Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Combinatorial Pharmacogenetics

Key Points

  • Polymorphic drug-metabolizing enzymes (DME) are likely to represent some of the most common inheritable risk factors associated with common 'disease' phenotypes, such as adverse drug reactions.

  • The relatively high degree of association between DME polymorphisms and clinical phenotypes, examples of which are discussed here, suggests that research into this class of polymorphisms will provide near-term benefits to patients.

  • Given the complexity of the body's reactions to pharmacological agents and the combinatoric magnitude of the resulting analysis problem, traditional analysis methods will often break down. Novel analysis techniques, such as multifactor dimensionality reduction (MDR), offer viable options for evaluating complex pharmacogenetic data.

  • The MDR method, which has been successfully applied to identifying gene–gene and gene–environment interactions for a variety of complex clinical endpoints, can be implemented as part of a comprehensive and flexible four-step framework for combinatorial data mining. The open-source and platform-independent version of the MDR software is freely available for download.

  • We propose the application of MDR to defining gene–gene interactions in a similar context directed toward the characterization of drug-treatment outcomes. The application of this method, and others like it, could lead to the development of improved gene-based dosing models, and facilitate safer drug prescribing through the prospective application of individual drug susceptibility profiles.

Abstract

Combinatorial pharmacogenetics seeks to characterize genetic variations that affect reactions to potentially toxic agents within the complex metabolic networks of the human body. Polymorphic drug-metabolizing enzymes are likely to represent some of the most common inheritable risk factors associated with common 'disease' phenotypes, such as adverse drug reactions. The relatively high concordance between polymorphisms in drug-metabolizing enzymes and clinical phenotypes indicates that research into this class of polymorphisms could benefit patients in the near future. Characterization of other genes affecting drug disposition (absorption, distribution, metabolism and elimination) will further enhance this process. As with most questions concerning biological systems, the complexity arises out of the combinatorial magnitude of all the possible interactions and pathways. The high-dimensionality of the resulting analysis problem will often overwhelm traditional analysis methods. Novel analysis techniques, such as multifactor dimensionality reduction, offer viable options for evaluating such data.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Competing metabolic pathways.
Figure 2: Drug disposition.

Similar content being viewed by others

References

  1. Lander, E. S. et al. Initial sequencing and analysis of the human genome. Nature 409, 860–921 (2001).

    Article  CAS  Google Scholar 

  2. Venter, J. C. et al. The sequence of the human genome. Science 291, 1304–1351 (2001).

    Article  CAS  Google Scholar 

  3. Wilke, R. A., Musana, A. K. & Weber, W. W. Cytochrome P450 gene-based drug prescribing and factors impacting translation into routine clinical practice. Personalized Med. 2, 213–224 (2005).

    Article  CAS  Google Scholar 

  4. Ingelman-Sundberg, M. Pharmacogenetics: an opportunity for a safer and more efficient pharmacotherapy. J. Intern. Med. 250, 186–200 (2001).

    Article  CAS  Google Scholar 

  5. Burke, W. Genomic medicine — genetic testing. N. Engl. J. Med. 347, 1867–1875 (2002).

    Article  CAS  Google Scholar 

  6. Moirand, R. et al. HFE based re-evaluation of heterozygous hemochromatosis. Am. J. Med. Genet. 111, 356–361 (2002).

    Article  Google Scholar 

  7. Higashi, M. K. et al. Association between CYP2C9 genetic variants and anticoagulation-related outcomes during warfarin therapy. JAMA 287, 1690–1698 (2002). Seminal paper in the field of warfarin pharmaco-genetics, linking clinical outcome with variation in a single drug metabolizing enzyme gene (in the context of a drug with a narrow therapeutic index).

    Article  CAS  Google Scholar 

  8. Hillman, M. A. et al. Relative impact of covariates in prescribing warfarin according to CYP2C9-based genotype. Pharmacogenetics 14, 539–547 (2004).

    Article  CAS  Google Scholar 

  9. Gage, B. F. et al. Use of pharmacogenetics and clinical factors to predict the maintenance dose of warfarin. Thromb. Haemost. 91, 87–94 (2004).

    Article  CAS  Google Scholar 

  10. Scordo, M. G. et al. Influence of CYP2C9 and CYP2C19 genetic polymorphisms on warfarin maintenance dose and metabolic clearance. Clin. Pharmacol. Ther. 72, 702–710 (2002).

    Article  CAS  Google Scholar 

  11. Wadelius, M. et al. Warfarin sensitivity related to CYP2C9, CYP3A5, ABCB1 (MDR1) and other factors. Pharmacogenomics J. 4, 40–48 (2004).

    Article  CAS  Google Scholar 

  12. Kirchheiner, J. et al. Pharmacogenetics of antidepressants and antipsychotics: the contribution of allelic variations to the phenotype of drug response. Mol. Psychiatry 9, 442–473 (2004).

    Article  CAS  Google Scholar 

  13. Weber, W. W. The legacy of pharmacogenetics and potential applications. Mutat. Res. 479, 1–18 (2001). A historical review with a discussion of outlook at the turn of the millennium.

    Article  CAS  Google Scholar 

  14. Anderson, G. D. Pharmacogenetics and enzyme induction/inhibition properties of antiepileptic drugs. Neurology 63, S3–S8 (2004).

    Article  CAS  Google Scholar 

  15. Komatsu, T. et al. Formation of a dihydroxy metabolite of phenytoin in human liver microsomes/cytosol: roles of cytochromes P450 2C9, 2C19, and 3A4. Drug. Metab. Dispos. 28, 1361–1368 (2000).

    CAS  PubMed  Google Scholar 

  16. Chua, H. C., Venketasubramanian, N., Tjia, H. & Chan, S. P. Elimination of phenytoin in toxic overdose. Clin. Neurol. Neurosurg. 102, 6–8 (2000).

    Article  CAS  Google Scholar 

  17. Kerb, R. et al. The predictive value of MDR1, CYP2C9, and CYP2C19 polymorphisms for phenytoin plasma levels. Pharmacogenomics J. 1, 204–210 (2001).

    Article  CAS  Google Scholar 

  18. Hung, C. C., Lin, C. J., Chen, C. C., Chang, C. J. & Liou, H. H. Dosage recommendation of phenytoin for patients with epilepsy with different CYP2C9/CYP2C19 polymorphisms. Ther. Drug Monit. 26, 534–540 (2004).

    Article  CAS  Google Scholar 

  19. De Morais, S. M. et al. Identification of a new genetic defect responsible for the polymorphism of (S)-mephenytoin metabolism in Japanese. Mol. Pharmacol. 46, 594–598 (1994).

    CAS  PubMed  Google Scholar 

  20. De Morais, S. M. et al. The major genetic defect responsible for the polymorphism of S-mephenytoin metabolism in humans. J. Biol. Chem. 269, 15419–15422 (1994).

    CAS  PubMed  Google Scholar 

  21. Wrighton, S. A. et al.: Isolation and characterization of human liver cytochrome P450 2C19: correlation between 2C19 and S-mephenytoin 4′-hydroxylation. Arch. Biochem. Biophys. 306, 240–245 (1993).

    Article  CAS  Google Scholar 

  22. Pitner, J. K., Long, L. D., Meyer, R. P. & Pennypacker, L. C. Phenytoin toxicity in an older patient with slow metabolism and atypical presentation. Pharmacotherapy 18, 218–225 (1998).

    CAS  PubMed  Google Scholar 

  23. Lee, A. Y., Kim, M. J., Chey, W. Y., Choi, J. & Kim, B. G. Genetic polymorphism of cytochrome P450 2C9 in diphenylhydantoin-induced cutaneous adverse drug reactions. Eur. J. Clin. Pharmacol. 60, 155–159 (2004).

    Article  CAS  Google Scholar 

  24. Levy, G. N., Weber, W. W. in Interindividual Variability in Human Drug Metabolism (eds Pacifia, C. M. & Pelkonen, O.) 333–357 (Taylor and Francis, New York, 2001).

    Google Scholar 

  25. Levy, G. N. & Weber, W. W. in Enzyme Systems that Metabolize Drugs and Other Xenobiotics (ed. Ionnides, C.) 441–457 (Wiley, New York, 2002).

    Book  Google Scholar 

  26. Neville, M. et al. Characterization of cytochrome P450 2D6 alleles using the invader system. BioTechniques 32, 34–43 (2002).

    Article  Google Scholar 

  27. Iyer, L. et al. Genetic predisposition to the metabolism of irinotecan (CPT-11). Role of uridine diphosphate glucuronosyltransferase isoform 1A1 in the glucuronidation of its active metabolite (SN-38) in human liver microsomes. J. Clin. Invest. 101, 847–854 (1998).

    Article  CAS  Google Scholar 

  28. Iyer, L. et al. UGT1A1*28 polymorphism as a determinant of irinotecan disposition and toxicity. Pharmacogenomics J. 2, 43–47 (2002).

    Article  CAS  Google Scholar 

  29. Ando, Y. et al. Polymorphisms of UDP-glucuronosyltransferase gene and irinotecan toxicity: a pharmacogenetic analysis. Cancer Res. 60, 6921–6926 (2000).

    CAS  PubMed  Google Scholar 

  30. Atorvastatin Product Monograph (Parke-Davis Division of Warner Lamber, Morris Plains, 1997).

  31. Bullen, W. W., Miller, R. A. & Hayes, R. N. Development and validation of a high-performance liquid chromatography tandem mass spectrometry assay for atorvastatin, ortho-hydroxy atorvastatin, and para-hydroxy atorvastatin in human, dog, and rat plasma. J. Am. Soc. Mass. Spectrom. 10, 55–66 (1999).

    Article  CAS  Google Scholar 

  32. Jemal, M., Ouyang, Z., Chen, B. C. & Teitz, D. Quantitation of the acid and lactone forms of atorvastatin and its biotransformation products in human serum by high-performance liquid chromatography with electrospray tandem mass spectrometry. Rapid Commun. Mass. Spectrom. 13, 1003–1015 (1999).

    Article  CAS  Google Scholar 

  33. Prueksaritanont, T. et al. Effects of fibrates on metabolism of statins in human hepatocytes. Drug Metab. Dispos. 30, 1280–1287 (2002).

    Article  CAS  Google Scholar 

  34. Prueksaritanont, T. et al. Mechanistic studies on metabolic interactions between gemfibrozil and statins. J. Pharmacol. Exp. Ther. 301, 1042–1051 (2002).

    Article  CAS  Google Scholar 

  35. Nishizato, Y. et al. Polymorphisms of OATP-C (SLC21A6) and OAT3 (SLC22A8) genes: consequences for pravastatin pharmacokinetics. Clin. Pharmacol. Ther. 73, 554–565 (2003).

    Article  CAS  Google Scholar 

  36. Mwinyi, J., Johne, A., Bauer, S., Roots, I. & Gerloff, T. Evidence for inverse effects of OATP-C (SLC21A6) 5 and 1b haplotypes on pravastatin kinetics. Clin. Pharmacol. Ther. 75, 415–421 (2004).

    Article  CAS  Google Scholar 

  37. Schneck, D. W. et al. The effect of gemfibrozil on the pharmacokinetics of rosuvastatin. Clin. Pharmacol. Ther. 75, 455–463 (2004).

    Article  CAS  Google Scholar 

  38. Davidson, M. H. Controversy surrounding the safety of cerivastatin. Expert Opin. Drug Saf. 1, 207–212 (2002).

    Article  CAS  Google Scholar 

  39. Shitara, Y., Hirano, M., Sato, H. & Sugiyama, Y. Gemfibrozil and its glucuronide inhibit the OATP2(OATP1B1: SLC21A6)-mediated hepatic uptake and CYP2C8-mediated metabolism of cerivastatin- Analysis of the mechanism of the clinically relevant drug-drug interaction between cerivastatin and gemfibrozil. J. Pharmacol. Exp. Ther. 311, 228–236 (2004).

    Article  CAS  Google Scholar 

  40. Wilke, R. A., Moore, J. H. & Burmester, J. K. Relative impact of CYP 3A genotype and concomitant medication on the severity of atorvastatin-induced muscle damage. Pharmacogenet. Genomics 15, 415–421 (2005). Recent paper in the field of statin pharmacogenetics, linking adverse outcome with variation in a single drug metabolizing enzyme gene (in the context of a drug with a wide therapeutic index).

    Article  CAS  Google Scholar 

  41. Shikata, E. et al. Association of pharmacokinetic (CYP2C9) and pharmacodynamic (factors II, VII, IX, and X; proteins S and C; and gamma-glutamyl carboxylase) gene variants with warfarin sensitivity. Blood 103, 2630–2635 (2004).

    Article  CAS  Google Scholar 

  42. Li, T. et al. Identification of the gene for vitamin K epoxide reductase. Nature 427, 541–544 (2004).

    Article  CAS  Google Scholar 

  43. Rost, S. et al. Mutations in VKORC1 cause warfarin resistance and multiple coagulation factor deficiency type 2. Nature 427, 537–541 (2004).

    Article  CAS  Google Scholar 

  44. Kirchheiner, J. et al. Pharmacogenetics of antidepressants and antipsychotics: the contribution of allelic variations to the phenotype of drug response. Mol. Psych. 9, 442–473 (2004).

    Article  CAS  Google Scholar 

  45. Moore, J. H. The ubiquitous nature of epistasis in determining susceptibility to common human diseases. Hum. Hered. 56, 73–82 (2003). Argues that epistasis or gene–gene interactions play an important role in susceptibility to common human diseases.

    Article  Google Scholar 

  46. Moore, J. H. & Ritchie, M. D. The challenges of whole-genome approaches to common diseases. JAMA 291, 1642–1643 (2004). Reviews the challenges associated with identifying susceptibility genes for common human diseases using genome-wide maps of single-nucleotide polymorphisms (SNPs).

    Article  CAS  Google Scholar 

  47. Moore, J. H. & Williams, S. M. Traversing the conceptual divide between biological and statistical epistasis: systems biology and a more modern synthesis. BioEssays 27, 637–646 (2005). Highlights the challenges associated with inferring etiology from statistical models in genetic studies of human disease.

    Article  CAS  Google Scholar 

  48. Moore, J. H. A global view of epistasis. Nature Genet. 37, 13–14 (2005).

    Article  CAS  Google Scholar 

  49. Hosmer, D. W. & Lemeshow, S. Applied Logistic Regression (John Wiley & Sons, Inc., New York, 2000).

    Book  Google Scholar 

  50. Bellman, R . Adaptive Control Processes (Princeton Univ. Press, Princeton, 1961).

    Book  Google Scholar 

  51. Concato, J., Feinstein, A. R. & Holford, T. R. The risk of determining risk with multivariable models. Ann. Intern. Med. 118, 201–210 (1993).

    Article  CAS  Google Scholar 

  52. Peduzzi, P., Concato, J., Kemper, E., Holford, T. R. & Feinstein, A. R. A simulation study of the number of events per variable in logistic regression analysis. J. Clin. Epidemiol. 49, 1373–1379 (1996).

    Article  CAS  Google Scholar 

  53. Wade, M. J. in Epistasis and the Evolutionary Process (eds Wolf, J., Brodie III, B. & Wade, M. J.) 213–231 (Oxford Univ. Press, New York, 2000).

    Google Scholar 

  54. Templeton, A. R. in Epistasis and the Evolutionary Process (eds Wolf, J., Brodie III, B. & Wade, M. J.) 41–57 (Oxford Univ. Press, New York, 2000).

    Google Scholar 

  55. Thornton-Wells, T. A., Moore, J. H. & Haines, J. L. Genetics, statistics and human disease: analytical retooling for complexity. Trends Genet. 20, 640–647 (2004). Recent review of the factors that can complicate a genetic analysis. Highlights the need for powerful analytical strategies such as multifactor dimensionality reduction (MDR).

    Article  CAS  Google Scholar 

  56. Ritchie, M. D. et al. Multifactor-dimensionality reduction reveals high-order interactions among estrogen-metabolism genes in sporadic breast cancer. Am. J. Hum. Genet. 69, 138–147 (2001).

    Article  CAS  Google Scholar 

  57. Hahn, L. W., Ritchie, M. D. & Moore, J. H. Multifactor dimensionality reduction software for detecting gene-gene and gene-environment interactions. Bioinformatics 19, 376–382 (2003).

    Article  CAS  Google Scholar 

  58. Ritchie, M. D., Hahn, L. W. & Moore, J. H. Power of multifactor dimensionality reduction for detecting gene-gene interactions in the presence of genotyping error, missing data, phenocopy, and genetic heterogeneity. Genet. Epidemiol. 24, 150–157 (2003).

    Article  Google Scholar 

  59. Hahn, L. W. & Moore, J. H. Ideal discrimination of discrete clinical endpoints using multilocus genotypes. In Silico Biol. 4, 183–194 (2004).

    CAS  PubMed  Google Scholar 

  60. Moore, J. H. Computational analysis of gene-gene interactions using multifactor dimensionality reduction. Expert Rev. Mol. Diagn. 4, 795–803 (2004). A recent review of the multifactor dimensionality reduction (MDR) approach to detecting gene–gene and gene–environment interactions.

    Article  CAS  Google Scholar 

  61. Hastie, T., Tibshirani, R. & Friedman, J. The Elements of Statistical Learning: Data Mining, Inference, and Prediction (Springer-Verlag, New York, 2001).

    Book  Google Scholar 

  62. Good, P. Permutation Tests: A Practical Guide to Resampling Methods for Testing Hypotheses (Springer, New York, 2000).

    Book  Google Scholar 

  63. Coffey, C. S. et al. An application of conditional logistic regression and multifactor dimensionality reduction for detecting gene-gene interactions on risk of myocardial infarction: the importance of model validation. BMC Bioinformatics 5, 49 (2004).

    Article  Google Scholar 

  64. Coffey, C. S. et al. Reporting of model validation procedures in human studies of genetic interactions. Nutrition 20, 69–73 (2004).

    Article  CAS  Google Scholar 

  65. Tsai, C. T. et al. Renin-angiotensin system gene polymorphisms and atrial fibrillation. Circulation 109, 1640–1646 (2004).

    Article  CAS  Google Scholar 

  66. Cho, Y. M. et al. Multifactor dimensionality reduction reveals interactions among the UCP2 and PPARg genes in type 2 diabetes. Diabetologia 47, 549–554 (2004).

    Article  CAS  Google Scholar 

  67. Soares, M. L. et al. Susceptibility and modifier genes in Portuguese transthyretin V30M amyloid polyneuropathy: complexity in a single-gene disease. Hum. Mol. Genet. 14, 543–553 (2005).

    Article  CAS  Google Scholar 

  68. Bastone, L., Reilly, M., Rader, D. J. & Foulkes, A. S. MDR and PRP: a comparison of methods for high-order genotype–phenotype associations. Hum. Hered. 58, 82–92 (2004).

    Article  CAS  Google Scholar 

  69. Moore, J. H. & Williams, S. M. New strategies for identifying gene–gene interactions in hypertension. Ann. Med. 34, 88–95 (2002).

    Article  CAS  Google Scholar 

  70. Williams, S. M. et al. Multilocus analysis of hypertension: a hierarchical approach. Hum. Hered. 57, 28–38 (2004).

    Article  Google Scholar 

  71. Qin, S. et al. An association study of the N-methyl-D-aspartate receptor NR1 subunit gene (GRIN1) and NR2B subunit gene (GRIN2B) in schizophrenia with universal DNA microarray. Eur. J. Hum. Genet. (in the press).

  72. National Institute of Health Care Management Research and Education Foundation. Prescription drug expenditures in 2001: another year of escalating costs (NIHCM, Washington DC, 2002).

  73. Lord, P. G. & Papoian, T. Genomics and drug toxicity. Science 306, 575 (2004).

    Article  CAS  Google Scholar 

  74. Davis, R. L. & Khoury, M. J. The promise of personalized medicine. Personalized Med. 2, 1–4 (2005).

    Article  Google Scholar 

  75. McCarty, C. et al. The Marshfield Clinic Personalized Medicine Research Project (PMRP) — design, methods and initial recruitment results for a population-based DNA biobank. Personalized Med. 2, 49–79 (2005). Design and construction of a large population-based DNA Biobank ( n = 18,500 participants), located in Central Wisconsin. Discusses integration with similar ongoing efforts, worldwide. In addition to describing the basic demographics of the first 17,000 participants enrolled, the authors provide copies of study materials, including the questionnaire and the informed consent document. This open sharing of resource tools should help facilitate collaboration between research groups, addressing one of the 'Grand Challenges' identified by Francis Khoury, the Head of the National Human Genome Research Institute, upon completion of the Human Genome Project.

    Article  Google Scholar 

  76. Wilke, R. A., Carillo, M. W. & Ritchie, M. D. Pacific Symposium on Biocomputing — computational approaches for pharmacogenomics. Pharmacogenomics 6, 111–113 (2005).

    Article  Google Scholar 

  77. Hoh, J., Wille, A. & Ott, J. Trimming, weighting, and grouping SNPs in human case-control association studies. Genome Res. 11, 2115–2119 (2001).

    Article  CAS  Google Scholar 

  78. Culverhouse, R., Klein, T. & Shannon, W. Detecting epistatic interactions contributing to quantitative traits. Genet. Epidemiol. 27, 141–152 (2004).

    Article  Google Scholar 

  79. Moore, J. H. et al. A flexible computational framework for detecting, characterizing, and interpreting statistical patterns of epistasis in genetic studies of human disease susceptibility. J. Theor. Biol. (in the press).

  80. Jakulin, A. & Bratko, I. Analyzing attribute interactions. Lecture Notes Artificial Intelligence 2838, 229–240 (2003).

    Google Scholar 

  81. Jakulin, A., Bratko, I., Smrke, D., Demsar, J. & Zupan, B. Attribute interactions in medical data analysis. Lecture Notes Artificial Intelligence 2780, 229–238 (2003).

    Google Scholar 

  82. Frank, E., Hall, M., Trigg, L., Holmes, G. & Witten, I. H. Data mining in bioinformatics using Weka. Bioinformatics 20, 2479–2481 (2004).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the National Institutes of Health (NIH). D.M.R. was supported by an NIH training grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jason H. Moore.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

DATABASES

Entrez Gene

ACE

AGT

AGTR1

HFE

CYP2C9

CYP2C19

CYP2D6

OATP-C

Vitaim K epoxide reductase

FURTHER INFORMATION

Epistasis Blog

Home Page of the Human Cytochrome P450 (CYP) Allele Nomenclature Committee

Multifactor Dimensionality Reduction

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wilke, R., Reif, D. & Moore, J. Combinatorial Pharmacogenetics. Nat Rev Drug Discov 4, 911–918 (2005). https://doi.org/10.1038/nrd1874

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrd1874

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing