Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

Defining drug disposition determinants: a pharmacogenetic–pharmacokinetic strategy

Abstract

In preclinical and early clinical drug development, information about the factors influencing drug disposition is used to predict drug interaction potential, estimate and understand population pharmacokinetic variability, and select doses for clinical trials. However, both in vitro drug metabolism studies and pharmacogenetic association studies on human pharmacokinetic parameters have focused on a limited subset of the proteins involved in drug disposition. Furthermore, there has been a one-way information flow, solely using results of in vitro studies to select candidate genes for pharmacogenetic studies. Here, we propose a two-way pharmacogenetic–pharmacokinetic strategy that exploits the dramatic recent expansion in knowledge of functional genetic variation in proteins that influence drug disposition, and discuss how it could improve drug development.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Flow chart of the proposed pharmacogenetic–pharmacokinetic strategy.
Figure 2: Scenarios in which pharmacogenetic information related to pharmacokinetics in early drug development can support decision-making for later development.

Similar content being viewed by others

References

  1. Obach, R. S., Walsky, R. L., Venkatakrishnan, K., Houston, J. B. & Tremaine, L. M. In vitro cytochrome P450 inhibition data and the prediction of drug–drug interactions: qualitative relationships, quantitative predictions, and the rank-order approach. Clin. Pharmacol. Ther. 78, 582–592 (2005).

    CAS  PubMed  Google Scholar 

  2. Weinshilboum, R. Thiopurine pharmacogenetics: clinical and molecular studies of thiopurine methyltransferase. Drug Metab. Dispos. 29, 601–605 (2001).

    CAS  PubMed  Google Scholar 

  3. Evans, W. E. Pharmacogenetics of thiopurine S-methyltransferase and thiopurine therapy. Ther. Drug Monit. 26, 186–191 (2004).

    CAS  PubMed  Google Scholar 

  4. Maeda, K. et al. Effects of organic anion transporting polypeptide 1B1 haplotype on pharmacokinetics of pravastatin, valsartan, and temocapril. Clin. Pharmacol. Ther. 79, 427–439 (2006).

    CAS  PubMed  Google Scholar 

  5. Hirano, M., Maeda, K., Shitara, Y. & Sugiyama, Y. Drug–drug interaction between pitavastatin and various drugs via OATP1B1. Drug Metab. Dispos. 34, 1229–1236 (2006).

    CAS  PubMed  Google Scholar 

  6. Chung, J. Y. et al. Effect of OATP1B1 (SLCO1B1) variant alleles on the pharmacokinetics of pitavastatin in healthy volunteers. Clin. Pharmacol. Ther. 78, 342–350 (2005).

    CAS  PubMed  Google Scholar 

  7. Garrod, A. The incidence of alkaptonuria: a study in chemical individuality. Lancet ii, 1616–1620 (1902).

    Google Scholar 

  8. Vesell, E. S. & Page, J. G. Genetic control of drug levels in man: phenylbutazone. Science 159, 1479–1480 (1968).

    CAS  PubMed  Google Scholar 

  9. Price Evans, D., Manley, K. & McKusick, V. Genetic control of isoniazid metabolism in man. BMJ 485–491 (1960).

  10. Evans, F. T., Gray, P. W., Lehmann, H. & Silk, E. Sensitivity to succinylcholine in relation to serum-cholinesterase. Lancet 1, 1229–1230 (1952).

    CAS  PubMed  Google Scholar 

  11. Blum, M., Grant, D., McBride, W., Heim, M. & Meyer, U. Human arylamine N-acetyltransferase genes: isolation, chromosomal localization, and functional expression. DNA Cell Biol. 9, 193–203 (1990).

    CAS  PubMed  Google Scholar 

  12. Deguchi, T., Mashimo, M. & Suzuki, T. Correlation between acetylator phenotypes and genotypes of polymorphic arylamine N-acetyltransferase in human liver. J. Biol. Chem. 265, 12757–12760 (1990).

    CAS  PubMed  Google Scholar 

  13. McGuire, M. et al. Identification of the structural mutation responsible for the dibucaine-resistant (atypical) variant form of human serum cholinesterase. Proc. Natl Acad. Sci. USA 86, 953–957 (1989).

    CAS  PubMed  Google Scholar 

  14. McTiernan, C. et al. Brain cDNA clone for human cholinesterase. Proc. Natl Acad. Sci. USA 84, 6682–6686 (1987).

    CAS  PubMed  Google Scholar 

  15. Prody, C., Zevin-Sonkin, D., Gnatt, A., Goldberg, O. & Soreq, H. Isolation and characterization of full-length cDNA clones coding for cholinesterase from fetal human tissues. Proc. Natl Acad. Sci. USA 84, 3555–3559 (1987).

    CAS  PubMed  Google Scholar 

  16. Bertilson, L. et al. Molecular basis for rational megaprescribing in ultrarapid hydroxylators of debrisoquine. Lancet 341, 63 (1993).

    Google Scholar 

  17. Gonzalez, F. J. et al. Characterization of the common genetic defect in humans deficient in debrisoquine metabolism. Nature 331, 442–446 (1988).

    CAS  PubMed  Google Scholar 

  18. Gonzalez, F. J. et al. Human debrisoquine 4-hydroxylase (P450IID1): cDNA and deduced amino acid sequence and assignment of the CYP2D locus to chromosome 22. Genomics 2, 174–179 (1988).

    CAS  PubMed  Google Scholar 

  19. Gough, A. C. et al. Identification of the primary gene defect at the cytochrome P450 CYP2D locus. Nature 347, 773–776 (1990).

    CAS  PubMed  Google Scholar 

  20. Johansson, I., Lundqvist, E., Dahl, M. L. & Ingelman-Sundberg, M. PCR-based genotyping for duplicated and deleted CYP2D6 genes. Pharmacogenetics 6, 351–355 (1996).

    CAS  PubMed  Google Scholar 

  21. Honchel, R. et al. Human thiopurine methyltransferase: molecular cloning and expression of T84 colon carcinoma cell cDNA. Mol. Pharmacol. 43, 878–887 (1993).

    CAS  PubMed  Google Scholar 

  22. Krynetski, E. Y. et al. A single point mutation leading to loss of catalytic activity in human thiopurine S-methyltransferase. Proc. Natl Acad. Sci. USA 92, 949–953 (1995).

    CAS  PubMed  Google Scholar 

  23. Szumlanski, C. et al. Thiopurine methyltransferase pharmacogenetics: human gene cloning and characterization of a common polymorphism. DNA Cell Biol. 15, 17–30 (1996).

    CAS  PubMed  Google Scholar 

  24. FDA. Package Insert for Strattera (atomoxetine HCl). FDA web site [online], (2002).

  25. Dolphin, C., Janmohamed, A., Smith, R., Shephard, E. & Phillips, I. Missense mutation in flavin-containing mono-oxygenase 3 gene, FMO3, underlies fish-odour syndrome. Nature Genet. 17, 491–494 (1997).

    CAS  PubMed  Google Scholar 

  26. Andersson, T. et al. Drug-metabolizing enzymes: evidence for clinical utility of pharmacogenomic tests. Clin. Pharmacol. Ther. 78, 559–581 (2005).

    CAS  PubMed  Google Scholar 

  27. Rendic, S. & DiCarlo, F. Human cytochrome P450 enzymes: a status report summarizing their reactions, substrates, inducers and inhibitors. Drug Metab. Rev. 29, 413–580 (1997).

    CAS  PubMed  Google Scholar 

  28. Tukey, R. & Strassbug, C. Human UDP-glucuronosyltransferases: metabolism, expression, and disease. Annu. Rev. Pharmacol. Toxicol. 40, 581–616 (2000).

    CAS  PubMed  Google Scholar 

  29. Katz, D. A. et al. Organic anion transporting polypeptide 1B1 activity classified by SLCO1B1 genotype influences atrasentan pharmacokinetics. Clin. Pharmacol. Ther. 79, 186–196 (2006).

    CAS  PubMed  Google Scholar 

  30. Lee, E. et al. Rosuvastatin pharmacokinetics and pharmacogenetics in white and Asian subjects residing in the same environment. Clin. Pharmacol. Ther. 78, 330–341 (2005).

    CAS  PubMed  Google Scholar 

  31. Mwinyi, J., Johne, A., Bauer, S., Roots, I. & Gerloff, T. Evidence for inverse effects of OATP-C (SLC21A6) *5 and *1b haplotypes on pravastatin kinetics. Clin. Pharmacol. Ther. 75, 415–421 (2004).

    CAS  PubMed  Google Scholar 

  32. Niemi, M. et al. High plasma pravastatin concentrations are associated with single nucleotide polymorphisms and haplotypes of organic anion transporting polypeptide-C (OATP-C, SLCO1B1). Pharmacogenetics 14, 429–440 (2004).

    CAS  PubMed  Google Scholar 

  33. Nishizato, Y. et al. Polymorphisms of OATP-C (SLC21A6) and OAT3 (SLC22A8) genes: consequences for pravastatin pharmacokinetics. Clin. Pharmacol. Ther. 73, 554–565 (2003).

    CAS  PubMed  Google Scholar 

  34. Wennerholm, A. et al. The African-specific CYP2D6*17 allele encodes an enzyme with changed substrate specificity. Clin. Pharmacol. Ther. 71, 77–88 (2002).

    CAS  PubMed  Google Scholar 

  35. Ieiri, I. et al. Interaction magnitude, pharmacokinetics and pharmacodynamics of ticlopidine in relation to CYP2C19 genotypic status. Pharmacogenet. Genomics 15, 851–859 (2005).

    CAS  PubMed  Google Scholar 

  36. Furman, K. et al. Impact of CYP2D6 intermediate metabolizer alleles on single-dose desipramine pharmacokinetics. Pharmacogenetics 14, 279–284 (2004).

    CAS  PubMed  Google Scholar 

  37. Takahashi, H. et al. Different contributions of polymorphisms in VKORC1 and CYP2C9 to intra- and inter-population differences in maintenance dose of warfarin in Japanese, Caucasians and African–Americans. Pharmacogenet. Genomics 16, 101–110 (2006).

    CAS  PubMed  Google Scholar 

  38. Blaisdell, J. et al. Identification and functional characterization of new potentially defective alleles of human CYP2C19. Pharmacogenetics 12, 703–711 (2002).

    CAS  PubMed  Google Scholar 

  39. Xu, C., Goodz, S., Sellers, E. & Tyndale, R. CYP2A6 genetic variation and potential consequences. Adv. Drug Deliv. Rev. 54, 1245–1256 (2002).

