 12, 17–25 (2005).

    CAS  Google Scholar 

  37. Dalemans, W. et al. Altered chloride ion channel kinetics associated with the ΔF508 cystic fibrosis mutation. Nature 354, 526–528 (1991).

    CAS  PubMed  Google Scholar 

  38. Haws, C. M. et al. Delta F508-CFTR channels: kinetics, activation by forskolin, and potentiation by xanthines. Am. J. Physiol. 270, C1544–C1555 (1996).

    CAS  PubMed  Google Scholar 

  39. Gregory, R. J. et al. Maturation and function of cystic fibrosis transmembrane conductance regulator variants bearing mutations in putative nucleotide-binding domains 1 and 2. Mol. Cell. Biol. 11, 3886–3893 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Bobadilla, J. L., Macek, M. Jr., Fine, J. P. & Farrell, P. M. Cystic fibrosis: a worldwide analysis of CFTR mutations — correlation with incidence data and application to screening. Hum. Mutat. 19, 575–606 (2002).

    CAS  PubMed  Google Scholar 

  41. Pilewski, J. M. & Frizzell, R. A. Role of CFTR in airway disease. Physiol. Rev. 79, S215–S255 (1999).

    CAS  PubMed  Google Scholar 

  42. Verkman, A. S., Song, Y. & and Thiagarajah, J. Role of airway surface liquid and submucosal glands in cystic fibrosis lung disease. Am. J. Physiol. 284, C2–C15 (2005).

    Google Scholar 

  43. Boucher, R. C. Evidence for airway surface dehydration as the initiating event in CF airway disease. J. Intern. Med. 261, 5–16 (2007).

    CAS  PubMed  Google Scholar 

  44. Yang, H. et al. Nanomolar affinity small molecule correctors of defective ΔF508-CFTR chloride channel gating. J. Biol. Chem. 278, 35079–35085 (2003).

    Article  CAS  PubMed  Google Scholar 

  45. Pedemonte, N. et al. Phenylglycine and sulfonamide correctors of defective ΔF508 and G551D cystic fibrosis transmembrane conductance regulator chloride-channel gating. Mol. Pharmacol. 67, 1797–1807 (2005).

    CAS  PubMed  Google Scholar 

  46. Van Goor, F. et al. Rescue of ΔF508-CFTR trafficking and gating in human cystic fibrosis airway primary cultures by small molecules. Am. J. Physiol. 290, L1117–L1130 (2006).

    CAS  Google Scholar 

  47. Egan, M. E. et al. Curcumin, a major constituent of turmeric, corrects cystic fibrosis defects. Science 304, 600–602 (2004).

    CAS  PubMed  Google Scholar 

  48. Norez, C. et al. Rescue of functional ΔF508-CFTR channels in cystic fibrosis epithelial cells by the α-glucosidase inhibitor miglustat. FEBS Lett. 580, 2081–2086 (2006).

    CAS  PubMed  Google Scholar 

  49. Dormer, R. L. et al. Sildenafil (Viagra) corrects ΔF508-CFTR location in nasal epithelial cells from patients with cystic fibrosis. Thorax 60, 55–59 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Lubamba, B. et al. Preclinical evidence that sildenafil and vardenafil activate chloride transport in cystic fibrosis. Am. J. Respir. Crit. Care Med. 177, 506–515 (2008).

    CAS  PubMed  Google Scholar 

  51. Berger, A. et al. Curcumin stimulates cystic fibrosis transmembrane conductance regulator Cl channel activity. J. Biol. Chem. 280, 5221–5226 (2005).

    CAS  PubMed  Google Scholar 

  52. Song, Y. et al. Evidence against the rescue of defective ΔF508-CFTR cellular processing by curcumin in cell culture and mouse models. J. Biol. Chem. 279, 40629–40633 (2004).

    CAS  PubMed  Google Scholar 

  53. Loo, T., Bartlett, M. & Clarke, D. Thapsigargin or curcumin does not promote maturation of processing mutants of the ABC transporters, CFTR, and P-glycoprotein. Biochem. Biophys. Res. Commun. 325, 580–585 (2004).

    CAS  PubMed  Google Scholar 

  54. Grubb, B. et al. SERCA pump inhibitors do not correct biosynthetic arrest of ΔF508 CFTR in cystic fibrosis. Am. J. Respir. Cell Mol. Biol. 34, 355–363 (2006).

    CAS  PubMed  Google Scholar 

  55. Rubenstein, R. C., Egan, M. E. & Zeitlin, P. L. In vitro pharmacologic restoration of CFTR-mediated chloride transport with sodium 4-phenylbutyrate in cystic fibrosis epithelial cells containing deltaF508-CFTR. J. Clin. Invest. 100, 2457–2465 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Zeitlin, P. L. et al. Evidence of CFTR function in cystic fibrosis after systemic administration of 4-phenylbutyrate. Mol. Ther. 6, 119–126 (2002).

    CAS  PubMed  Google Scholar 

  57. Pedemonte, N. et al. Small molecule correctors of defective ΔF508-CFTR cellular processing identified by high-throughput screening. J. Clin. Invest. 115, 2564–2571 (2005). Identification of the first small-molecule pharmacological chaperones to correct mutant CFTR misfolding.

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Yu, G. J. et al. Potent s-cis-locked bithiazole correctors of ΔF508-CFTR cellular processing for cystic fibrosis therapy. J. Med. Chem. 51, 6044–6054 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Amaral, M. Processing of CFTR: traversing the cellular maze — how much CFTR needs to go through to avoid cystic fibrosis? Pediatr. Pulmonol. 39, 479–491 (2005).

    PubMed  Google Scholar 

  60. Wilschanski, M. et al. Gentamicin-induced correction of CFTR function in patients with cystic fibrosis and CFTR stop mutations. N. Engl. J. Med. 349, 1433–1441 (2003).

    CAS  PubMed  Google Scholar 

  61. Welch, E. M. et al. PTC124 targets genetic disorders caused by nonsense mutations. Nature 447, 87–91 (2007).

    CAS  PubMed  Google Scholar 

  62. Kerem, E. et al. Effectiveness of PTC124 treatment of cystic fibrosis caused by nonsense mutations: a prospective phase II trial. Lancet 372, 719–727 (2008). Describes Phase II data supporting possible efficacy of a read-through therapy for cystic fibrosis.

    CAS  PubMed  Google Scholar 

  63. Hartzell, C., Putzier, I. & Arreola, J. Calcium-activated chloride channels. Annu. Rev. Physiol. 67, 719–758 (2005). An excellent review of CaCCs.

    CAS  PubMed  Google Scholar 

  64. Leblanc, N. et al. Regulation of calcium-activated chloride channels in smooth muscle cells: a complex picture is emerging. Can. J. Physiol. Pharmacol. 83, 541–556 (2005).

    CAS  PubMed  Google Scholar 

  65. Frings, S., Reuter, D. & Kleene, S. J. Neuronal Ca2+-activated Cl channels — homing in on an elusive channel species. Prog. Neurobiol. 60, 247–289 (2000).

    CAS  PubMed  Google Scholar 

  66. Sun, H., Tsunenari, T., Yau, K. W. & Nathans, J. The vitelliform macular dystrophy protein defines a new family of chloride channels. Proc. Natl Acad. Sci. USA 99, 4008–4013 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Qu, Z., Wei, R. W., Mann, W. & Hartzell, H. C. Two bestrophins cloned from Xenopus laevis oocytes express Ca2+-activated Cl currents. J. Biol. Chem. 278, 49563–49572 (2003).

    CAS  PubMed  Google Scholar 

  68. Cunningham, S. A. et al. Cloning of an epithelial chloride channel from bovine trachea. J. Biol. Chem. 270, 31016–31026 (1995).

    CAS  PubMed  Google Scholar 

  69. Huang, P. et al. Regulation of human CLC-3 channels by multifunctional Ca2+/calmodulin-dependent protein kinase. J. Biol. Chem. 276, 20093–20100 (2001).

    CAS  PubMed  Google Scholar 

  70. Eggermont, J. Calcium-activated chloride channels: (un)known, (un)loved? Proc. Am. Thorac. Soc. 1, 22–27 (2004).

    CAS  PubMed  Google Scholar 

  71. Kunzelmann, K., Milenkovic, V. M., Spitzner, M., Soria, R. B. & Schreiber, R. Calcium-dependent chloride conductance in epithelia: is there a contribution by Bestrophin? Pflugers Arch. 454, 879–889 (2007).

    CAS  PubMed  Google Scholar 

  72. Tsunenari, T. et al. Structure-function analysis of the bestrophin family of anion channels. J. Biol. Chem. 278, 41114–41125 (2003).

    CAS  PubMed  Google Scholar 

  73. Qu, Z., Fischmeister, R. & Hartzell, C. Mouse bestrophin-2 is a bona fide Cl channel: identification of a residue important in anion binding and conduction. J. Gen. Physiol. 123, 327–340 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Yu, K., Xiao, Q., Cui, G., Lee, A. & Hartzell, H. C. The best disease-linked Cl channel hBest1 regulates CaV1 (L-type) Ca2+ channels via src-homology-binding domains. J. Neurosci. 28, 5660–5670 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Yang, Y. D. et al. TMEM16A confers receptor-activated calcium-dependent chloride conductance. Nature 455, 1210–1215 (2008).

    CAS  PubMed  Google Scholar 

  76. Caputo, A. et al. TMEM16A, a membrane protein associated with calcium-dependent chloride channel activity. Science 322, 590–594 (2008).

    CAS  PubMed  Google Scholar 

  77. Schroeder, B. C., Cheng, T., Jan, Y. N. & Jan, L. Y. Expression cloning of TMEM16A as a calcium-activated chloride channel subunit. Cell 134, 1019–1029 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Barrett, K. E. & Keely, S. J. Chloride secretion by the intestinal epithelium: molecular basis and regulatory aspects. Annu. Rev. Physiol. 62, 535–572 (2000).

    CAS  PubMed  Google Scholar 

  79. Rufo, P. A. et al. Diarrhea-associated HIV-1 APIs potentiate muscarinic activation of Cl secretion by T84 cells via prolongation of cytosolic Ca2+ signaling. Am. J. Physiol. 264, C998–C1008 (2004).

    Google Scholar 

  80. Schultheiss, G., Siefjediers, A. & Diener, M. Muscarinic receptor stimulation activates a Ca2+-dependent Cl conductance in rat distal colon. J. Membr. Biol. 204, 117–127 (2005).

    CAS  PubMed  Google Scholar 

  81. Hegab, A. E. et al. Niflumic acid and AG-1478 reduce cigarette smoke-induced mucin synthesis: the role of hCLCA1. Chest 131, 1149–1156 (2007).

    CAS  PubMed  Google Scholar 

  82. Deterding, R. R. et al. Phase 2 randomized safety and efficacy trial of nebulized denufosol tetrasodium in cystic fibrosis. Am. J. Respir. Crit. Care Med. 176, 362–369 (2007).

    CAS  PubMed  Google Scholar 

  83. Grasemann, H. et al. Inhalation of Moli1901 in patients with cystic fibrosis. Chest 131, 1461–1466 (2007).

    CAS  PubMed  Google Scholar 

  84. Jentsch, T. J., Steinmeyer, K. & Schwarz, G. Primary structure of Torpedo marmorata chloride channel isolated by expression cloning in Xenopus oocytes. Nature 348, 510–514 (1990). Describes the original cloning of a ClC-type chloride channel.

    CAS  PubMed  Google Scholar 

  85. Accardi, A. & Miller, C. Secondary active transport mediated by a prokaryotic homologue of ClC Cl channels. Nature 427, 803–807 (2004). Demonstration that a ClC-type protein functions as an electrogenic Cl/H+ antiporter. This mechanism of transport was later found in eukaryotic intracellular ClCs.

    CAS  PubMed  Google Scholar 

  86. Scheel, O., Zdebik, A. A., Lourdel, S. & Jentsch, T. J. Voltage-dependent electrogenic chloride/proton exchange by endosomal CLC proteins. Nature 436, 424–427 (2005).

    CAS  PubMed  Google Scholar 

  87. Picollo, A. & Pusch, M. Chloride/proton antiporter activity of mammalian CLC proteins ClC-4 and ClC-5. Nature 436, 420–423 (2005).

    CAS  PubMed  Google Scholar 

  88. Graves, A. R., Curran, P. K., Smith, C. L. & Mindell, J. A. The Cl/H+ antiporter ClC-7 is the primary chloride permeation pathway in lysosomes. Nature 453, 788–792 (2008).

    CAS  PubMed  Google Scholar 

  89. Dutzler, R., Campbell, E. B., Cadene, M., Chait, B. T. & MacKinnon, R. X-ray structure of a ClC chloride channel at 3.0 Å reveals the molecular basis of anion selectivity. Nature 415, 287–294 (2002).

    CAS  PubMed  Google Scholar 

  90. Miller, C. ClC chloride channels viewed through a transporter lens. Nature 440, 484–489 (2006).

    CAS  PubMed  Google Scholar 

  91. Miller, C. & White, M. M. Dimeric structure of single chloride channels from Torpedo electroplax. Proc. Natl Acad. Sci. USA 81, 2772–2775 (1984).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Ludewig, U., Pusch, M. & Jentsch, T. J. Two physically distinct pores in the dimeric ClC-0 chloride channel. Nature 383, 340–343 (1996).

    CAS  PubMed  Google Scholar 

  93. Saviane, C., Conti, F. & Pusch, M. The muscle chloride channel ClC-1 has a double-barreled appearance that is differentially affected in dominant and recessive myotonia. J. Gen. Physiol. 113, 457–468 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Weinreich, F. & Jentsch, T. J. Pores formed by single subunits in mixed dimers of different CLC chloride channels. J. Biol. Chem. 276, 2347–2353 (2001).

    CAS  PubMed  Google Scholar 

  95. Estévez, R., Pusch, M., Ferrer-Costa, C., Orozco, M. & Jentsch, T. J. Functional and structural conservation of CBS domains from CLC chloride channels. J. Physiol. 557, 363–378 (2004).

    PubMed  PubMed Central  Google Scholar 

  96. Jentsch, T. J. Chloride and the endosomal-lysosomal pathway: emerging roles of CLC chloride transporters. J. Physiol. 578, 633–640 (2007).

    CAS  PubMed  Google Scholar 

  97. Rychkov, G. Y. et al. Concentration and pH dependence of skeletal muscle chloride channel ClC-1. J. Physiol. 497, 423–435 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Pusch, M., Ludewig, U., Rehfeldt, A. & Jentsch, T. J. Gating of the voltage-dependent chloride channel CIC-0 by the permeant anion. Nature 373, 527–531 (1995).

    CAS  PubMed  Google Scholar 

  99. Klocke, R., Steinmeyer, K., Jentsch, T. J. & Jockusch, H. Role of innervation, excitability, and myogenic factors in the expression of the muscular chloride channel ClC-1. A study on normal and myotonic muscle. J. Biol. Chem. 269, 27635–27639 (1994).

    CAS  PubMed  Google Scholar 

  100. Pusch, M. Myotonia caused by mutations in the muscle chloride channel gene CLCN1. Hum. Mutat. 19, 423–434 (2002).

    CAS  PubMed  Google Scholar 

  101. Charlet-B, N. et al. Loss of the muscle-specific chloride channel in type 1 myotonic dystrophy due to misregulated alternative splicing. Mol. Cell 10, 45–53 (2002).

    CAS  PubMed  Google Scholar 

  102. Mankodi, A. et al. Expanded CUG repeats trigger aberrant splicing of ClC-1 chloride channel pre-mRNA and hyperexcitability of skeletal muscle in myotonic dystrophy. Mol. Cell 10, 35–44 (2002).

    CAS  PubMed  Google Scholar 

  103. Thiemann, A., Gründer, S., Pusch, M. & Jentsch, T. J. A chloride channel widely expressed in epithelial and non-epithelial cells. Nature 356, 57–60 (1992).

    CAS  PubMed  Google Scholar 

  104. Gründer, S., Thiemann, A., Pusch, M. & Jentsch, T. J. Regions involved in the opening of CIC-2 chloride channel by voltage and cell volume. Nature 360, 759–762 (1992).

    PubMed  Google Scholar 

  105. Staley, K., Smith, R., Schaack, J., Wilcox, C. & Jentsch, T. J. Alteration of GABAA receptor function following gene transfer of the CLC-2 chloride channel. Neuron 17, 543–551 (1996).

    CAS  PubMed  Google Scholar 

  106. Bösl, M. R. et al. Male germ cells and photoreceptors, both dependent on close cell-cell interactions, degenerate upon ClC-2 Cl channel disruption. EMBO J. 20, 1289–1299 (2001).

    PubMed  PubMed Central  Google Scholar 

  107. Blanz, J. et al. Leukoencephalopathy upon disruption of the chloride channel ClC-2. J. Neurosci. 27, 6581–6589 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Haug, K. et al. Mutations in CLCN2 encoding a voltage-gated chloride channel are associated with idiopathic generalized epilepsies. Nature Genet. 33, 527–532 (2003).

    CAS  PubMed  Google Scholar 

  109. Niemeyer, M. I. et al. Functional evaluation of human ClC-2 chloride channel mutations associated with idiopathic generalized epilepsies. Physiol. Genomics 19, 74–83 (2004).

    CAS  PubMed  Google Scholar 

  110. Krämer, B. K., Bergler, T., Stoelcker, B. & Waldegger, S. Mechanisms of disease: the kidney-specific chloride channels ClCKA and ClCKB, the Barttin subunit, and their clinical relevance. Nature Clin. Pract. Nephrol. 4, 38–46 (2008).

    Google Scholar 

  111. Simon, D. B. et al. Mutations in the chloride channel gene, CLCNKB, cause Bartter's syndrome type III. Nature Genet. 17, 171–178 (1997).

    CAS  PubMed  Google Scholar 

  112. Matsumura, Y. et al. Overt nephrogenic diabetes insipidus in mice lacking the CLC-K1 chloride channel. Nature Genet. 21, 95–98 (1999).

    CAS  PubMed  Google Scholar 

  113. Estévez, R. et al. Barttin is a Cl channel beta-subunit crucial for renal Cl reabsorption and inner ear K+ secretion. Nature 414, 558–561 (2001).

    PubMed  Google Scholar 

  114. Birkenhäger, R. et al. Mutation of BSND causes Bartter syndrome with sensorineural deafness and kidney failure. Nature Genet. 29, 310–314 (2001).

    PubMed  Google Scholar 

  115. Jeck, N. et al. Activating mutation of the renal epithelial chloride channel ClC-Kb predisposing to hypertension. Hypertension 43, 1175–1181 (2004).

    CAS  PubMed  Google Scholar 

  116. Jeck, N., Waldegger, P., Doroszewicz, J., Seyberth, H. & Waldegger, S. A common sequence variation of the CLCNKB gene strongly activates ClC-Kb chloride channel activity. Kidney Int. 65, 190–197 (2004).

    CAS  PubMed  Google Scholar 

  117. Barlassina, C. et al. Common genetic variants and haplotypes in renal CLCNKA gene are associated to salt-sensitive hypertension. Hum. Mol. Genet. 16, 1630–1638 (2007).

    CAS  PubMed  Google Scholar 

  118. Lloyd, S. E. et al. A common molecular basis for three inherited kidney stone diseases. Nature 379, 445–449 (1996).

    CAS  PubMed  Google Scholar 

  119. Günther, W., Piwon, N. & Jentsch, T. J. The ClC-5 chloride channel knock-out mouse — an animal model for Dent's disease. Pflugers Arch. 445, 456–462 (2003). .

    PubMed  Google Scholar 

  120. Piwon, N., Günther, W., Schwake, M., Bösl, M. R. & Jentsch, T. J. ClC-5 Cl channel disruption impairs endocytosis in a mouse model for Dent's disease. Nature 408, 369–373 (2000).

    CAS  PubMed  Google Scholar 

  121. Kornak, U. et al. Loss of the ClC-7 chloride channel leads to osteopetrosis in mice and man. Cell 104, 205–215 (2001).

    CAS  PubMed  Google Scholar 

  122. Pusch, M. et al. Pharmacological characterization of chloride channels belonging to the ClC family by the use of chiral clofibric acid derivatives. Mol. Pharmacol. 58, 498–507 (2000).

    CAS  PubMed  Google Scholar 

  123. Estévez, R., Schroeder, B. C., Accardi, A., Jentsch, T. J. & Pusch M. Conservation of chloride channel structure revealed by an inhibitor binding site in ClC-1. Neuron 38, 47–59 (2003).

    PubMed  Google Scholar 

  124. Furukawa, T., Ogura, T., Katayama, Y. & Hiraoka, M. Characteristics of rabbit ClC-2 current expressed in Xenopus oocytes and its contribution to volume regulation. Am. J. Physiol. 274, C500–C512 (1998).

    CAS  PubMed  Google Scholar 

  125. Clark, S., Jordt, S. E., Jentsch, T. J. & Mathie, A. Characterization of the hyperpolarization-activated chloride current in dissociated rat sympathetic neurons. J. Physiol. 506, 665–678 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  126. Picollo, A. et al. Molecular determinants of differential pore blocking of kidney CLC-K chloride channels. EMBO Rep. 5, 584–589 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  127. Liantonio, A. et al. Molecular switch for CLC-K Cl channel block/activation: optimal pharmacophoric requirements towards high-affinity ligands. Proc. Natl Acad. Sci. USA 105, 1369–1373 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  128. Liantonio, A. et al. Activation and inhibition of kidney CLC-K chloride channels by fenamates. Mol. Pharmacol. 69, 165–173 (2006).

    CAS  PubMed  Google Scholar 

  129. Schaller, S., Henriksen, K., Sørensen, M. G. & Karsdal, M. A. The role of chloride channels in osteoclasts: ClC-7 as a target for osteoporosis treatment. Drug News Perspect. 18, 489–495 (2005).

    CAS  PubMed  Google Scholar 

  130. Schaller, S. et al. The chloride channel inhibitor NS3736 prevents bone resorption in ovariectomized rats without changing bone formation. J. Bone Miner. Res. 19, 1144–1153 (2004).

    CAS  PubMed  Google Scholar 

  131. Cuppoletti, J. et al. SPI-0211 activates T84 cell chloride transport and recombinant human ClC-2 chloride currents. Am. J. Physiol. 287, C1173–C1183 (2004).

    CAS  Google Scholar 

  132. Peña-Münzenmayer, G. et al. Basolateral localization of native ClC-2 chloride channels in absorptive intestinal epithelial cells and basolateral sorting encoded by a CBS-2 domain di-leucine motif. J. Cell Sci. 118, 4243–4252 (2005).

    PubMed  Google Scholar 

  133. Gyömörey, K., Yeger, H., Ackerley, C., Garami, E. & Bear, C. E. Expression of the chloride channel ClC-2 in the murine small intestine epithelium. Am. J. Physiol. 279, C1787–C1794 (2000).

    Google Scholar 

  134. Zdebik, A. A., Cuffe, J. E., Bertog, M., Korbmacher, C. & Jentsch, T. J. Additional disruption of the ClC-2 Cl channel does not exacerbate the cystic fibrosis phenotype of cystic fibrosis transmembrane conductance regulator mouse models. J. Biol. Chem. 279, 22276–22283 (2004).

    CAS  PubMed  Google Scholar 

  135. Johanson, J. F. & Ueno, R. Lubiprostone, a locally acting chloride channel activator, in adult patients with chronic constipation: a double-blind, placebo-controlled, dose-ranging study to evaluate efficacy and safety. Aliment. Pharmacol. Ther. 25, 1351–1361 (2007).

    CAS  PubMed  Google Scholar 

  136. Bao, H. F. et al. A synthetic prostone activates apical chloride channels in A6 epithelial cells. Am. J. Physiol. 295, G234–G251 (2008).

    CAS  Google Scholar 

  137. Lynch, J. W. Molecular structure and function of the glycine receptor chloride channel. Physiol. Rev. 84, 1051–1095, (2004).

    CAS  PubMed  Google Scholar 

  138. Cascio, M. Modulating inhibitory ligand-gated ion channels. AAPS J. 8, E353–E361 (2006).

    PubMed  PubMed Central  Google Scholar 

  139. Bowery, N. G. & Smart, T. G. GABA and glycine as neurotransmitters: a brief history. Br. J. Pharmacol. 147, S109–S119 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  140. Webb, T. I. & Lynch, J. W. Molecular pharmacology of the glycine receptor chloride channel. Curr. Pharm. Des. 13, 2350–2367 (2007).

    CAS  PubMed  Google Scholar 

  141. Kash, T. L., Trudell, J. R. & Harrison, N. L. Structural elements involved in activation of the γ-aminobutyric acid type A (GABAA) receptor. Biochem. Soc. Trans. 32, 540–546 (2004).

    CAS  PubMed  Google Scholar 

  142. DeFazio, R. A., Keros, S., Quick, M. W. & Hablitz, J. J. Potassium-coupled chloride cotransport controls intracellular chloride in rat neocortical pyramidal neurons. J. Neurosci. 20, 8069–8076 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  143. Hübner, C. A. et al. Disruption of KCC2 reveals an essential role of K-Cl cotransport already in early synaptic inhibition. Neuron 30, 515–524 (2001).

    PubMed  Google Scholar 

  144. Shiang, R. et al. Point mutations in the gene encoding the α-1 subunit of the inhibitory glycine receptor cause the dominant neurologic disorder, hyperekplexia. Nature Genet. 5, 351–357 (1993).

    CAS  PubMed  Google Scholar 

  145. Baulac, S. et al. First genetic evidence of GABAA receptor dysfunction in epilepsy: a mutation in the γ-2-subunit gene. Nature Genet. 28, 46–48 (2001).

    CAS  PubMed  Google Scholar 

  146. Cossette, P. et al. Mutation of GABRA1 in an autosomal dominant form of juvenile myoclonic epilepsy. Nature Genet. 31, 184–189 (2002).

    CAS  PubMed  Google Scholar 

  147. Maljevic, S. et al. A mutation in the GABAA receptor α1-subunit is associated with absence epilepsy. Ann. Neurol. 59, 983–987 (2006).

    CAS  PubMed  Google Scholar 

  148. Wong, C. G., Bottiglieri, T. & Snead, O. C. GABA, gamma-hydroxybutyric acid, and neurological disease. Ann. Neurol. 54, S3–S12 (2003).

    CAS  PubMed  Google Scholar 

  149. Sternfeld, F. et al. Selective, orally active γ-aminobutyric acidA α-5 receptor inverse agonists as cognition enhancers. J. Med. Chem. 47, 2176–2179 (2004).

    CAS  PubMed  Google Scholar 

  150. Wafford, K. A. & Ebert, B. Gaboxadol — a new awakening in sleep. Curr. Opin. Pharmacol. 6, 30–36 (2006).

    CAS  PubMed  Google Scholar 

  151. Chebib, M. GABAC receptor ion channels. Clin. Exp. Pharmacol. Physiol. 31, 800–804 (2004).

    CAS  PubMed  Google Scholar 

  152. Johnston, G. A., Chebib, M., Hanrahan, J. R. & Mewett, K. N. GABAC receptors as drug targets. Curr. Drug Targets CNS Neurol. Disord. 2, 260–268 (2003).

    CAS  PubMed  Google Scholar 

  153. Harvey, R. J. et al. GlyR α3: an essential target for spinal PGE2-mediated inflammatory pain sensitization. Science 304, 884–887 (2004).

    CAS  PubMed  Google Scholar 

  154. Ye, J. H. et al. Ethanol potentiation of glycine-induced responses in dissociated neurons of rat ventral tegmental area. J. Pharmacol. Exp. Ther. 296, 77–83 (2001).

    CAS  PubMed  Google Scholar 

  155. Beckstead, M. J., Weiner, J. L., Eger, E. I., Gong, D. H. & Mihic, S. J. Glycine and γ-aminobutyric acidA receptor function is enhanced by inhaled drugs of abuse. Mol. Pharmacol. 57, 1199–1205 (2000).

    CAS  PubMed  Google Scholar 

  156. Tao, L. & Ye, J. H. Inhibition of glycine receptor function of native neurons by aliphatic n-alcohols. Br. J. Pharmacol. 136, 629–635 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  157. Stutzin, A. & Hoffmann, E. K. Swelling-activated ion channels: functional regulation in cell-swelling, proliferation and apoptosis. Acta Physiol. (Oxf) 187, 27–42 (2006).

    CAS  Google Scholar 

  158. Kubo, M. & Okada, Y. Volume-regulatory Cl channel currents in cultured human epithelial cells. J. Physiol. 456, 351–371 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  159. Jackson, P. S. & Strange, K. Characterization of the voltage-dependent properties of a volume-sensitive anion conductance. J. Gen. Physiol. 105, 661–676 (1995).

    CAS  PubMed  Google Scholar 

  160. Okada, Y. Volume expansion-sensing outward-rectifier Cl channel: fresh start to the molecular identity and volume sensor. Am. J. Physiol. 273, C755–C789 (1997).

    CAS  PubMed  Google Scholar 

  161. Jackson, P. S. & Strange, K. Volume-sensitive anion channels mediate swelling-activated inositol and taurine efflux. Am. J. Physiol. 265, C1489–C1500 (1993).

    CAS  PubMed  Google Scholar 

  162. Sánchez-Olea, R., Morales, M., García, O. & Pasantes-Morales, H. Cl channel blockers inhibit the volume-activated efflux of Cl and taurine in cultured neurons. Am. J. Physiol. 270, C1703–C1708 (1996).

    PubMed  Google Scholar 

  163. Shennan, D. B. Swelling-induced taurine transport: relationship with chloride channels, anion-exchangers and other swelling-activated transport pathways. Cell Physiol. Biochem. 21, 15–28 (2008).

    CAS  PubMed  Google Scholar 

  164. Valverde, M. A. et al. Volume-regulated chloride channels associated with the human multidrug-resistance P-glycoprotein. Nature 355, 830–833 (1992).

    CAS  PubMed  Google Scholar 

  165. Paulmichl, M. et al. New mammalian chloride channel identified by expression cloning. Nature 356, 238–241 (1992).

    CAS  PubMed  Google Scholar 

  166. Gschwentner, M. et al. Antisense oligonucleotides suppress cell-volume-induced activation of chloride channels. Pflugers Arch. 430, 464–470 (1995).

    CAS  PubMed  Google Scholar 

  167. Ritter, M. et al. Cell swelling stimulates cytosol to membrane transposition of ICln. J. Biol. Chem. 278, 50163–50174 (2003).

    CAS  PubMed  Google Scholar 

  168. Eggermont, J. et al. Is there a link between protein pICln and volume-regulated anion channels? Biochem. J. 331, 347–349 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  169. Krapivinsky, G. B., Ackerman, M. J., Gordon, E. A., Krapivinsky, L. D. & Clapham, D. E. Molecular characterization of a swelling-induced chloride conductance regulatory protein, pICln. Cell 76, 439–448 (1994).

    CAS  PubMed  Google Scholar 

  170. Buyse, G. et al. Expression of human pICln and ClC-6 in Xenopus oocytes induces an identical endogenous chloride conductance. J. Biol. Chem. 272, 3615–3621 (1997).

    CAS  PubMed  Google Scholar 

  171. Pu, W. T., Krapivinsky, G. B., Krapivinsky, L. & Clapham, D. E. pICln inhibits snRNP biogenesis by binding core spliceosomal proteins. Mol. Cell. Biol. 19, 4113–4120 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  172. Duan, D., Winter, C., Cowley, S., Hume, J. R. & Horowitz B. Molecular identification of a volume-regulated chloride channel. Nature 390, 417–421 (1997).

    CAS  PubMed  Google Scholar 

  173. Stobrawa, S. M. et al. Disruption of ClC-3, a chloride channel expressed on synaptic vesicles, leads to a loss of the hippocampus. Neuron 29, 185–196 (2001).

    CAS  PubMed  Google Scholar 

  174. Weylandt, K. H. et al. Human ClC-3 is not the swelling-activated chloride channel involved in cell volume regulation. J. Biol. Chem. 276, 17461–17467 (2001).

    CAS  PubMed  Google Scholar 

  175. Hara-Chikuma, M. et al. ClC-3 chloride channels facilitate endosomal acidification and chloride accumulation. J. Biol. Chem. 280, 1241–1247 (2005).

    CAS  PubMed  Google Scholar 

  176. Nilius, B. et al. Properties of volume-regulated anion channels in mammalian cells. Prog. Biophys. Mol. Biol. 68, 69–119 (1997).

    CAS  PubMed  Google Scholar 

  177. Decher, N. et al. DCPIB is a novel selective blocker of I(Cl, swell) and prevents swelling-induced shortening of guinea-pig atrial action potential duration. Br. J. Pharmacol. 134, 1467–1479 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  178. Okada, Y. et al. Volume-sensitive chloride channels involved in apoptotic volume decrease and cell death. J. Membr. Biol. 209, 21–29 (2006).

    CAS  PubMed  Google Scholar 

  179. Maeno, E., Ishizaki, Y., Kanaseki, T., Hazama, A. & Okada, Y. Normotonic cell shrinkage because of disordered volume regulation is an early prerequisite to apoptosis. Proc. Natl Acad. Sci. USA 97, 9487–9492 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  180. Rock, J. R. & Harfe, B. D. Expression of TMEM16 paralogs during murine embryogenesis. Dev. Dyn. 237, 2566–2574 (2008).

    CAS  PubMed  Google Scholar 

  181. Mansoura, M. K., Biwersi, J., Ashlock, M. A. & Verkman, A. S. Fluorescent chloride indicators to assess the efficacy of CFTR cDNA delivery. Hum. Gene Ther. 10, 861–875 (1999).

    CAS  PubMed  Google Scholar 

  182. Verkman, A. S. in Physiology and Pathology of Chloride Transporters and Channels in the Nervous System: From Molecules to Disease (eds Alvarez-Leefmans, F. J. & Delpire, E.) (Elsevier, in the press).

  183. Molokanova, E. & Savchenko, A. Bright future of optical assays for ion channel drug discovery. Drug Discov. Today 13, 14–22 (2008).

    CAS  PubMed  Google Scholar 

  184. Baker, B. J. et al. Genetically encoded fluorescent sensors of membrane potential. Brain Cell. Biol. 36, 53–67 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alan S. Verkman.

Related links

Related links

DATABASES

OMIM

Autosomal dominant polycystic kidney disease

Bartter's syndrome type 3

Bartter's syndrome type 4

Becker-type myotonia

Cystic fibrosis

Dent's disease

Startle disease

Thomsen-type myotonia

FURTHER INFORMATION

Cystic Fibrosis Foundation Patient Registry Annual Data Report 2006

QualityImprovement/PatientRegistryReport/FDA list of orphan designations and approvals

Vertex web site

Glossary

Cystic fibrosis

One of the most prevalent life-shortening genetic diseases among Caucasians, characterized by recurrent lung infections, sterility and intestinal malabsorption.

Meconium ileus

Often one of the early symptoms of cystic fibrosis consisting of intestinal obstruction by thickened meconium (fetal stool).

Inwardly rectifying

The intrinsic ability of an ion channel to allow higher ion flux at negative (inwardly rectifying) or positive (outwardly rectifying) membrane potentials, even in the presence of a symmetrical concentration of the permeant ion.

Glycocalyx

The network of polysaccharides present on the surface of many cell types.

Intestinal loop model

A surgical technique to study fluid absorption/secretion in an isolated intestinal loop of a laboratory animal.

Airway surface liquid

The layer of fluid (thickness 7–10 μm) covering the airways that allows efficient beating of cilia for mucociliary clearance.

Polyspermia

Penetration of more than one spermatozoon into an oocyte at the time of fertilization.

Best vitelliform macular dystrophy

Early onset degeneration of the macula in retina causing loss of vision.

Electrical organ

A specialized muscle-derived structure of fish belonging to the genus Torpedo that is able to produce electrical discharges of up to 220 volts.

Shunt conductance

A pathway that allows flow of ions (often chloride) in parallel with another pathway for ions of opposite charge.

Osteopetrosis

A genetic disease caused by osteoclast loss of function with unbalanced bone growth leading to dense but brittle bones.

Endolymph

The potassium-rich fluid contained in the membranous labyrinth of the inner ear.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Verkman, A., Galietta, L. Chloride channels as drug targets. Nat Rev Drug Discov 8, 153–171 (2009). https://doi.org/10.1038/nrd2780

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrd2780

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing