# RESEARCH

### **HIGHLIGHT ADVISORS**

### **ERIK DE CLERCQ**

KATHOLIEKE UNIVERSITEIT LEUVEN, BELGIUM

RODERICK FLOWER WILLIAM HARVEY RESEARCH INSTITUTE, QMW, LONDON, UK

### YOSHIJI FUJITA

CLINICAL PROTEOME CENTER, TOKYO MEDICAL UNIVERSITY

### **F. PETER GUENGERICH**

VANDERBILT UNIVERSITY NASHVILLE, TN, USA

### FRANZ HEFTI

RINAT NEUROSCIENCE CORPORATION, PALO ALTO, CA, USA

### JOAN HELLER BROWN

UNIVERSITY OF CALIFORNIA SAN DIEGO, CA, USA

# MADS KROGSGAARD

THOMSEN NOVO NORDISK, BAGSVAERD, DENMARK

### HUGO KUBINYI

UNIVERSITY OF HEIDELBERG, GERMANY

### **ROBERT LANGER**

MASSACHUSETTS INSTITUTE OF TECHNOLOGY CAMBRIDGE, MA, USA

### **JULIO LICINIO**

UNIVERSITY OF CALIFORNIA LOS ANGELES, CA, USA

### **CHRISTOPHER LIPINSKI**

PFIZER GLOBAL RESEARCH AND DEVELOPMENT, GROTON, CT, USA

### **TOMI SAWYER**

ARIAD PHARMACEUTICALS, CAMBRIDGE, MA, USA

### JANET WOODCOCK

FOOD & DRUG ADMINISTRATION, ROCKVILLE, MD, USA

## G-PROTEIN-COUPLED RECEPTORS

# Better beta-blockers

A new study has shown that the majority of  $\beta$ -adrenoceptor antagonists (beta-blockers) currently in clinical use for hypertension, heart disease and, more recently, heart failure have poor selectivity between adrenoceptor subtypes  $\beta_1$  and  $\beta_2$  in whole-cell assays. The report by Jillian Baker in the *British Journal of Pharmacology* suggests that the development of existing, more selective,  $\beta$ -adrenoceptor antagonists as beta-blocker drugs should be considered as an alternative to those already in clinical use.

The clinical rationale for using beta-blockers to treat most cardiovascular disorders is to antagonize  $\beta_1$ -adrenoceptor signalling to reduce the rate and force of cardiac muscle contraction. However, the beneficial mode of action in heart failure is still not understood. Although highly selective  $\beta_1$ -antagonists do exist, most of the beta-blockers available for clinical use also antagonize  $\beta_2$ -adrenoceptors, which are expressed at high levels in the airways, causing bronchospasm, a major side-effect of this therapeutic class.

One of the challenges when comparing the subtype-specificity of different  $\beta$ -adrenoceptor antagonists is the method by which the selectivity was originally determined. Initially, drugs were screened for selectivity by observing changes in heart rate or contraction of cardiac muscle ( $\beta_1$ -selective) or bronchial smooth muscle ( $\beta_2$ -selective) using animal or human tissue. However, these measurements are subject to great variation caused by differences in cellular context and between individuals and species, as well as the effects of underlying disease or of previous medication, such as exposure to  $\beta$ -adrenoceptor drugs. Results obtained by this method therefore more accurately reflect tissue-binding specificity, rather than the receptorbinding specificity of the drug.

The study by Baker measured the binding of a wide range of β-adrenoceptor antagonists to stably expressed  $\beta_1$ ,  $\beta_2$ - and  $\beta_2$ -adrenoceptors in an identical mammalian cell culture environment. Using a competitive binding assay,  $K_{\rm D}$  values (the concentration at which half the receptors are bound by the competing ligand) were determined for each drug. The values showed that although there is great variation in the potency of clinically used beta-blockers for all receptor subtypes (from nanomolar to micromolar affinity), they showed little selectivity between  $\beta_1$ and  $\beta_2$ , subtypes, and only one drug was found to be selective for the  $\beta_2$ -adrenoceptor. Some drugs (for example, metoprolol, bisoprolol and atenolol) thought to be  $\beta_1$ -adrenoceptor-selective and currently used to treat cardiovascular disorders are poorly  $\beta$ ,-selective, whereas others (for example. carvedilol, sotalol and timolol) actually have higher affinities for the  $\beta_2$ -adrenoceptor subtype.

It is becoming clear that the clinical benefit of beta-blockers in heart failure cannot be attributed



to receptor affinity alone, and other factors, such as longevity of action at the receptors, must also play a part. Indeed, this study comes at a controversial time for beta-blockers - the paradoxical hypothesis that beta-blockers might actually be beneficial in asthma is now being tested in clinical trials after it was shown that long-term exposure can reduce lung sensitivity in a mouse model of asthma. As more is learnt about the complex pharmacology of adrenoceptors, there is clearly potential for the development of drugs with greater selectivity and less side-effects for a range of indications.

### Joanna Owens

(i) References and links ORIGINAL RESEARCH PAPER Baker, J. G. The selectivity of β-adrenoceptor antagonists at the human  $\beta_1$ ,  $\beta_2$  and  $\beta_3$  adrenoceptors. Br. J. Pharmacol. 144, 317–322 (2005)

FURTHER READING Callaerts-Vegh, Z. *et al.* Effects of acute and chronic administration of beta-adrenoceptor ligands on airway function in a murine model of asthma. *Proc. Natl Acad. Sci. USA* **101**, 4948–4953 (2004) | Abbott, A. Betablocker goes on trial as asthma therapy. *Nature* **432**, 7 (2004)