    CAS  PubMed  Google Scholar 

  40. Innocenti, F. et al. Haplotypes of variants in the UDP-glucuronosyltransferase1A9 and 1A1 genes. Pharmacogenet. Genomics 15, 295–301 (2005).

    CAS  PubMed  Google Scholar 

  41. Spielberg, S. N-Acetyltransferases: pharmacogenetics and clinical consequences of polymorphic drug metabolism. J. Pharmacokinet. Biopharm. 24, 509–519 (1996).

    CAS  PubMed  Google Scholar 

  42. Tirona, R., Leake, B., Merino, G. & Kim, R. Polymorphisms in OATP-C. J. Biol. Chem. 276, 35669–35675 (2001).

    CAS  PubMed  Google Scholar 

  43. International Conference on Harmonization (ICH). ICH Harmonized Guidance E5(R1): Ethnic Factors in the Acceptability of Foreign Clinical Data. ICH web site [online], (1998).

  44. Kirchheiner J. et al. Pharmacogenetics of antidepressants and antipsychotics: the contribution of allelic variations to the phenotype of drug response. Mol. Psychiatry 9, 442–473 (2004).

    CAS  PubMed  Google Scholar 

  45. FDA. Package Insert for Paxil (paroxetine hydrochloride). FDA web site [online], (1999).

  46. FDA. Package Insert for Effexor (venlafaxine hydrochloride). FDA web site [online], (2004).

  47. FDA. Package Insert for Zyprexa/Zydis (olanzapine). FDA web site [online], (2000).

  48. FDA. Package Insert for Abilify (aripiprazole). FDA web site [online], (2005).

  49. Baumann, P., Broly, F., Kosel, M. & Eap, C. Ultrarapid metabolism of clomipramine in a therapy-resistant depressive patient, as confirmed by CYP2D6 genotyping. Pharmacopsychiatry 31, 72 (1997).

    Google Scholar 

  50. Kawanishi, C., Lundgren, S., Agren, H. & Bertilson, L. Increased incidence of CYP2D6 gene duplication in patients with persistent mood disorders: ultrarapid metabolism of antidepressants as a cause of nonresponse. A pilot study. Eur. J. Pharmacol. 59, 803–807 (2004).

    CAS  Google Scholar 

  51. Rau, T. et al. CYP2D6 genotype: impact on adverse effects and nonresponse during treatment with antidepressants — a pilot study. Clin. Pharmacol. Ther. 75, 386–393 (2004).

    CAS  PubMed  Google Scholar 

  52. FDA Package Insert for Imuran (azathioprine). FDA web site [online], (2005).

  53. Otterness, D. et al. Human thiopurine methyltransferase pharmacogenetics: gene sequence polymorphisms. Clin. Pharmacol. Ther. 62, 60–73 (1997).

    CAS  PubMed  Google Scholar 

  54. Yates, C. et al. Molecular diagnosis of thiopurine S-methyltransferase deficiency: genetic basis for azathioprine and mercaptopurine intolerance. Ann. Intern. Med. 126, 608–614 (1997).

    CAS  PubMed  Google Scholar 

  55. Chowbay, B., Li, H., David, M., Cheung, Y. B. & Lee, E. J. Meta-analysis of the influence of MDR1 C3435T polymorphism on digoxin pharmacokinetics and MDR1 gene expression. Br. J. Clin. Pharmacol. 60, 159–171 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. FDA/CDER/CBER. In Vivo Drug Metabolism/Drug Interaction Studies — Study Design, Data Analysis, and Recommendations for Dosing and Labeling. FDA web site [online], (1999).

  57. Xiong, H. et al. Effect of rifampin (RIF) on the pharmacokinetics (PK) of atrasentan (ABT-627, ATN). J. Clin. Oncol. 22 (Suppl. 14), 4728 (2004).

    Google Scholar 

  58. Kyrklund, C., Backman, J., Neuvonen, M. & Neuvonen, P. Genfibrozil increases plasma pravastatin concentrations and reduces pravastatin renal clearance. Clin. Pharmacol. Ther. 73, 538–544 (2003).

    CAS  PubMed  Google Scholar 

  59. Schneck, D. et al. The effect of gemfibrozil on the pharmacokinetics of rosuvastatin. Clin. Pharmacol. Ther. 75, 455–463 (2004).

    CAS  PubMed  Google Scholar 

  60. Shitara, Y., Itoh, T., Sato, H., Li, A. P. & Sugiyama, Y. Inhibition of transporter-mediated hepatic uptake as a mechanism for drug–drug interaction between cerivastatin and cyclosporin A. J. Pharmacol. Exp. Ther. 304, 610–616 (2003).

    CAS  PubMed  Google Scholar 

  61. Simonson, S. et al. Rosuvastatin pharmacokinetics in heart transplant recipients administered an antirejection regimen including cyclosporine. Clin. Pharmacol. Ther. 76, 167–177 (2004).

    CAS  PubMed  Google Scholar 

  62. Tannergren, C. et al. Multiple transport mechanisms involved in the intestinal absorption and first-pass extraction of fexofenadine. Clin. Pharmacol. Ther. 74, 423–436 (2003).

    CAS  PubMed  Google Scholar 

  63. Treiber, A., Schneiter, R., Delahaye, S. & Clozel, M. Inhibition of organic anion transporting polypeptide-mediated hepatic uptake is the major determinant in the pharmacokinetic interaction between bosentan and cyclosporin A in the rat. J. Pharmacol. Exp. Ther. 308, 1121–1129 (2004).

    CAS  PubMed  Google Scholar 

  64. Luo, X. et al. ADH4 gene variation is associated with alcohol and drug dependence: results from family controlled and population-structured association studies. Pharmacogenet. Genomics 15, 755–768 (2005).

    CAS  PubMed  Google Scholar 

  65. Fukami, T. et al. A novel polymorphism of human CYP2A6 gene CYP2A6*17 has an amino acid substitution (V365M) that decreases enzymatic activity in vitro and in vivo. Clin. Pharmacol. Ther. 76, 519–527 (2004).

    CAS  PubMed  Google Scholar 

  66. Huang, S. et al. CYP2A6, MAOA, DBH, DRD4, and 5HT2A genotypes, smoking behaviour and cotinine levels in 1518 UK adolescents. Pharmacogenet. Genomics 15, 839–850 (2005).

    CAS  PubMed  Google Scholar 

  67. Pianezza, M. L., Sellers, E. M. & Tyndale, R. F. Nicotine metabolism defect reduces smoking. Nature 393, 750 (1998).

    CAS  PubMed  Google Scholar 

  68. Schoedel, K. A., Hoffmann, E. B., Rao, Y., Sellers, E. M. & Tyndale, R. F. Ethnic variation in CYP2A6 and association of genetically slow nicotine metabolism and smoking in adult Caucasians. Pharmacogenetics 14, 615–626 (2004).

    CAS  PubMed  Google Scholar 

  69. Swan, G. E. et al. Nicotine metabolism: the impact of CYP2A6 on estimates of additive genetic influence. Pharmacogenet. Genomics 15, 115–125 (2005).

    CAS  PubMed  Google Scholar 

  70. Yoshida, R. et al. Effects of polymorphism in promoter region of human CYP2A6 gene (CYP2A6*9) on expression level of messenger ribonucleic acid and enzymatic activity in vivo and in vitro. Clin. Pharmacol. Ther. 74, 69–76 (2003).

    CAS  PubMed  Google Scholar 

  71. Haas, D. W. et al. Pharmacogenetics of long-term responses to antiretroviral regimens containing efavirenz and/or nelfinavir: an Adult AIDS Clinical Trials Group study. J. Infect. Dis. 192, 1931–1942 (2005).

    CAS  PubMed  Google Scholar 

  72. Haas, D. W. et al. Pharmacogenetics of efavirenz and central nervous system side effects: an Adult AIDS Clinical Trials Group study. AIDS 18, 2391–2400 (2004).

    CAS  PubMed  Google Scholar 

  73. Rotger, M. et al. Influence of CYP2B6 polymorphism on plasma and intracellular concentrations and toxicity of efavirenz and nevirapine in HIV-infected patients. Pharmacogenet. Genomics 15, 1–5 (2005).

    CAS  PubMed  Google Scholar 

  74. Desta, Z., Zhao, X., Shin, J.-G. & Flockhart, D. A. Clinical significance of the cytochrome P450 2C19 genetic polymorphism. Clin. Pharmacokinet. 41, 913–958 (2002).

    CAS  PubMed  Google Scholar 

  75. Sim, S. C. et al. A common novel CYP2C19 gene variant causes ultrarapid drug metabolism relevant for the drug response to proton pump inhibitors and antidepressants. Clin. Pharmacol. Ther. 79, 103–113 (2006).

    CAS  PubMed  Google Scholar 

  76. Kirchheiner, J. & Brockmoller, J. Clinical consequences of cytochrome P450 2C9 polymorphisms. Clin. Pharmacol. Ther. 77, 1–16 (2005).

    CAS  PubMed  Google Scholar 

  77. Frohlich, M. et al. Association of the CYP3A5 A6986G (CYP3A5*3) polymorphism with saquinavir pharmacokinetics. Br. J. Clin. Pharmacol. 58, 443–444 (2004).

    PubMed  PubMed Central  Google Scholar 

  78. Goto, M. et al. CYP3A5*1-carrying graft liver reduces the concentration/oral dose ratio of tacrolimus in recipients of living-donor liver transplantation. Pharmacogenetics 14, 471–478 (2004).

    CAS  PubMed  Google Scholar 

  79. Haufroid, V. et al. The effect of CYP3A5 and MDR1 (ABCB1) polymorphisms on cyclosporine and tacrolimus dose requirements and trough blood levels in stable renal transplant patients. Pharmacogenetics 14, 147–154 (2004).

    CAS  PubMed  Google Scholar 

  80. Macphee, I. A. M. et al. Tacrolimus pharmacogenetics: polymorphisms associated with expression of cytochrome P4503A5 and p-glycoprotein correlate with dose requirement. Transplantation 74, 1486–1489 (2002).

    CAS  PubMed  Google Scholar 

  81. Mouly, S. J. et al. Variation in oral clearance of saquinavir is predicted by CYP3A5*1 genotype but not by enterocyte content of cytochrome P450 3A5. Clin. Pharmacol. Ther. 78, 605–618 (2005).

    CAS  PubMed  Google Scholar 

  82. Tsuchiya, N. et al. Influence of CYP3A5 and MDR1 (ABCB1) polymorphisms on the pharmacokinetics of tacrolimus in renal transplant recipients. Transplantation 78, 1182–1187 (2004).

    CAS  PubMed  Google Scholar 

  83. Zheng, H. et al. Tacrolimus dosing in pediatric heart transplant patients is related to CYP3A5 and MDR1 gene polymorphisms. Am. J. Transplant. 3, 477–483 (2003).

    CAS  PubMed  Google Scholar 

  84. Zheng, H. et al. Tacrolimus dosing in adult lung transplant patients is related to cytochrome P4503A5 gene polymorphism. J. Clin. Pharmacol. 44, 135–140 (2004).

    CAS  PubMed  Google Scholar 

  85. Hisamuddin, I. M. et al. Genetic polymorphisms of human flavin monooxygenase 3 in sulindac-mediated primary chemoprevention of familial adenomatous polyposis. Clin. Cancer Res. 10, 8357–8362 (2004).

    CAS  PubMed  Google Scholar 

  86. Hisamuddin, I. M. et al. Genetic polymorphisms of flavin monooxygenase 3 in sulindac-induced regression of colorectal adenomas in familial adenomatous polyposis. Cancer Epidemiol. Biomarkers Prev. 14, 2366–2369 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Innocenti, F. & Ratain, M. J. “Irinogenetics” and UGT1A: from genotypes to haplotypes. Clin. Pharmacol. Ther. 75, 495–500 (2004).

    PubMed  Google Scholar 

  88. Li, J. H. et al. Influence of the ORM1 phenotypes on serum unbound concentration and protein binding of quinidine. Clin. Chim. Acta 317, 85–92 (2002).

    CAS  PubMed  Google Scholar 

  89. Quertemont, E. Genetic polymorphism in ethanol metabolism: acetaldehyde contribution to alcohol abuse and alcoholism. Mol. Psychiatry 9, 570–581 (2004).

    CAS  PubMed  Google Scholar 

  90. Sparreboom, A. et al. Diflomotecan pharmacokinetics in relation to ABCG2 421C>A genotype. Clin. Pharmacol. Ther. 76, 38–44 (2004).

    CAS  PubMed  Google Scholar 

  91. Bialecka, M. et al. The effect of monoamine oxidase B (MAOB) and catechol-O- methyltransferase (COMT) polymorphisms on levodopa therapy in patients with sporadic Parkinson's disease. Acta Neurol. Scand. 110, 260–266 (2004).

    CAS  PubMed  Google Scholar 

  92. Contin, M. et al. Genetic polymorphism of catechol-O-methyltransferase and levodopa pharmacokinetic–pharmacodynamic pattern in patients with Parkinson's disease. Mov. Disord. 20, 734–739 (2005).

    PubMed  Google Scholar 

  93. Weinshilboum, R. M., Otterness, D. M. & Szumlanski, C. L. Methylation pharmacogenetics: catechol O-methyltransferase, thiopurine methyltransferase, and histamine N-methyltransferase. Ann. Rev. Pharmacol. Toxicol. 39, 19–52 (1999).

    CAS  Google Scholar 

  94. Bengala, C. et al. Prolonged fixed dose rate infusion of gemcitabine with autologous haemopoietic support in advanced pancreatic adenocarcinoma. Br. J. Cancer 93, 35–40 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Yue, L. et al. A functional single-nucleotide polymorphism in the human cytidine deaminase gene contributing to ara-C sensitivity. Pharmacogenetics 13, 29–38 (2003).

    CAS  PubMed  Google Scholar 

  96. Aklillu, E. et al. Genetic polymorphism of CYP1A2 in Ethiopians affecting induction and expression: characterization of novel haplotypes with single-nucleotide polymorphisms in intron 1. Mol. Pharmacol. 64, 659–669 (2003).

    CAS  PubMed  Google Scholar 

  97. Chida, M. et al. Detection of three genetic polymorphisms in the 5′-flanking region and intron 1 of human CYP1A2 in the Japanese population. Jpn. J. Cancer Res. 90, 899–902 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Jiang, Z. et al. Search for an association between the human CYP1A2 genotype and CYP1A2 metabolic phenotype. Pharmacogenet. Genomics 16, 359–367 (2006).

    CAS  PubMed  Google Scholar 

  99. Obase, Y. et al. Polymorphisms in the CYP1A2 gene and theophylline metabolism in patients with asthma. Clin. Pharmacol. Ther. 73, 468–474 (2003).

    CAS  PubMed  Google Scholar 

  100. Sachse, C., Brockmoller, J., Bauer, S. & Roots, I. Functional significance of a C→A polymorphism in intron 1 of the cytochrome P450 CYP1A2 gene tested with caffeine. Br. J. Clin. Pharmacol. 47, 445–449 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Garcia-Martin, E., Martinez, C., Tabares, B., FrIas, J. & Agundez, J. A. Interindividual variability in ibuprofen pharmacokinetics is related to interaction of cytochrome P450 2C8 and 2C9 amino acid polymorphisms. Clin. Pharmacol. Ther. 76, 119–127 (2004).

    CAS  PubMed  Google Scholar 

  102. Niemi, M. et al. Polymorphism in CYP2C8 is associated with reduced plasma concentrations of repaglinide. Clin. Pharmacol. Ther. 74, 380–387 (2003).

    CAS  PubMed  Google Scholar 

  103. Shi, J. Y. et al. Association between single nucleotide polymorphisms in deoxycytidine kinase and treatment response among acute myeloid leukaemia patients. Pharmacogenetics 14, 759–768 (2004).

    CAS  PubMed  Google Scholar 

  104. Nakajima, Y. et al. Haplotype structures of EPHX1 and their effects on the metabolism of carbamazepine-10,11-epoxide in Japanese epileptic patients. Eur. J. Clin. Pharmacol. 61, 25–34 (2005).

    CAS  PubMed  Google Scholar 

  105. McLellan, R. A. et al. Characterization of a human glutathione S-transferase μ cluster containing a duplicated GSTM1 gene that causes ultrarapid enzyme activity. Mol. Pharmacol. 52, 958–965 (1997).

    CAS  PubMed  Google Scholar 

  106. Seidegard, J., Vorachek, W. R., Pero, R. W. & Pearson, W. R. Hereditary differences in the expression of the human glutathione transferase active on trans-stilbene oxide are due to a gene deletion. Proc. Natl Acad. Sci. USA 85, 7293–7297 (1988).

    CAS  PubMed  Google Scholar 

  107. Simon, T. et al. Combined glutathione-S-transferase M1 and T1 genetic polymorphism and tacrine hepatotoxicity. Clin. Pharmacol. Ther. 67, 432–437 (2000).

    CAS  PubMed  Google Scholar 

  108. Hayes, J. D., Flanagan, J. U. & Jowsey, I. R. Glutathione transferases. Annu. Rev. Pharmacol. Toxicol. 45, 51–88 (2005).

    CAS  PubMed  Google Scholar 

  109. Allan, J. M. et al. Polymorphism in glutathione S-transferase P1 is associated with susceptibility to chemotherapy-induced leukemia. Proc. Natl Acad. Sci. USA 98, 11592–11597 (2001).

    CAS  PubMed  Google Scholar 

  110. Anderer, G. et al. Polymorphisms within glutathione S-transferase genes and initial response to glucocorticoids in childhood acute lymphoblastic leukaemia. Pharmacogenetics 10, 715–726 (2000).

    CAS  PubMed  Google Scholar 

  111. Dasgupta, R. K. et al. Polymorphic variation in GSTP1 modulates outcome following therapy for multiple myeloma. Blood 102, 2345–2350 (2003).

    CAS  PubMed  Google Scholar 

  112. Harries, L. W., Stubbins, M. J., Forman, D., Howard, G. C. & Wolf, C. R. Identification of genetic polymorphisms at the glutathione S-transferase Pi locus and association with susceptibility to bladder, testicular and prostate cancer. Carcinogenesis 18, 641–644 (1997).

    CAS  PubMed  Google Scholar 

  113. Stoehlmacher, J. et al. A multivariate analysis of genomic polymorphisms: prediction of clinical outcome to 5-FU/oxaliplatin combination chemotherapy in refractory colorectal cancer. Br. J. Cancer 91, 344–354 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Zimniak, P. et al. Naturally occurring human glutathione S-transferase GSTP1-1 isoforms with isoleucine and valine in position 104 differ in enzymic properties. Eur. J. Biochem. 224, 893–899 (1994).

    CAS  PubMed  Google Scholar 

  115. Sprenger, R. et al. Characterization of the glutathione S-transferase GSTT1 deletion: discrimination of all genotypes by polymerase chain reaction indicates a trimodular genotype–phenotype correlation. Pharmacogenetics 10, 557–565 (2000).

    CAS  PubMed  Google Scholar 

  116. Allorge, D., Hamdan, R., Broly, F., Libersa, C. & Colombel, J. F. ITPA genotyping test does not improve detection of Crohn's disease patients at risk of azathioprine/6-mercaptopurine induced myelosuppression. Gut 54, 565 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  117. Gearry, R. B., Roberts, R. L., Barclay, M. L. & Kennedy, M. A. Lack of association between the ITPA 94C>A polymorphism and adverse effects from azathioprine. Pharmacogenetics 14, 779–781 (2004).

    CAS  PubMed  Google Scholar 

  118. Marinaki, A. M. et al. Adverse drug reactions to azathioprine therapy are associated with polymorphism in the gene encoding inosine triphosphate pyrophosphatase (ITPase). Pharmacogenetics 14, 181–187 (2004).

    CAS  PubMed  Google Scholar 

  119. van Dieren, J. M. et al. ITPA genotyping is not predictive for the development of side effects in AZA treated inflammatory bowel disease patients. Gut 54, 1664 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  120. von Ahsen, N. et al. Association of inosine triphosphatase 94C>A and thiopurine S-methyltransferase deficiency with adverse events and study drop-outs under azathioprine therapy in a prospective Crohn disease study. Clin. Chem. 51, 2282–2288 (2005).

    CAS  PubMed  Google Scholar 

  121. Innocenti, F. et al. Pharmacogenetic analysis of interindividual irinotecan (CPT-11) pharmacokinetic (PK) variability: evidence for a functional variant of ABCC2. J. Clin. Oncol. 22 (Suppl. 14), 2010 (2004).

    Google Scholar 

  122. Souto, J. C. et al. A genomewide exploration suggests a new candidate gene at chromosome 11q23 as the major determinant of plasma homocysteine levels: results from the GAIT project. Am. J. Hum. Genet. 76, 925–933 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  123. Yan, L., Otterness, D. M. & Weinshilboum, R. M. Human nicotinamide N-methyltransferase pharmacogenetics: gene sequence analysis and promoter characterization. Pharmacogenetics 9, 307–316 (1999).

    CAS  PubMed  Google Scholar 

  124. Bigler, J. et al. CYP2C9 and UGT1A6 genotypes modulate the protective effect of aspirin on colon adenoma risk. Cancer Res. 61, 3566–3569 (2001).

    CAS  PubMed  Google Scholar 

  125. Chan, A. T., Tranah, G. J., Giovannucci, E. L., Hunter, D. J. & Fuchs, C. S. Genetic variants in the UGT1A6 enzyme, aspirin use, and the risk of colorectal adenoma. J. Natl Cancer Inst. 97, 457–460 (2005).

    CAS  PubMed  Google Scholar 

  126. Ciotti, M., Marrone, A., Potter, C. & Owens, I. S. Genetic polymorphism in the human UGT1A6 (planar phenol) UDP-glucuronosyltransferase: pharmacological implications. Pharmacogenetics 7, 485–495 (1997).

    CAS  PubMed  Google Scholar 

  127. Krishnaswamy, S. et al. UDP glucuronosyltransferase (UGT) 1A6 pharmacogenetics: I. identification of polymorphisms in the 5′-regulatory and exon 1 regions, and association with human liver UGT1A6 gene expression and glucuronidation. J. Pharmacol. Exp. Ther. 313, 1331–1339 (2005).

    CAS  PubMed  Google Scholar 

  128. Krishnaswamy, S. et al. UDP Glucuronosyltransferase (UGT) 1A6 pharmacogenetics: II. functional impact of the three most common nonsynonymous UGT1A6 polymorphisms (S7A, T181A, and R184S). J. Pharmacol. Exp. Ther. 313, 1340–1346 (2005).

    CAS  PubMed  Google Scholar 

  129. Lampe, J. W., Bigler, J., Horner, N. K. & Potter, J. D. UDP-glucuronosyltransferase (UGT1A1*28 and UGT1A6*2) polymorphisms in Caucasians and Asians: relationships to serum bilirubin concentrations. Pharmacogenetics 9, 341–349 (1999).

    CAS  PubMed  Google Scholar 

  130. Nagar, S., Zalatoris, J. J. & Blanchard, R. L. Human UGT1A6 pharmacogenetics: identification of a novel SNP, characterization of allele frequencies and functional analysis of recombinant allozymes in human liver tissue and in cultured cells. Pharmacogenetics 14, 487–499 (2004).

    CAS  PubMed  Google Scholar 

  131. van der Logt, E. M. J. et al. Genetic polymorphisms in UDP-glucuronosyltransferases and glutathione S-transferases and colorectal cancer risk. Carcinogenesis 25, 2407–2015 (2004).

    CAS  PubMed  Google Scholar 

  132. Carlini, L. E. et al. UGT1A7 and UGT1A9 polymorphisms predict response and toxicity in colorectal cancer patients treated with capecitabine/irinotecan. Clin. Cancer Res. 11, 1226–1236 (2005).

    CAS  PubMed  Google Scholar 

  133. Girard, H. et al. Identification of common polymorphisms in the promoter of the UGT1A9 gene: evidence that UGT1A9 protein and activity levels are strongly genetically controlled in the liver. Pharmacogenetics 14, 501–515 (2004).

    CAS  PubMed  Google Scholar 

  134. Thibaudeau, J. et al. Characterization of common UGT1A8, UGT1A9, and UGT2B7 variants with different capacities to inactivate mutagenic 4-hydroxylated metabolites of estradiol and estrone. Cancer Res. 66, 125–133 (2006).

    CAS  PubMed  Google Scholar 

  135. Villeneuve, L., Girard, H., Fortier, L.-C., Gagne, J.-F. & Guillemette, C. Novel functional polymorphisms in the UGT1A7 and UGT1A9 glucuronidating enzymes in Caucasian and African–American subjects and their impact on the metabolism of 7-ethyl-10-hydroxycamptothecin and flavopiridol anticancer drugs. J. Pharmacol. Exp. Ther. 307, 117–128 (2003).

    CAS  PubMed  Google Scholar 

  136. Yamanaka, H. et al. A novel polymorphism in the promoter region of human UGT1A9 gene (UGT1A9*22) and its effects on the transcriptional activity. Pharmacogenetics 14, 329–332 (2004).

    CAS  PubMed  Google Scholar 

  137. Chung, J.-Y. et al. Effect of the UGT2B15 genotype on the pharmacokinetics, pharmacodynamics, and drug interactions of intravenous lorazepam in healthy volunteers. Clin. Pharmacol. Ther. 77, 486–494 (2005).

    CAS  PubMed  Google Scholar 

  138. Levesque, E. et al. Isolation and characterization of UGT2B15(Y85): a UDP- glucuronosyltransferase encoded by a polymorphic gene. Pharmacogenetics 7, 317–325 (1997).

    CAS  PubMed  Google Scholar 

  139. Nowell, S. A. et al. Association of genetic variation in tamoxifen-metabolizing enzymes with overall survival and recurrence of disease in breast cancer patients. Breast Cancer Res. Treat. 91, 249–258 (2005).

    CAS  PubMed  Google Scholar 

  140. Sparks, R. et al. UDP-glucuronosyltransferase and sulfotransferase polymorphisms, sex hormone concentrations, and tumor receptor status in breast cancer patients. Breast Cancer Res. 6, R488–R498 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  141. Toide, K. et al. A major genotype in UDP-glucuronosyltransferase 2B15. Drug Metab. Pharmacokinet. 17, 164–166 (2002).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like thank B. Spear for his leadership and mentoring, as well as C. Locke and numerous colleagues in the Department of Clinical Pharmacokinetics at Abbott for helpful discussions and collaboration.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David A. Katz.

Ethics declarations

Competing interests

All the authors are or were employees of Abbott Laboratories.

Supplementary information

Supplementary information S1 (table)

Common functional genetic variants in drug disposition genes (PDF 924 kb)

Supplementary information S2 (table)

Drug disposition genes for which functions of common genetic variants have not been demonstrated (PDF 301 kb)

Supplementary information S3 (table)

Uncommon functional genetic variants in drug disposition genes (PDF 299 kb)

Supplementary information S4 (table)

Drug disposition genes for which information on common genetic variants has not been published (PDF 242 kb)

Supplementary information S5 (table)

Probe substrates and inhibitors for in vitro study of drug disposition pathways (PDF 1393 kb)

Related links

Related links

FURTHER INFORMATION

OMIM

The Pharmacogenetics and Pharmacogenomics Knowledge Base

Glossary

Alternating group design

An alternating group design is similar to an escalating-dose design, except that each group of subjects participates in several study periods. The same subjects in each group receive placebo in every period, but the dose of study drug escalates at each subsequent period.

Crossover design

In a crossover design, each group of subjects is randomized to receive all treatments (including placebo), usually separated by a washout period to eliminate carry-over effects between treatments. A crossover design is generally considered to provide increased sensitivity to treatment effects as it virtually eliminates inter-individual variability (each study subject functions as their own control), and hence requires fewer participants than a parallel arm design. However, the informativeness of pharmacogenetic analysis is minimized in this study design.

Drug disposition

Drug disposition is what happens to a chemical after it enters the body. After oral dosing, drug disposition includes absorption from the gastrointestinal tract into central circulation; distribution to and between various tissues; metabolism to different chemicals; and excretion (usually in urine or faeces).

Escalating-dose design

In an escalating-dose design, a first group of subjects is randomized to either the lowest dose of study drug or matching placebo, and subsequent groups (composed of different subjects) are each randomized to the next higher dose of study drug or matching placebo.

Extensive metabolizers/extensive transporters

These are individuals who are homozygous for a wild-type (normal activity) form of a drug metabolizing enzyme or drug transport protein. This classification applies to a specific enzyme or protein; a single individual can be an extensive metabolizer for one enzyme and not for another.

Fish-odour syndrome

This is an inborn error of metabolism accompanied by fish-like body odour. The offensive odour is due to the build-up of amino-trimethylamine (TMA) derived from foodstuffs such as egg yolk, liver, kidney, legumes, soy beans, peas and saltwater fishes. TMA is normally oxidized by the drug metabolizing enzyme flavin monooxygenase 3 (FMO3); genetic deficiency in this enzyme is the syndrome's cause.

Functional genetic variants

These are variant gene sequences that alter the expression, activity or substrate specificity of the corresponding protein.

Heterologous transcription activation assays

These are experimental tools used to measure the interaction of a compound with nuclear receptors. These can either be cell-based or cell-free systems engineered so that a readily detectable product (RNA or protein) is made in larger amounts when a ligand for the nuclear receptor is present.

Intermediate metabolizers/intermediate transporters

These are individuals who have reduced activity of a drug metabolizing enzyme or drug transport protein. Reduced activity may result from a structural change in the enzyme or a lower level of protein expression. An intermediate phenotype can result either from heterozygosity (for example, one extensive metabolizer allele + one poor metabolizer allele) or homozygosity (for example, for a reduced expression allele).

New chemical entity

(NCE). This is a common term in the pharmaceutical industry for a chemical that is being tested to learn whether it is useful as a drug. Generally (and in this paper) NCE refers only to small molecules and not to large molecules such as peptides, proteins and nucleic acids that also may be developed as drugs.

Pharmacogenetics

(PG). This is the study of how genetic variation influences drug response. In this paper, we focus on the subset of PG that relates genetic and pharmacokinetic variation.

Pharmacokinetics

(PK). Is the study of how the body affects drugs. In this paper, we frequently talk about PK variation (or variability), which refers to differences between individuals of the concentration–time profile of a drug.

Polymorphic

In the context of pharmacogenetics, polymorphic refers to when a DNA sequence exists in two or more forms in human populations. Polymorphism refers to the DNA sequence that is polymorphic.

Poor metabolizers/poor transporters

These are individuals who have very low or no activity of a drug metabolizing enzyme or drug transport protein, respectively. Poor-metabolizer alleles include those that lead to premature termination of the protein, and gene deletions.

Ultrarapid metabolizers

These are individuals who have unusually high activity of a drug metabolizing enzyme. Most commonly this is a result of gene duplication. We are not aware of an ultrarapid transporter phenotype.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Katz, D., Murray, B., Bhathena, A. et al. Defining drug disposition determinants: a pharmacogenetic–pharmacokinetic strategy. Nat Rev Drug Discov 7, 293–305 (2008). https://doi.org/10.1038/nrd2486

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrd2486

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing