Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Antimalarial drug discovery: efficacy models for compound screening

Key Points

  • Increased antimalarial drug discovery efforts are urgently needed. The goal must be to develop safe and affordable new drugs to counter the spread of malaria parasites resistant to existing agents. Here, we review different in vitro and in vivo screens for antimalarial drug discovery and recommend a streamlined process for evaluating new compounds on a critical path from drug discovery to development.

  • Malaria caused by Plasmodium falciparum remains one of the most important diseases of the developing world, killing 1–3 million people and causing disease in 300–500 million people each year. Malaria-endemic regions of the world are faced with an unprecedented situation in which the only affordable treatment options, historically based on the use of chloroquine or sulphadoxine-pyrimethamine, are rapidly losing therapeutic efficacy.

  • Ideally, new drugs for uncomplicated P. falciparum malaria must be efficacious against drug resistant strains, provide cure within a reasonable time (ideally three days or less) to ensure good compliance, be safe, be suitable for small children and pregnant women, have appropriate formulations for oral use, and above all be affordable. Drug discovery necessarily requires trade-offs among desired drug features, but for the treatment of malaria in the developing world, the provision of affordable, orally active treatments that are safe for children is, for practical purposes, mandatory.

  • In vitro screens for compound activity are performed with P. falciparum strains of differing drug-susceptibility profiles that can be readily cultured in human erythrocytes. The most common screen involves measuring the uptake of 3H-hypoxanthine (which is taken up by the parasite for purine salvage and DNA synthesis) during a 48–72 hour period. This enables a determination of the level of P. falciparum growth inhibition as a function of the concentration of the test compound.

  • In vivo evaluation of antimalarial compounds typically begins with the use of rodent malaria parasites, either P. berghei, P. yoelii, P. chabaudi or P. vinckei. P. berghei is the most commonly used model. The most widely used initial screen is a four-day suppressive test, where the efficacy of four daily doses of compounds is measured by comparison of blood parasitaemia (on day four after infection) and mouse survival time in treated and untreated mice. Active compounds can be progressed through several secondary tests.

  • This review also provides an example of a critical path for an antimalarial drug discovery effort, lists targets currently being pursued, summarizes ongoing drug discovery and developments efforts and provides online links to informative websites.

Abstract

Increased efforts in antimalarial drug discovery are urgently needed. The goal must be to develop safe and affordable new drugs to counter the spread of malaria parasites that are resistant to existing agents. Drug efficacy, pharmacology and toxicity are important parameters in the selection of compounds for development, yet little attempt has been made to review and standardize antimalarial drug-efficacy screens. Here, we suggest different in vitro and in vivo screens for antimalarial drug discovery and recommend a streamlined process for evaluating new compounds on the path from drug discovery to development.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The global distribution of malaria, showing areas where Plasmodium falciparum resistance to the most commonly used antimalarial drugs, chloroquine and sulphadoxine-pyrimethamine, has been documented.
Figure 2: Example of a critical path for antimalarial drug discovery.
Figure 3: Representation of an intra-erythrocytic Plasmodium falciparum trophozoite, highlighting key parasite intracellular compartments and the site of action of some of the major classes of antimalarial drugs.
Figure 4: Flow chart of one scenario for in vivo screening for antimalarial activity in rodent malaria models.
Figure 5: Crystal structure of Plasmodium falciparum enoyl-ACP reductase (PfENR) complexed with NAD+ cofactor and the inhibitor triclosan.

Similar content being viewed by others

References

  1. Greenwood, B. & Mutabingwa, T. Malaria in 2002. Nature 415, 670–672 (2002).

    CAS  PubMed  Google Scholar 

  2. White, N. J. The treatment of malaria. N. Engl. J. Med. 335, 800–806 (1996).

    CAS  PubMed  Google Scholar 

  3. Pagola, S., Stephens, P. W., Bohle, D. S., Kosar, A. D. & Madsen, S. K. The structure of malaria pigment β-haematin. Nature 404, 307–310 (2000).

    CAS  PubMed  Google Scholar 

  4. Ursos, L. M. & Roepe, P. D. Chloroquine resistance in the malarial parasite, Plasmodium falciparum. Med. Res. Rev. 22, 465–491 (2002).

    CAS  PubMed  Google Scholar 

  5. Wellems, T. E. & Plowe, C. V. Chloroquine-resistant malaria. J. Infect. Dis. 184, 770–776 (2001).

    CAS  PubMed  Google Scholar 

  6. Trape, J. F. The public health impact of chloroquine resistance in Africa. Am. J. Trop. Med. Hyg. 64, 12–17 (2001).

    CAS  PubMed  Google Scholar 

  7. Plowe, C. V. Monitoring antimalarial drug resistance: making the most of the tools at hand. J. Exp. Biol. 206, 3745–3752 (2003).

    PubMed  Google Scholar 

  8. Olliaro, P. et al. Systematic review of amodiaquine treatment in uncomplicated malaria. Lancet 348, 1196–1201 (1996).

    CAS  PubMed  Google Scholar 

  9. Winstanley, P. Modern chemotherapeutic options for malaria. Lancet Infect. Dis. 1, 242–250 (2001). A useful review of current options for the treatment of malaria in the developing world.

    CAS  PubMed  Google Scholar 

  10. Lang, T. & Greenwood, B. The development of Lapdap, an affordable new treatment for malaria. Lancet Infect. Dis. 3, 162–168 (2003). Describes the development of the newest approved antimalarial drug, an affordable combination regimen developed specifically for the treatment of drug-resistant infections in Africa.

    PubMed  Google Scholar 

  11. Ridley, R. G. Medical need, scientific opportunity and the drive for antimalarial drugs. Nature 415, 686–693 (2002). Summarizes the current antimalarial treatment situation and promising new targets for chemotherapy.

    CAS  PubMed  Google Scholar 

  12. Nwaka, S. & Ridley, R. G. Virtual drug discovery and development for neglected diseases through public–private partnerships. Nature Rev. Drug Discov. 2, 919–928 (2003). Reviews the public–private partnership model for virtual drug discovery and development for malaria and other neglected diseases.

    CAS  Google Scholar 

  13. Guerin, P. J. et al. Malaria: current status of control, diagnosis, treatment, and a proposed agenda for research and development. Lancet Infect. Dis. 2, 564–573 (2002). A summary of current state-of-the-art management of malaria in the developing world.

    PubMed  Google Scholar 

  14. Dorsey, G., Vlahos, J., Kamya, M. R., Staedke, S. G. & Rosenthal, P. J. Prevention of increasing rates of treatment failure by combining sulfadoxine-pyrimethamine with artesunate or amodiaquine for the sequential treatment of malaria. J. Infect. Dis. 188, 1231–1238 (2003).

    CAS  PubMed  Google Scholar 

  15. Looareesuwan, S., Chulay, J. D., Canfield, C. J. & Hutchinson, D. B. Malarone (atovaquone and proguanil hydrochloride): a review of its clinical development for treatment of malaria. Malarone Clinical Trials Study Group. Am. J. Trop. Med. Hyg. 60, 533–541 (1999). This paper is a detailed account of the development of one of the newest available antimalarial drugs. Note, however, that Malarone is much too expensive for widescale use in developing countries.

    CAS  PubMed  Google Scholar 

  16. Staedke, S. G. et al. Amodiaquine, sulfadoxine/ pyrimethamine, and combination therapy for treatment of uncomplicated falciparum malaria in Kampala, Uganda: a randomised trial. Lancet 358, 368–374 (2001).

    CAS  PubMed  Google Scholar 

  17. Schellenberg, D. et al. The safety and efficacy of sulfadoxine-pyrimethamine, amodiaquine, and their combination in the treatment of uncomplicated Plasmodium falciparum malaria. Am. J. Trop. Med. Hyg. 67, 17–23 (2002).

    CAS  PubMed  Google Scholar 

  18. Dorsey, G. et al. Sulfadoxine/pyrimethamine alone or with amodiaquine or artesunate for treatment of uncomplicated malaria: a longitudinal randomised trial. Lancet 360, 2031–2038 (2002).

    CAS  PubMed  Google Scholar 

  19. White, N. J. & Pongtavornpinyo, W. The de novo selection of drug-resistant malaria parasites. Proc. R. Soc. Lond. B 270, 545–554 (2003).

    CAS  Google Scholar 

  20. Nosten, F. et al. Effects of artesunate-mefloquine combination on incidence of Plasmodium falciparum malaria and mefloquine resistance in western Thailand: a prospective study. Lancet 356, 297–302 (2000).

    CAS  PubMed  Google Scholar 

  21. White, N. J. et al. Averting a malaria disaster. Lancet 353, 1965–1967 (1999). A call to arms regarding the urgent need for new therapies for malaria in Africa.

    CAS  PubMed  Google Scholar 

  22. Adjuik, M. et al. Amodiaquine-artesunate versus amodiaquine for uncomplicated Plasmodium falciparum malaria in African children: a randomised, multicentre trial. Lancet 359, 1365–1372 (2002).

    PubMed  Google Scholar 

  23. van Vugt, M. et al. Artemether-lumefantrine for the treatment of multidrug-resistant falciparum malaria. Trans. R. Soc. Trop. Med. Hyg. 94, 545–548 (2000).

    CAS  PubMed  Google Scholar 

  24. Rosenthal, P. J., Sijwali, P. S., Singh, A. & Shenai, B. R. Cysteine proteases of malaria parasites: targets for chemotherapy. Curr. Pharm. Des. 8, 1659–1672 (2002).

    CAS  PubMed  Google Scholar 

  25. Chakrabarti, D. et al. Protein farnesyltransferase and protein prenylation in Plasmodium falciparum. J. Biol. Chem. 277, 42066–42073 (2002).

    CAS  PubMed  Google Scholar 

  26. Rotella, D. P. Osteoporosis: challenges and new opportunities for therapy. Curr. Opin. Drug Discov. Devel. 5, 477–486 (2002).

    CAS  PubMed  Google Scholar 

  27. Gelb, M. H. & Hol, W. G. Parasitology. Drugs to combat tropical protozoan parasites. Science 297, 343–344 (2002).

    CAS  PubMed  Google Scholar 

  28. Ralph, S. A., D'Ombrain, M. C. & McFadden, G. I. The apicoplast as an antimalarial drug target. Drug Resist. Update 4, 145–151 (2001).

    CAS  Google Scholar 

  29. Waller, R. F. et al. Nuclear-encoded proteins target to the plastid in Toxoplasma gondii and Plasmodium falciparum. Proc. Natl. Acad. Sci. USA 95, 12352–12357 (1998).

    CAS  PubMed  Google Scholar 

  30. Jomaa, H. et al. Inhibitors of the nonmevalonate pathway of isoprenoid biosynthesis as antimalarial drugs. Science 285, 1573–1576 (1999). This study is an excellent example (as is reference 32) of how an improved understanding of the molecular biology and biochemistry of Plasmodium parasites, coupled to pragmatic chemistry, can identify novel antimalarial compounds.

    CAS  PubMed  Google Scholar 

  31. Missinou, M. A. et al. Fosmidomycin for malaria. Lancet 360, 1941–1942 (2002).

    CAS  PubMed  Google Scholar 

  32. Surolia, N. & Surolia, A. Triclosan offers protection against blood stages of malaria by inhibiting enoyl-ACP reductase of Plasmodium falciparum. Nature Med. 7, 167–173 (2001).

    CAS  PubMed  Google Scholar 

  33. Perozzo, R. et al. Structural elucidation of the specificity of the antibacterial agent triclosan for malarial enoyl ACP reductase. J. Biol. Chem. 277, 13106–13114 (2002).

    CAS  PubMed  Google Scholar 

  34. Waller, K. L., Lee, S. & Fidock, D. A. in Genomes and the Molecular Cell Biology of Malaria Parasites (eds Waters, A. P. & Janse, C. J.) 501–540 (Horizon, New York, 2004).

    Google Scholar 

  35. Biagini, G. A., O'Neill, P. M., Nzila, A., Ward, S. A. & Bray, P. G. Antimalarial chemotherapy: young guns or back to the future? Trends Parasitol. 19, 479–487 (2003).

    CAS  PubMed  Google Scholar 

  36. Gardner, M. J. et al. Genome sequence of the human malaria parasite Plasmodium falciparum. Nature 419, 498–511 (2002).

    CAS  PubMed  Google Scholar 

  37. Kissinger, J. C. et al. The Plasmodium genome database. Nature 419, 490–492 (2002).

    CAS  PubMed  Google Scholar 

  38. Wu, Y., Kirkman, L. A. & Wellems, T. E. Transformation of Plasmodium falciparum malaria parasites by homologous integration of plasmids that confer resistance to pyrimethamine. Proc. Natl. Acad. Sci. USA 93, 1130–1134 (1996).

    CAS  PubMed  Google Scholar 

  39. Fidock, D. A. & Wellems, T. E. Transformation with human dihydrofolate reductase renders malaria parasites insensitive to WR99210 but does not affect the intrinsic activity of proguanil. Proc. Natl. Acad. Sci. USA 94, 10931–10936 (1997).

    CAS  PubMed  Google Scholar 

  40. van Dijk, M. R., Janse, C. J. & Waters, A. P. Expression of a Plasmodium gene introduced into subtelomeric regions of Plasmodium berghei chromosomes. Science 271, 662–665 (1996).

    CAS  PubMed  Google Scholar 

  41. Crabb, B. S. et al. Targeted gene disruption shows that knobs enable malaria-infected red cells to cytoadhere under physiological shear stress. Cell 89, 287–296 (1997).

    CAS  PubMed  Google Scholar 

  42. Sidhu, A. B. S., Verdier-Pinard, D. & Fidock, D. A. Chloroquine resistance in Plasmodium falciparum malaria parasites conferred by pfcrt mutations. Science 298, 210–213 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Waters, A. P., Thomas, A. W., van Dijk, M. R. & Janse, C. J. Transfection of malaria parasites. Methods 13, 134–147 (1997).

    CAS  PubMed  Google Scholar 

  44. Peters, W. & Robinson, B. L. in Handbook of Animal Models of Infection (eds. Zak., O. & Sande, M.) 757–773 (Academic, London, 1999).

    Google Scholar 

  45. Rathod, P. K., Ganesan, K., Hayward, R. E., Bozdech, Z. & DeRisi, J. L. DNA microarrays for malaria. Trends Parasitol. 18, 39–45 (2002).

    CAS  PubMed  Google Scholar 

  46. Bozdech, Z. et al. The transcriptome of the intraerythrocytic developmental cycle of Plasmodium falciparum. PLoS Biol. 1, E5 (2003).

    PubMed  PubMed Central  Google Scholar 

  47. Le Roch, K. G. et al. Discovery of gene function by expression profiling of the malaria parasite life cycle. Science 301, 1503–1508 (2003).

    CAS  PubMed  Google Scholar 

  48. Lasonder, E. et al. Analysis of the Plasmodium falciparum proteome by high-accuracy mass spectrometry. Nature 419, 537–542 (2002).

    CAS  PubMed  Google Scholar 

  49. Florens, L. et al. A proteomic view of the Plasmodium falciparum life cycle. Nature 419, 520–526 (2002).

    CAS  PubMed  Google Scholar 

  50. Greenbaum, D. C. et al. A role for the protease falcipain 1 in host cell invasion by the human malaria parasite. Science 298, 2002–2006 (2002).

    CAS  PubMed  Google Scholar 

  51. Noedl, H., Wongsrichanalai, C. & Wernsdorfer, W. H. Malaria drug-sensitivity testing: new assays, new perspectives. Trends Parasitol. 19, 175–181 (2003). Summarizes of P. falciparum in vitro drug sensitivity tests.

    CAS  PubMed  Google Scholar 

  52. Makler, M. T. & Hinrichs, D. J. Measurement of the lactate dehydrogenase activity of Plasmodium falciparum as an assessment of parasitemia. Am. J. Trop. Med. Hyg. 48, 205–210 (1993).

    CAS  PubMed  Google Scholar 

  53. van der Heyde, H. C., Elloso, M. M., vande Waa, J., Schell, K. & Weidanz, W. P. Use of hydroethidine and flow cytometry to assess the effects of leukocytes on the malarial parasite Plasmodium falciparum. Clin. Diagn. Lab. Immunol. 2, 417–425 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. ter Kuile, F., White, N. J., Holloway, P., Pasvol, G. & Krishna, S. Plasmodium falciparum: in vitro studies of the pharmacodynamic properties of drugs used for the treatment of severe malaria. Exp. Parasitol. 76, 85–95 (1993).

    CAS  PubMed  Google Scholar 

  55. Ofulla, A. O. et al. Determination of fifty percent inhibitory concentrations (IC50) of antimalarial drugs against Plasmodium falciparum parasites in a serum-free medium. Am. J. Trop. Med. Hyg. 51, 214–218 (1994).

    CAS  PubMed  Google Scholar 

  56. Gluzman, I. Y., Schlesinger, P. H. & Krogstad, D. J. Inoculum effect with chloroquine and Plasmodium falciparum. Antimicrob. Agents Chemother. 31, 32–36 (1987).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Berenbaum, M. C. A method for testing for synergy with any number of agents. J. Infect. Dis. 137, 122–130 (1978).

    CAS  PubMed  Google Scholar 

  58. Ohrt, C., Willingmyre, G. D., Lee, P., Knirsch, C. & Milhous, W. Assessment of azithromycin in combination with other antimalarial drugs against Plasmodium falciparum in vitro. Antimicrob. Agents Chemother. 46, 2518–2524 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Canfield, C. J., Pudney, M. & Gutteridge, W. E. Interactions of atovaquone with other antimalarial drugs against Plasmodium falciparum in vitro. Exp. Parasitol. 80, 373–381 (1995). A good example of methodologies used in the identification of a new successful drug combination.

    CAS  PubMed  Google Scholar 

  60. White, N. J. Delaying antimalarial drug resistance with combination chemotherapy. Parassitologia 41, 301–308 (1999).

    CAS  PubMed  Google Scholar 

  61. Ponnudurai, T., Meuwissen, J. H., Leeuwenberg, A. D., Verhave, J. P. & Lensen, A. H. The production of mature gametocytes of Plasmodium falciparum in continuous cultures of different isolates infective to mosquitoes. Trans. R. Soc. Trop. Med. Hyg. 76, 242–250 (1982).

    CAS  PubMed  Google Scholar 

  62. Templeton, T. J., Kaslow, D. C. & Fidock, D. A. Developmental arrest of the human malaria parasite Plasmodium falciparum within the mosquito midgut via CTRP gene disruption. Mol. Microbiol. 36, 1–9 (2000).

    CAS  PubMed  Google Scholar 

  63. Moreno, A., Badell, E., Van Rooijen, N. & Druilhe, P. Human malaria in immunocompromised mice: new in vivo model for chemotherapy studies. Antimicrob. Agents Chemother. 45, 1847–1853 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Childs, G. E. et al. Comparison of in vitro and in vivo antimalarial activities of 9-phenanthrenecarbinols. Ann. Trop. Med. Parasitol. 78, 13–20 (1984).

    CAS  PubMed  Google Scholar 

  65. Peters, W. et al. The chemotherapy of rodent malaria. XXVII. Studies on mefloquine (WR 142,490). Ann. Trop. Med. Parasitol. 71, 407–418 (1977).

    CAS  PubMed  Google Scholar 

  66. Peters, W., Robinson, B. L. & Ellis, D. S. The chemotherapy of rodent malaria. XLII. Halofantrine and halofantrine resistance. Ann. Trop. Med. Parasitol. 81, 639–646 (1987).

    CAS  PubMed  Google Scholar 

  67. Vennerstrom, J. L. et al. Synthesis and antimalarial activity of sixteen dispiro-1,2,4, 5-tetraoxanes: alkyl-substituted 7,8,15,16-tetraoxadispiro[5.2.5.2]hexadecanes. J. Med. Chem. 43, 2753–2758 (2000).

    CAS  PubMed  Google Scholar 

  68. Posner, G. H. et al. Orally active, antimalarial, anticancer, artemisinin-derived trioxane dimers with high stability and efficacy. J. Med. Chem. 46, 1060–1065 (2003).

    CAS  PubMed  Google Scholar 

  69. Peters, W. & Robinson, B. L. The chemotherapy of rodent malaria. LVI. Studies on the development of resistance to natural and synthetic endoperoxides. Ann. Trop. Med. Parasitol. 93, 325–329 (1999).

    CAS  PubMed  Google Scholar 

  70. Sanni, L. A., Fonseca, L. F. & Langhorne, J. Mouse models for erythrocytic-stage malaria. Methods Mol. Med. 72, 57–76 (2002).

    CAS  PubMed  Google Scholar 

  71. Wengelnik, K. et al. A class of potent antimalarials and their specific accumulation in infected erythrocytes. Science 295, 1311–1314 (2002).

    CAS  PubMed  Google Scholar 

  72. Singh, A. et al. Critical role of amino acid 23 in mediating activity and specificity of vinckepain-2, a papain-family cysteine protease of rodent malaria parasites. Biochem. J. 368, 273–281 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Gysin, J. in Malaria: Parasite Biology, Pathogenesis and Protection. (ed. Sherman, I.) 419–441 (ASM, Washington DC, 1998).

    Google Scholar 

  74. Alanine, A., Nettekoven, M., Roberts, E. & Thomas, A. W. Lead generation — enhancing the success of drug discovery by investing in the hit to lead process. Comb. Chem. High Throughput Screen. 6, 51–66 (2003).

    CAS  PubMed  Google Scholar 

  75. Bleicher, K. H., Bohm, H. J., Muller, K. & Alanine, A. I. Hit and lead generation: beyond high-throughput screening. Nature Rev. Drug Discov. 2, 369–378 (2003).

    CAS  Google Scholar 

  76. Di, L. & Kerns, E. H. Profiling drug-like properties in discovery research. Curr. Opin. Chem. Biol. 7, 402–408 (2003).

    CAS  PubMed  Google Scholar 

  77. Kuo, M. R. et al. Targeting tuberculosis and malaria through inhibition of enoyl reductase: compound activity and structural data. J. Biol. Chem. 278, 20851–20859 (2003).

    CAS  PubMed  Google Scholar 

  78. Yuvaniyama, J. et al. Insights into antifolate resistance from malarial DHFR-TS structures. Nature Struct. Biol. 10, 357–365 (2003).

    CAS  PubMed  Google Scholar 

  79. Lipinski, C. A., Lombardo, F., Dominy, B. W. & Feeney, P. J. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv. Drug Deliv. Rev. 46, 3–26 (2001).

    CAS  PubMed  Google Scholar 

  80. Venkatesh, S. & Lipper, R. A. Role of the development scientist in compound lead selection and optimization. J. Pharm. Sci. 89, 145–154 (2000).

    CAS  PubMed  Google Scholar 

  81. Molzon, J. The common technical document: the changing face of the New Drug Application. Nature Rev. Drug Discov. 2, 71–74 (2003).

    CAS  Google Scholar 

  82. Nzila, A. M. et al. Molecular evidence of greater selective pressure for drug resistance exerted by the long-acting antifolate pyrimethamine/sulfadoxine compared with the shorter-acting chlorproguanil/dapsone on Kenyan Plasmodium falciparum. J. Infect. Dis. 181, 2023–2028 (2000).

    CAS  PubMed  Google Scholar 

  83. Mutabingwa, T. et al. Chlorproguanil-dapsone for treatment of drug-resistant falciparum malaria in Tanzania. Lancet 358, 1218–1223 (2001).

    CAS  PubMed  Google Scholar 

  84. Jiang, L., Lee, P. C., White, J. & Rathod, P. K. Potent and selective activity of a combination of thymidine and 1843U89, a folate-based thymidylate synthase inhibitor, against Plasmodium falciparum. Antimicrob. Agents Chemother. 44, 1047–1050 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Razakantoanina, V., Nguyen Kim, P. P. & Jaureguiberry, G. Antimalarial activity of new gossypol derivatives. Parasitol. Res. 86, 665–668 (2000).

    CAS  PubMed  Google Scholar 

  86. Bracchi-Ricard, V. et al. Characterization of an eukaryotic peptide deformylase from Plasmodium falciparum. Arch. Biochem. Biophys. 396, 162–170 (2001).

    CAS  PubMed  Google Scholar 

  87. Banumathy, G., Singh, V., Pavithra, S. R. & Tatu, U. Heat shock protein 90 function is essential for Plasmodium falciparum growth in human erythrocytes. J. Biol. Chem. 278, 18336–18345 (2003).

    CAS  PubMed  Google Scholar 

  88. Davioud-Charvet, E. et al. A prodrug form of a Plasmodium falciparum glutathione reductase inhibitor conjugated with a 4-anilinoquinoline. J. Med. Chem. 44, 4268–4276 (2001).

    CAS  PubMed  Google Scholar 

  89. Woodard, C. L. et al. Oxindole-based compounds are selective inhibitors of Plasmodium falciparum cyclin dependent protein kinases. J. Med. Chem. 46, 3877–3882 (2003).

    CAS  PubMed  Google Scholar 

  90. Eckstein-Ludwig, U. et al. Artemisinins target the SERCA of Plasmodium falciparum. Nature 424, 957–961 (2003).

    CAS  PubMed  Google Scholar 

  91. Gero, A. M. et al. New malaria chemotherapy developed by utilization of a unique parasite transport system. Curr. Pharm. Des. 9, 867–877 (2003).

    CAS  PubMed  Google Scholar 

  92. Joet, T., Eckstein-Ludwig, U., Morin, C. & Krishna, S. Validation of the hexose transporter of Plasmodium falciparum as a novel drug target. Proc. Natl Acad. Sci. USA 100, 7476–7479 (2003).

    CAS  PubMed  Google Scholar 

  93. De, D., Krogstad, F. M., Byers, L. D. & Krogstad, D. J. Structure–activity relationships for antiplasmodial activity among 7-substituted 4-aminoquinolines. J. Med. Chem. 41, 4918–4926 (1998).

    CAS  PubMed  Google Scholar 

  94. Stocks, P. A. et al. Novel short chain chloroquine analogues retain activity against chloroquine resistant K1 Plasmodium falciparum. J. Med. Chem. 45, 4975–4983 (2002).

    CAS  PubMed  Google Scholar 

  95. Francis, S. E. et al. Molecular characterization and inhibition of a Plasmodium falciparum aspartic hemoglobinase. EMBO J. 13, 306–317 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Haque, T. S. et al. Potent, low-molecular-weight non-peptide inhibitors of malarial aspartyl protease plasmepsin II. J. Med. Chem. 42, 1428–1440 (1999).

    CAS  PubMed  Google Scholar 

  97. Rosenthal, P. J. in Antimalarial Chemotherapy: Mechanisms of Action, Resistance, and New Directions in Drug Discovery (ed. Rosenthal, P. J.) 325–345 (Humana, Totawa, New Jersey, 2001).

    Google Scholar 

  98. Shenai, B. R. et al. Structure–activity relationships for inhibition of cysteine protease activity and development of Plasmodium falciparum by peptidyl vinyl sulfones. Antimicrob. Agents Chemother. 47, 154–160 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Vennerstrom, J. L. et al. Synthesis and antimalarial activity of sixteen dispiro-1,2,4, 5- tetraoxanes: alkyl-substituted 7,8,15,16-tetraoxadispiro[5.2.5.2]hexadecanes. J. Med. Chem. 43, 2753–2758 (2000).

    CAS  PubMed  Google Scholar 

  100. Borstnik, K., Paik, I. H. & Posner, G. H. Malaria: new chemotherapeutic peroxide drugs. Mini Rev. Med. Chem. 2, 573–583 (2002).

    CAS  PubMed  Google Scholar 

  101. Vaidya, A. B. in Antimalarial Chemotherapy: Mechanisms of Action, Resistance, and New Directions in Drug Discovery (ed. Rosenthal, P. J.) 203–218 (Humana, Totowa, New Jersey, 2001).

    Google Scholar 

  102. Clough, B. & Wilson, R. J. M. in Antimalarial Chemotherapy: Mechanisms of Action, Resistance, and New Directions in Drug Discovery (ed. Rosenthal, P. J.) 265–286 (Humana, Totawa, New Jersey, 2001).

    Google Scholar 

  103. McLeod, R. et al. Triclosan inhibits the growth of Plasmodium falciparum and Toxoplasma gondii by inhibition of apicomplexan Fab I. Int. J. Parasitol. 31, 109–113 (2001).

    CAS  PubMed  Google Scholar 

  104. Ohkanda, J. et al. Peptidomimetic inhibitors of protein farnesyltransferase show potent antimalarial activity. Bioorg. Med. Chem. Lett. 11, 761–764 (2001).

    CAS  PubMed  Google Scholar 

  105. Blackman, M. J. Proteases involved in erythrocyte invasion by the malaria parasite: function and potential as chemotherapeutic targets. Curr. Drug Targets 1, 59–83 (2000).

    CAS  PubMed  Google Scholar 

  106. Gupta, S., Thapar, M. M., Mariga, S. T., Wernsdorfer, W. H. & Bjorkman, A. Plasmodium falciparum: in vitro interactions of artemisinin with amodiaquine, pyronaridine, and chloroquine. Exp. Parasitol. 100, 28–35 (2002).

    CAS  PubMed  Google Scholar 

  107. Chawira, A. N., Warhurst, D. C., Robinson, B. L. & Peters, W. The effect of combinations of qinghaosu (artemisinin) with standard antimalarial drugs in the suppressive treatment of malaria in mice. Trans. R. Soc. Trop. Med. Hyg. 81, 554–558 (1987).

    CAS  PubMed  Google Scholar 

  108. Peters, W. & Robinson, B. L. The chemotherapy of rodent malaria. LV. Interactions between pyronaridine and artemisinin. Ann. Trop. Med. Parasitol. 91, 141–145 (1997).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors wish to thank the MMV staff for organizing the antimalarial drug screening meeting that prompted the writing of this article. The contribution of all attendees at that meeting (F. Buckner, D. Gargallo, W. Milhous, H. Matile, M. Bendig, Kevin Bauer, S. Kamchonwongpaisan, M.-A. Mouries, L. Riopel and C. Craft) who were not authors on this review is appreciated. J. Sacchettini and M. Kuo are gratefully acknowledged for contributing Figure 5.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David A. Fidock.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

FURTHER INFORMATION

Antimalarial drug discovery: efficacy models for compound screening

Malaria Foundation International

Malaria Research and Reference Reagent Resource Center

Medicines for Malaria Venture

Plasmo DB

World Health Organization malaria page

Glossary

APICOMPLEXA

Lower eukaryotic, obligate intracellular parasites characterized by the presence of apical organelles involved in host cell invasion. Includes parasitic protozoa responsible for malaria (Plasmodium), toxoplasmosis (Toxoplasma), babesiosis (Babesia) and coccidiosis (Eimeria).

GAMETOCYTES

The sexual haploid stages produced in the blood that are infectious for the mosquito vector. Once inside the mosquito midgut, gametocytes transform into male or female gametes that can undergo fusion, genetic recombination and meiosis.

SPOROZOITES

The haploid parasite forms that reside in the mosquito salivary glands and that are infectious for the human host, where they rapidly invade hepatocytes and transform into liver stage parasites.

EFFICACY

A quantitative index of drug action, in this case related to suppression of malarial infection either in vitro or in vivo.

ANTIFOLATES

Drugs that target the folate biosynthesis pathway. Antimalarial antifolate drugs target dihydrofolate reductase or dihydropteroate synthase.

INTERMITTENT PREVENTIVE TREATMENT

Entails the administration of full therapeutic doses of a drug at defined intervals. Envisaged to confer a degree of sustained prophylactic protection in the most vulnerable populations, that is, young children and pregnant women.

CHEMOPROPHYLAXIS

Drug treatment designed to prevent future occurrences of disease.

POTENCY

An expression of the activity of a compound, in terms of the concentration required to produce a desired effect (for example, 50% inhibition of parasite growth).

ENDEMICITY

An expression of the seasonality and degree of transmission in a malaria-afflicted region.

PARASITAEMIA

A quantitative measure of the percentage of erythrocytes that are parasitized.

PHARMACOKINETICS

The study of absorption, distribution, metabolism and elimination of drugs in a higher organism.

RECRUDESCENCE

The reappearance of parasites or symptoms, in the case of parasitological or clinical recrudescence, in the days following drug treatment. This is a result of incomplete clearance of the infection.

CYSTEINE PROTEASES

A class of parasite enzymes involved in crucial processes during parasite development.

PROTEIN FARNESYL TRANSFERASES

These mediate attachment of the prenyl groups farnesyl and geranylgeranyl to specific eukaryotic cell proteins.

HAEMOZOIN

An ordered crystalline assembly of β-haematin moieties produced following haemoglobin digestion in the parasite's food vacuole.

FOOD VACUOLE

An acidic organelle of erythrocytic parasites in which haemoglobin degradation takes place.

ORTHOLOGUE

A gene (or protein) with similar function to a gene (or protein) in a related species.

HAEMATOCRIT

The proportion of the volume of a sample of blood that is represented by red blood cells.

IC50

The drug concentration that produces a 50% inhibition of P. falciparum growth in vitro. This is frequently determined by calculating the concentration that produces a 50% reduction in uptake of 3H-hypoxanthine.

GIEMSA

A nucleic acid stain used to visually distinguish Plasmodium parasites from the surrounding cells.

SYNCHRONIZED CULTURES

Cultures of parasites at the same or similar stage of intracellular development.

INOCULUM

A substance or organism that is introduced into surroundings suited to cell growth. In this case this refers to introduction of a defined number of parasitized erythrocytes into in vitro culture or a susceptible rodent.

ISOBOLOGRAM

A graphical representation of growth inhibition data for two compounds, plotted as fractional IC50 values on an X–Y axis, permitting determination of whether the two compounds are synergistic, additive or antagonistic.

ANTAGONISM

An interaction between agents in which one partially or completely inhibits the effect of the other.

SCHIZOGONY

The intracellular process whereby multinucleated Plasmodium parasites differentiate to form multiple infectious forms (merozoites), which then egress from the infected cell in order to invade uninfected erythrocytes.

ED50

The drug concentration that produces a 50% reduction in parasitaemia in vivo, typically in a rodent malaria model.

BIOAVAILABILITY

The degree to which a drug is available to the body. This is influenced by how much the substance is absorbed and circulated.

SEQUESTRATION

The ability of P. falciparum to sequester in capillary beds as a result of binding of the parasitized erythrocyte to endothelial cell surface receptors. This binding is mediated by parasite-encoded variant antigens presented at the erythrocyte surface.

LEAD OPTIMIZATION

The process of chemically optimizing a compound to improve antimicrobial activity and pharmacological properties.

LEAD IDENTIFICATION

The process of identifying an acceptable lead compound with potent in vitro and in vivo activity.

PHARMACODYNAMICS

The study of the mechanisms of actions of a drug, and the relationship between how much drug is in the body and its effects.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fidock, D., Rosenthal, P., Croft, S. et al. Antimalarial drug discovery: efficacy models for compound screening. Nat Rev Drug Discov 3, 509–520 (2004). https://doi.org/10.1038/nrd1416

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrd1416

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing