Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

GLIA: A novel drug discovery target for clinical pain

Key Points

  • Presently available drugs are ineffective in controlling clinical pain in most patients and abolish the pain in only few. It is suggested that this failure arises from the fact that these drugs were developed to target neurons, rather than spinal cord glia (astrocytes and microglia).

  • Until recently, glia were thought of simply as housekeepers for neurons, regulating the extracellular ionic environment and removing debris. Recently, it has become recognized that these glia dynamically modulate the function of neurons under both physiological and pathological conditions.

  • Glial activation has been demonstrated to be both necessary and sufficient for enhanced nociception (pain transmission) in every animal model tested to date.

  • Activated glia enhance pain via the release of a variety of neuroactive substances. Central to these effects is glial release of pro-inflammatory cytokines (tumor-necrosis factor, interleukin-1 (IL-1) and IL-6). These, in turn, activate a cascade of events leading to the release of a host of neuroexcitatory substances (such as nitric oxide, prostaglandins, growth factors, excitatory amino acids and so on).

  • In animal models, the following block/reverse changes in nociception in every animal model of clinical pain studied to date: disruption of glial activation (fluorocitrate and minocycline); pro-inflammatory cytokine antagonists (Kineret, Remicade, Enbrel); pro-inflammatory cytokine synthesis inhibitors (propentofylline, thalidomide); and disrupting pro-inflammatory cytokine signalling and synthesis (leflunomide, methotrexate, p38 MAP kinase, IL-10).

  • These studies strongly indicate that drug discovery should seriously consider targeting spinal cord glial activation as a broad-spectrum solution to presently unresolved clinical pain syndromes.

Abstract

In many clinical pain syndromes, painful sensations are greatly amplified so that normally innocuous sensations, such as light touch or warmth, are perceived as pain. Presently available drugs are ineffective in controlling such pain in most patients and abolish the pain in only few. Why do they fail? These drugs were developed to target neurons that transmit nociceptive ('pain') information. However, glia have recently been recognized as powerful modulators of nociception, and could hold the key to the control of clinical pain and present a new target for drug discovery. This review examines the evidence for glial regulation of nociception and pharmacological approaches that might successfully control glially driven clinical pain syndromes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic of pain and pain modulation.
Figure 2: A historical look at glial involvement in pain.
Figure 3: Microglia, as well as astrocytes, are activated by manipulations that create enhanced nociception in animal models.
Figure 4: Neuron-to-glia communication.
Figure 5: Pro-inflammatory cytokines are constitutively expressed in an inactive precursor form, allowing rapid release.
Figure 6: One of the newest approaches to the treatment of pathological pain by the control of glial activation.

Similar content being viewed by others

References

  1. McQuay, H., Carroll, D., Jadad, A. R., Wiffen, P. & Moore, A. Anticonvulsant drugs for management of pain: a systematic review. Brit. Med. J. 311, 1047–1052 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. McQuay, H. J. et al. A systematic review of antidepressants in neuropathic pain. Pain 68, 217–227 (1996).

    CAS  PubMed  Google Scholar 

  3. Watkins, L. R. & Maier, S. F. Beyond neurons: Evidence that immune and glial cells contribute to pathological pain states. Physiol. Rev. 82, 981–1011 (2002). This article reviews the immunology of peripheral nerves, dorsal root ganglia and spinal nerves; the evidence from animal models of immune involvement in pathological pain; and the evidence that diverse human clinical pain syndromes involve an immune component.

    CAS  PubMed  Google Scholar 

  4. Woolf, C. J. & Salter, M. W. Neuronal plasticity: increasing the gain in pain. Science 288, 1765–1769 (2000). An excellent review of neuronal changes implicated in creation and maintenance of exaggerated pain states.

    CAS  PubMed  Google Scholar 

  5. Pekny, M. in Progress in Brain Research: Glial Cell Funtion (eds Castellano-Lopez, B. & Nieto-Sampedro, M.) 23–30 (Elsevier, Amsterdam, 2001).

    Google Scholar 

  6. Benveniste, E. N. in Neuroglia (eds Kettenmann, H. & Ransom, B. R.) 700–716 (Oxford, New York, 1995).

    Google Scholar 

  7. Perry, V. H. Macrophages and the Nervous System (Landes, Austin, 1994).

    Google Scholar 

  8. Gehrmann, J. & Kreutzberg, G. W. in Neuroglia (eds Kettenmann, H. & Ransom, B. R.) 883–904 (Oxford, New York, 1995).

    Google Scholar 

  9. Araque, A., Parpura, V., Sanzgiri, R. P. & Haydon, P. G. Tripartite synapses: glia, the unacknowledged partner. Trends Neurosci. 22, 208–215 (1999). Synapses can no longer be considered as simply a presynaptic neuron and a postsynaptic neuron. Rather, three entities are involved, the third being astrocytes. A review of the evidence that astrocytes 'listen' to neuronal communication and 'talk back' to the neurons is provided.

    CAS  PubMed  Google Scholar 

  10. Garrison, C. J., Dougherty, P. M., Kajander, K. C. & Carlton, S. M. Staining of glial fibrillary acidic protein (GFAP) in lumbar spinal cord increases following a sciatic nerve constriction injury. Brain Res. 565, 1–7 (1991). This research article is historically important as it provides the first evidence that nerve damage, which creates neuropathic pain, also activates spinal cord glial

    CAS  PubMed  Google Scholar 

  11. Garrison, C. J., Dougherty, P. M. & Carlton, S. M. GFAP expression in lumbar spinal cord of naive and neuropathic rats treated with MK-801. Exp. Neurol. 129, 237–243 (1994). Historically important, this article provides the first evidence that drugs that inhibit neuropathic pain also inhibit glial activation. It provided the first evidence that, at minimum, neuropathic pain and glial activation are strongly correlated.

    CAS  PubMed  Google Scholar 

  12. Watkins, L. R., Milligan, E. D. & Maier, S. F. Glial activation: a driving force for pathological pain. Trends Neurosci. 24, 450–455 (2001). Evidence is reviewed that spinal cord glia are key mediators in the creation and maintenance of exaggerated pain states.

    CAS  PubMed  Google Scholar 

  13. Berg-Johnsen, J., Paulsen, R. E., Fonnum, F. & Langmoen, I. A. Changes in evoked potentials and amino acid content during fluorocitrate action studied in rat hippocampal cortex. Exp. Brain Res. 96, 241–246 (1993).

    CAS  PubMed  Google Scholar 

  14. Hassel, B., Paulsen, R. E., Johnson, A. & Fonnum, F. Selective inhibition of glial cell metabolism by fluorocitrate. Brain Res. 249, 120–124 (1992).

    Google Scholar 

  15. Tikka, T. M. & Koistinaho, J. E. Minocycline provides neuroprotection against N-methyl-D-aspartate neurotoxicity by inhibiting microglia. J. Immunol. 166, 7527–7533 (2001).

    CAS  PubMed  Google Scholar 

  16. Meller, S. T., Dykstra, C., Grzbycki, D., Murphy, S. & Gebhart, G. F. The possible role of glia in nociceptive processing and hyperalgesia in the spinal cord of the rat. Neuropharmacology 33, 1471–1478 (1994). Provides the first evidence that disrupting glial activation blocks exaggerated pain responses. In addition, it is the first evidence that activation of glia, in their role as immune cells, is sufficient to induce exaggerated pain responses.

    CAS  PubMed  Google Scholar 

  17. Watkins, L. R., Martin, D., Ulrich, P., Tracey, K. J. & Maier, S. F. Evidence for the involvement of spinal cord glia in subcutaneous formalin induced hyperalgesia in the rat. Pain 71, 225–235 (1997).

    CAS  PubMed  Google Scholar 

  18. Milligan, E. D. et al. Thermal hyperalgesia and mechanical allodynia produced by intrathecal administration of the human immunodeficiency virus-1 (HIV-1) envelope glycoprotein, gp120. Brain Res. 861, 105–116 (2000).

    CAS  PubMed  Google Scholar 

  19. Milligan, E. D. et al. Spinal glia and proinflammatory cytokines mediate mirror-image neuropathic pain. J. Neurosci. 23, 1026–1040 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Raghavendra, V., Tanga, F. & DeLeo, J. A. Inhibition of microglial activation attenuates the development but not existing hypersensitivity in a rat model of neuropathy. J. Pharmacol. Exp. Ther. 306, 624–630 (2003). Anatomical and pharmacological evidence supports the intriguing hypothesis that microglia are key in the initiation of exaggerated pain states, but that astrocytes (and not microglia) are crucial for the maintenance of enhanced pain.

    CAS  PubMed  Google Scholar 

  21. Ledeboer, A. et al. Selective inhibition of spinal cord microglial activation attenuates mechanical allodynia in rat models of pathological pain. Proc. Soc. Neurosci. (in the press).

  22. Cholewinski, A. J., Hanley, M. R. & Wilkin, G. P. A phosphoinositide-linked peptide response in astrocytes: evidence for regional heterogeneity. Neurochem. Res. 13, 389–394 (1988).

    CAS  PubMed  Google Scholar 

  23. Beaujouan, J. C. et al. Marked regional heterogeneity of 125I-Bolton Hunter substance P binding and substance P-induced activation of phospholipase C in astrocyte cultures from the embryonic or newborn rat. J. Neurochem. 54, 669–675 (1990).

    CAS  PubMed  Google Scholar 

  24. Sung, B., Lim, G. & Mao, J. Altered expression and uptake activity of spinal glutamate transporters after nerve injury contribute to the pathogenesis of neuropathic pain in rats. J. Neurosci. 23, 2899–2910 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Ochalski, P. A., Frankenstein, U. N., Hertzberg, E. L. & Nagy, J. I. Connexin-43 in rat spinal cord: localization in astrocytes and identification of heterotypic astro-oligodendrocytic gap junctions. Neurosci. 76, 931–945 (1997).

    CAS  Google Scholar 

  26. Li, W. E. & Nagy, I. Activation of fibres in rat sciatic nerve alters phosphorylation state of connexin-43 at astrocytic gap junctions in spinal cord: evidence for junction regulation by neuronal–glial interactions. Neurosci. 97, 113–123 (2000).

    CAS  Google Scholar 

  27. Palma, C. et al. Functional characterization of substance P receptors on cultured human spinal cord astrocytes: synergism of substance P with cytokines in inducing interleukin-6 and prostaglandin E2 production. Glia 21, 183–193 (1997).

    CAS  PubMed  Google Scholar 

  28. Tikka, T., Fiebich, B. L., Goldsteins, G., Keinanen, R. & Koistinaho, J. Minocycline, a tetracycline derivative, is neuroprotective against excitotoxicity by inhibiting activation and proliferation of microglia. J. Neurosci. 21, 2580–2588 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Bartlett, P. F. Pluripotential hemopoietic stem cells in adult mouse brain. Proc. Natl Acad. Sci. USA 79, 2722–2725 (1982).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Carson, M. J., Reilly, C. R., Sutcliffe, J. G. & Lo, D. Mature microglia resemble immature antigen-presenting cells. Glia 22, 72–85 (1998).

    CAS  PubMed  Google Scholar 

  31. Fedoroff, S. in Neuroglia (eds Kettenmann, H. & Ransom, B. R.) 162–184 (Oxford, New York, 1995).

    Google Scholar 

  32. Lee, J. C., Mayer-Proschel, M. & Rao, M. S. Gliogenesis in the central nervous system. Glia 30, 105–121 (2000).

    CAS  PubMed  Google Scholar 

  33. Watkins, L. R., Hansen, M. K., Nguyen, K. T., Lee, J. E. & Maier, S. F. Dynamic regulation of the proinflammatory cytokine, interleukin-1β: molecular biology for non-molecular biologists. Life Sci. 65, 449–481 (1999).

    CAS  PubMed  Google Scholar 

  34. Milligan, E. D. et al. Intrathecal HIV-1 envelope glycoprotein gp120 induces enhanced pain states mediated by spinal cord proinflammatory cytokines. J. Neurosci. 21, 2808–2819 (2001). The first demonstration that activation of spinal cord glia, in their role as immune cells; (i) is sufficient to induce thermal hyperalgesia and mechanical allodynia, (ii) induces the production and release of pro-inflammatory cytokines, and (iii) this pro-inflammatory cytokine release is causal to the resultant pain enhancement.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Harrison, J. K. et al. Role for neuronally derived fractalkine in mediating interactions between neurons and CX3CR1-expressing microglia. Proc. Natl Acad. Sci. USA 95, 10896–10901 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Watkins, L. R., Milligan, E. D. & Maier, S. F. in Advances in Pain Research and Therapy (eds Dostrovsky, J. O., Carr, D. B. & Koltzenberg, M.) 369–385 (IASP, Seattle, 2003).

    Google Scholar 

  37. Verge, G. et al. Mapping fractalkine and its receptor (CX3CR1) in a rat model of sciatic inflammatory neuropathy (SIN). Proc. Soc. Neurosci. 28, 455.3 (2002).

    Google Scholar 

  38. Chapman, G. A. et al. Fractalkine cleavage from neuronal membranes represents an acute event in the inflammatory response to excitotoxic brain damage. J. Neurosci. 20, RC87 (1–5) (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Dinarello, C. A. in Cytokines and Pain (eds Watkins, L. R. & Maier, S. F.) 1–19 (Birkhauser, Basel, 1999). An excellent review of pro-inflammatory cytokine molecular biology and cellular signalling, with a focus on their role in pain facilitation.

    Google Scholar 

  40. Maier, S. F. & Watkins, L. R. Cytokines for psychologists: implications of bi-directional immune-to-brain communication for understanding behavior, mood, and cognition. Psychol. Rev. 105, 83–107 (1998). This review article examines the role of pro-inflammatory cytokines in a wide array of peripheral, brain and spinal cord processes. It is aimed at non-specialists to introduce them to this research area

    CAS  PubMed  Google Scholar 

  41. DeLeo, J. A., Colburn, R. W., Nochols, M. & Malhotra, A. Interleukin-6-mediated hyperalgesia/allodynia and increased spinal IL-6 expression in a rat mononeuropathy model. J. Interferon Cytokine Res. 16, 695–700 (1996).

    CAS  PubMed  Google Scholar 

  42. Falchi, M., Ferrara, G., Gharib, C. & Dib, B. Hyperalgesic effect of intrathecally administered interleukin-1 in rats. Drugs Exp. Clin. Res. 27, 97–101 (2001).

    CAS  PubMed  Google Scholar 

  43. Reeve, A. J., Patel, S., Fox, A., Walker, K. & Urban, L. Intrathecally administered endotoxin or cytokines produce allodynia, hyperalgesia and changes in spinal cord neuronal responses to nociceptive stimuli in the rat. Eur. J. Pain 4, 247–257 (2000).

    CAS  PubMed  Google Scholar 

  44. Tadano, T. et al. Induction of nociceptive responses by intrathecal injection of interleukin-1 in mice. Life Sci. 65, 255–261 (1999).

    CAS  PubMed  Google Scholar 

  45. Oka, T. & Hori, T. in Cytokines and Pain (eds Watkins, L. R. & Maier, S. F.) 183–204 (Birkhauser, Basel, 1999).

    Google Scholar 

  46. Sweitzer, S. M., Martin, D. & DeLeo, J. A. Intrathecal interleukin-1 receptor antagonist in combination with soluble tumor necrosis factor receptor exhibits an anti-allodynic action in a rat model of neuropathic pain. Neurosci. 103, 529–539 (2001).

    CAS  Google Scholar 

  47. Clark, A. R., Dean, J. L. E. & Saklatvala, J. Post-transcriptional regulation of gene expression by mitogen-activated protein kinase p38. FEBS Lett. 546, 37–44 (2003).

    CAS  PubMed  Google Scholar 

  48. Svensson, C. I. et al. Activation of p38 MAP kinase in spinal microglia is a critical link in inflammation induced spinal pain processing. J. Neurochem. 86, 1534–1544 (2003).

    CAS  PubMed  Google Scholar 

  49. Svensson, C. I., Hua, X. Y., Protter, A. A., Powell, H. C. & Yaksh, T. L. Spinal p38 MAP kinase is necessary for NMDA induced spinal PGE2 release and thermal hyperalgesia. Neuroreport 14, 1153–1157 (2003).

    CAS  PubMed  Google Scholar 

  50. Schafers, M., Svensson, C. I., Sommer, C. & Sorkin, L. S. Tumor necrosis factor induces mechanical allodynia after spinal nerve ligation by activation of p38 MAPK in primary sensory neurons. J. Neurosci. 23, 2517–2521 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Jones, T. L. et al. Involvement of p38α MAPK in capsaicin-induced hyperalgesia. Proc. Soc. Neurosci. 28, 56.5 (2002).

    Google Scholar 

  52. Milligan, E. D. et al. Systemic administration of CNI-1493, a p38 MAP kinase inhibitor, blocks HIV-1 gp120-induced enhanced pain states in rats. J. Pain 2, 326–333 (2001).

    CAS  PubMed  Google Scholar 

  53. Sweitzer, S. M., Schubert, P. & DeLeo, J. A. Propentofylline, a glial modulating agent, exhibits antiallodynic properties in a rat model of neuropathic pain. J. Pharmacol. Exp. Ther. 297, 1210–1217 (2001).

    CAS  PubMed  Google Scholar 

  54. Winkelstein, B. A., Rutkowski, M. D., Sweitzer, S. M., Pahl, J. L. & DeLeo, J. A. Nerve injury proximal or distal to the DRG induces similar spinal glial activation and selective cytokine expression but differential behavioral responses to pharmacologic treatment. J. Comp. Neurol. 2, 127–139 (2001).

    Google Scholar 

  55. Hashizume, H., Rutkowski, M. D., Weinstein, J. N. & DeLeo, J. A. Central administration of methotrexate reduces mechanical allodynia in an animal model of radiculopathy/sciatica. Pain 87, 159–169 (2000).

    CAS  PubMed  Google Scholar 

  56. Sommer, C., Marziniak, M. & Myers, R. R. The effect of thalidomide treatment on vascular pathology and hyperalgesia caused by chronic constriction injury of rat nerve. Pain 74, 83–91 (1998).

    CAS  PubMed  Google Scholar 

  57. George, A., Marziniak, M., Schafers, M., Toyka, K. V. & Sommer, C. Thalidomide treatment in chronic constrictive neuropathy decreases endoneurial tumor necrosis factor-α, increases interleukin-10 and has long-term effects on spinal cord dorsal horn met-enkephalin. Pain 88, 267–275 (2000).

    CAS  PubMed  Google Scholar 

  58. Eriksson, T., Bjorkman, S. & Hoglund, P. Clinical pharmacology of thalidomide. Eur. J. Clin. Pharmacol. 5, 365–376 (2001).

    Google Scholar 

  59. Clemmensen, O. J., Olsen, P. Z. & Andersen, K. E. Thalidomide neurotoxicity. Arch. Dermatol. 120, 338–341 (1984).

    CAS  PubMed  Google Scholar 

  60. Strle, K. et al. Interleukin-10 in the brain. Crit. Rev. Immunol. 21, 427–449 (2001).

    CAS  PubMed  Google Scholar 

  61. Moore, K. W., deWaal Malefyt, R., Coffman, R. L. & O'Garra, A. Interleukin-10 and the interleukin-10 receptor. Annu. Rev. Immunol. 19, 683–765 (2001).

    CAS  PubMed  Google Scholar 

  62. Ledeboer, A. et al. Regional and temporal expression patterns of interleukin-10, interleukin-10 receptor and adhesion molecules in the rat spinal cord during chronic relapsing EAE. J. Neuroimmunol. 136, 94–103 (2003).

    CAS  PubMed  Google Scholar 

  63. Yu, C. -G., Fairbanks, C. A., Wilcox, G. L. & Yezierski, R. P. Effects of agmatine, interleukin-10 and cyclosporin on spontaneous pain behavior following excitotoxic spinal cord injury in rats. J. Pain 4, 129–140 (2003).

    CAS  PubMed  Google Scholar 

  64. Laughlin, T. M., Bethea, J. R., Yezierski, R. P. & Wilcox, G. L. Cytokine involvement in dynorphin-induced allodynia. Pain 84, 159–167 (2000).

    CAS  PubMed  Google Scholar 

  65. Plunkett, J. A., Yu, C. -G., Easton, J. M., Bethea, J. R. & Yezierski, R. P. Effects of interelukin-10 (IL-10) on pain behavior and gene expression following excitotoxic spinal cord injury in the rat. Exper. Neurol. 168, 144–154 (2001).

    CAS  Google Scholar 

  66. Hornfeldt, C. S. & Larson, A. A. Seizures induced by fluoroacetic acid and fluorocitric acid may involve chelation of divalent cations in the spinal cord. Eur. J. Pharmacol. 179, 307–313 (1990).

    CAS  PubMed  Google Scholar 

  67. Yrjanheikki, J., Keinanen, R., Pellikka, M., Hokfelt, T. & Korstinaho, J. Tetracyclines inhibit microglial activation and are neuroprotective in global brain ischemia. Neurobiology 95, 15769–15774 (1998).

    CAS  Google Scholar 

  68. Lin, S. et al. Minocycline blocks nitric oxide-induced neurotoxicity by inhibition of p38 MAP kinase in rat cerebellar granule neurons. Neurosci. Lett. 315, 61–64 (2001).

    CAS  PubMed  Google Scholar 

  69. Kary, S. & Burmester, G. R. Anakinra: the first interleukin-1 inhibitor in the treatment of rheumatoid arthritis. Int. J. Clin. Pract. 57 (2003).

  70. Calabrese, L. H. Molecular differences in anticytokine therapies. Clin. Exp. Rheumatol. 21, 241–248 (2003).

    CAS  PubMed  Google Scholar 

  71. Mielke, R. et al. Propentofylline in the treatment of vascular dementia and Alzheimer-type dementia: overview of phase I and phase II clinical trials. Alzheimer Dis. Assoc. Disord. 12, S29–35 (1998).

    CAS  PubMed  Google Scholar 

  72. Rother, M. et al. Propentofylline in the treatment of Alzheimer's disease and vascular dementia: a review of phase III trials. Dement. Geriatr. Cogn. Disord. 9, 36–43 (1998).

    CAS  PubMed  Google Scholar 

  73. Plaschke, K. et al. Neuromodulatory effect of propentofylline on rat brain under acute and long-term hypoperfusion. Br. J. Pharmacol. 133, 107–116 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Wu, Y. P., McRae, A., Rudolphi, K. & Ling, E. A. Propentofylline attenuates microglial reaction in the rat spinal cord induced by middle cerebral artery occlusion. Neurosci. Lett. 260, 17–20 (1999).

    CAS  PubMed  Google Scholar 

  75. Numagami, Y., Marro, P. J., Mishra, O. P. & Delivoria-Papadopoulos, M. Effect of propentofylline on free radical generation during cerebral hypoxia in the newborn piglet. Neuroscience 84, 1127–1133 (1998).

    CAS  PubMed  Google Scholar 

  76. Schubert, P. et al. Cascading glia reactions: a common pathomechanism and its differentiated control by cyclic nucleotide signaling. Ann. NY Acad. Sci. 903, 24–33 (2000).

    CAS  PubMed  Google Scholar 

  77. Schubert, P., Ogata, T., Marchini, C., Ferroni, S. & Rudolphi, K. Protective mechanisms of adenosine in neurons and glial cells. Ann. NY Acad. Sci. 825, 1–10 (1997).

    CAS  PubMed  Google Scholar 

  78. Sawynok, J. & Liu, X. J. Adenosine in the spinal cord and periphery: release and regulation of pain. Prog. Neurobiol. 69, 313–340 (2003).

    CAS  PubMed  Google Scholar 

  79. Si, Q., Nakamura, Y., Ogata, T., Kataoka, K. & Schubert, P. Differential regulation of microglial activation by propentofylline via cAMP signaling. Brain Res. 812, 97–104 (1998).

    CAS  PubMed  Google Scholar 

  80. Matthews, S. J. & McCoy, C. Thalidomide: a review of approved and investigational uses. Clin. Ther. 25, 342–395 (2003).

    CAS  PubMed  Google Scholar 

  81. Mujagic, H., Chabner, B. A. & Mujagic, Z. Mechanisms of action and potential therapeutic uses of thalidomide. Croat. Med. J. 43, 274–285 (2002).

    PubMed  Google Scholar 

  82. Majumdar, S., Lamothe, B. & Aggarwal, B. B. Thalidomide suppresses NF-κB activation induced by TNF and H2O2, but not that activated by ceramide, lipopolysaccharides, or phorbol ester. J. Immunol. 168, 2644–2651 (2002).

    CAS  PubMed  Google Scholar 

  83. Gallily, R., Kipper-Galperin, M. & Brenner, T. Mycoplasma fermentans-induced inflammatory response of astrocytes: selective modulation by aminoguanidine, thalidomide, pentoxifylline and IL-10. Inflammation 23, 495–505 (1999).

    CAS  PubMed  Google Scholar 

  84. Peterson, P. K. et al. Thalidomide inhibits tumor necrosis factor-α production by lipopolysaccharide- and lipoarabinomannan-stimulated human microglial cells. J. Infect. Dis. 172, 1137–1140 (1995).

    CAS  PubMed  Google Scholar 

  85. Moreira, A. L. et al. Thalidomide exerts its inhibitory action on tumor necrosis factor-α by enhancing mRNA degradation. J. Exp. Med. 177, 1675–1680 (1993).

    CAS  PubMed  Google Scholar 

  86. Corral, L. G. et al. Differential cytokine modulation and T cell activation by two distinct classes of thalidomide analogues that are potent inhibitors of TNF-α. J. Immunol. 163, 380–386 (1999).

    CAS  PubMed  Google Scholar 

  87. Li, J., Luo, S., Hong, W., Zhou, Z. & Zou, W. Influence of thalidomide on interleukin-6 and its transmission in multiple myeloma patients. Zhonghua Zhong Liu Za Zhi 24, 254–256 (2002).

    CAS  PubMed  Google Scholar 

  88. Bauditz, J., Wedel, S. & Lochs, H. Thalidomide reduces tumour necrosis factor-α and interleukin-12 production in patients with chronic active Crohn's disease. Gut 50, 196–200 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Jin, S. H., Kim, T. I., Han, D. S., Shin, S. K. & Kim, W. H. Thalidomide suppresses the interleukin 1β-induced NF-κB signaling pathway in colon cancer cells. Ann. NY Acad. Sci. 973, 414–418 (2002).

    CAS  PubMed  Google Scholar 

  90. Thiele, A. et al. Cytokine modulation and suppression of liver injury by a novel analogue of thalidomide. Eur. J. Pharmacol. 453, 325–334 (2002).

    CAS  PubMed  Google Scholar 

  91. Rajkumar, S. V., Fonseca, R. & Witzig, T. E. Complete resolution of reflex sympathetic dystrophy with thalidomide treatment. Arch. Intern. Med. 161, 2502–2503 (2001).

    CAS  PubMed  Google Scholar 

  92. Prager, J., Fleischman, J. & Lingua, G. Open label clinical experience of thalidomide in the treatment of complex regional pain syndrome Type 1. J. Pain 4, S68 (2003).

    Google Scholar 

  93. Sanders, S. & Harisdangkul, V. Leflunomide for the treatment of rheumatoid arthritis and autoimmunity. Am. J. Med. Sci. 323, 190–193 (2002).

    PubMed  Google Scholar 

  94. Furst, D. E. Innovative treatment approaches for rheumatoid arthritis. Cyclosporin, leflunomide and nitrogen mustard. Baillieres Clin. Rheumatol. 9, 711–729 (1995).

    CAS  PubMed  Google Scholar 

  95. Kraan, M. C. et al. Modulation of inflammation and metalloproteinase expression in synovial tissue by leflunomide and methotrexate in patients with active rheumatoid arthritis. Findings in a prospective, randomized, double-blind, parallel-design clinical trial in thirty-nine patients at two centers. Arthritis Rheum. 43, 1820–1830 (2000).

    CAS  PubMed  Google Scholar 

  96. Elkayam, O. et al. Active leflunomide metabolite inhibits interleukin-1β, tumour necrosis factor-α, nitric oxide, and metalloproteinase-3 production in activated human synovial tissue cultures. Ann. Rheum. Dis. 62, 440–443 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Cutolo, M. et al. Anti-inflammatory effects of leflunomide on cultured synovial macrophages from patients with rheumatoid arthritis. Ann. Rheum. Dis. 62, 297–302 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Manna, S. K., Mukhopadhyay, A. & Aggarwal, B. B. Leflunomide suppresses TNF-induced cellular responses: effects on NF-κB, activator protein-1, c-Jun N-terminal protein kinase, and apoptosis. J. Immunol. 165, 5962–5969 (2000).

    CAS  PubMed  Google Scholar 

  99. Fox, R. I. et al. Mechanism of action for leflunomide in rheumatoid arthritis. Clin. Immunol. 93, 198–208 (1999).

    CAS  PubMed  Google Scholar 

  100. Herrmann, M. L., Schleyerbach, R. & Kirschbaum, B. J. Leflunomide: an immunomodulatory drug for the treatment of rheumatoid arthritis and other autoimmune diseases. Immunopharmacology 47, 273–289 (2000).

    CAS  PubMed  Google Scholar 

  101. Miljkovic, D. et al. Leflunomide inhibits activation of inducible nitric oxide synthase in rat astrocytes. Brain Res. 889, 331–338 (2001).

    CAS  PubMed  Google Scholar 

  102. Bao, L. et al. Adjuvant-induced arthritis: IL-1β, IL-6 and TNF-α are up-regulated in the spinal cord. Neuroreport 12, 3905–3908 (2001).

    CAS  PubMed  Google Scholar 

  103. Bruce-Gregorios, J. H., Soucy, D. M., Chen, M. G. & Norenberg, M. D. Effect of methotrexate on glial fibrillary acidic protein content of astrocytes in primary culture. J. Neuropathol. Exp. Neurol. 50, 118–125 (1991).

    CAS  PubMed  Google Scholar 

  104. el-Badawi, M. G., Fatani, J. A., Bahakim, H. & Abdalla, M. A. Light and electron microscopic observations on the cerebellum of guinea pigs following low-dose methotrexate. Exp. Mol. Pathol. 53, 211–222 (1990).

    CAS  PubMed  Google Scholar 

  105. Longo-Sorbello, G. S. & Bertino, J. R. Current understanding of metrotrexate pharmacology and efficacy in acute leukemias. Use of newer antifolates in clinical trials. Haematologica 86, 121–127 (2001).

    CAS  PubMed  Google Scholar 

  106. Chan, E. S. & Cronstein, B. N. Molecular action of methotrexate in inflammatory diseases. Arthritis Res. 4, 266–273 (2002).

    PubMed  PubMed Central  Google Scholar 

  107. Cronstein, B. N., Naime, D. & Ostad, E. The antiinflammatory effects of methotrexate are mediated by adenosine. Adv. Exp. Med. Biol. 370, 411–416 (1994).

    CAS  PubMed  Google Scholar 

  108. Montesinos, M. C. et al. Reversal of the antiinflammatory effects of methotrexate by the nonselective adenosine receptor antagonists theophylline and caffeine: evidence that the antiinflammatory effects of methotrexate are mediated via multiple adenosine receptors in rat adjuvant arthritis. Arthritis Rheum. 43, 656–663 (2000).

    CAS  PubMed  Google Scholar 

  109. Neurath, M. F. et al. Methotrexate specifically modulates cytokine production by T cells and macrophages in murine collagen-induced arthritis (CIA): a mechanism for methotrexate-mediated immunosuppression. Clin. Exp. Immunol. 115, 42–55 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Hayem, G., Domarle, O., Thuong-Guyot, M., Pocidalo, J. J. & Meyer, O. Effects of methotrexate on the oxidative metabolism of cultured rabbit articular chondrocytes. J. Rheumatol. 27, 1117–1120 (2000).

    CAS  PubMed  Google Scholar 

  111. Rudwaleit, M. et al. Response to methotrexate in early rheumatoid arthritis is associated with a decrease of T cell derived tumour necrosis factor-α, increase of interleukin-10, and predicted by the initial concentration of interleukin-4. Ann. Rheum. Dis. 59, 311–314 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Brody, M., Bohm, I. & Bauer, R. Mechanism of action of methotrexate: experimental evidence that methotrexate blocks the binding of interleukin-1β to the interleukin-1 receptor on target cells. Eur. J. Clin. Chem. Clin. Biochem. 31, 667–674 (1993).

    CAS  PubMed  Google Scholar 

  113. Segal, R., Mozes, E., Yaron, M. & Tartakovsky, B. The effects of methotrexate on the production and activity of interleukin-1. Arthritis Rheum. 32, 370–377 (1989).

    CAS  PubMed  Google Scholar 

  114. Segal, R., Yaron, M. & Tartakovsky, B. Rescue of interleukin-1 activity by leucovorin following inhibition by methotrexate in a murine in vitro system. Arthritis Rheum. 33, 1745–1748 (1990).

    CAS  PubMed  Google Scholar 

  115. Gregorios, J. B. et al. Morphologic alterations in rat brain following systemic and intraventricular methotrexate injection: light and electron microscopic studies. J. Neuropathol. Exp. Neurol. 48, 33–47 (1989).

    CAS  PubMed  Google Scholar 

  116. Hommes, D. et al. Inhibition of stress-activated MAP kinases induces clinical improvement in moderate to severe Crohn's disease. Gastroenterology 122, 7–14 (2002).

    CAS  PubMed  Google Scholar 

  117. Lali, F. V., Hunt, A. E., Turner, S. J. & Foxwell, B. M. The pyridinyl imidazole inhibitor SF203580 blocks phosphoinositide-dependent protein kinase activity, protein kinase B phosphorylation, and retinoblastoma hyperphosphorylation in interleukin-2-stimulated T cells independently of p38 mitogen-activated protein kinase. J. Biol. Chem. 275, 7395–7402 (2000).

    CAS  PubMed  Google Scholar 

  118. Dunn, S. L., Young, E. A., Hall, M. D. & McNulty, S. Activation of astrocyte intracellular signaling pathways by interleukin-1 in rat primary striatal cultures. Glia 37, 31–42 (2002).

    PubMed  Google Scholar 

  119. Jeohn, G. H. et al. Go6976 inhibits LPS-induced microglial TNF-α release by suppressing p38 MAP kinase activation. Neuroscience 114, 689–697 (2002).

    CAS  PubMed  Google Scholar 

  120. Jin, S. X., Zhaung, Z. Y., Woolf, C. J. & Ji, R. R. p38 MAPK is activated after a spinal nerve ligation first in spinal cord microglia and then in DRG neurons and contributes to the generation of neuropathic pain. J. Neurosci. 23, 4017–4022 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  121. Kim, S. Y. et al. Activation of p38 MAP kinase in the rat dorsal root ganglia and spinal cord following peripheral inflammation and nerve injury. Neuroreport 13, 2483–2486 (2002).

    CAS  PubMed  Google Scholar 

  122. Hamilton, T. A., Ohmori, Y., Tebo, J. M. & Kishore, R. Regulation of macropahge gene expression by pro- and anti-inflammatory cytokines. Pathobiology 67, 241–244 (1999).

    CAS  PubMed  Google Scholar 

  123. Kontoyiannis, D. et al. Interleukin-10 targets p38 MAPK to modulate ARE-dependent TNF mRNA translation and limit intestinal pathology. EMBO J. 20, 3760–3770 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  124. Donnelly, R. P., Dickensheets, H. & Finbloom, D. S. The interleukin-10 signal transduction pathway and regulation of gene expression in mononuclear phagocytes. J. Interferon Cytokine Res. 19, 563–573 (1999).

    CAS  PubMed  Google Scholar 

  125. Sawada, M., Suzumura, A., Hosoya, H., Marunouchi, T. & Nagatsu, T. Interleukin-10 inhibits both production of cytokines and expression of cytokine receptors in microglia. J. Neurochem. 72, 1466–1471 (1999).

    CAS  PubMed  Google Scholar 

  126. Foey, A. D. et al. Regulation of monocyte IL-10 synthesis by endogenous IL-1 and TNF-α: role of the p38 and p42/44 mitogen-activated protein kinases. J. Immunol. 160, 920–928 (1998).

    CAS  PubMed  Google Scholar 

  127. Huber, T. S. et al. Anticytokine therapies for acute inflammation and the systemic inflammatory response syndrome: IL-10 and ischemia/reperfusion injury. Shock 13, 425–434 (2000).

    CAS  PubMed  Google Scholar 

  128. Bachis, A. et al. Interleukin-10 prevents glutamate-mediated cerebellar granule cell death by blocking caspase-3-like activity. J. Neurosci. 21, 3104–3112 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  129. Milligan, E. D. et al. Inflammatory and chronic constriction injury-induced pain states are controlled by spinal delivery of viral and non-viral vectors encoding the anti-inflammatory gene, interleukin-10 (IL10). Proc. Soc. Neurosci. 29 (in the press).

  130. Kastin, A. J., Akerstrom, V. & Pan, W. Interleukin-10 as a CNS therapeutic: the obstacle of the blood–brain/blood–spinal cord barrier. Brain Res. Mol. Brain Res. 114, 168–171 (2003).

    CAS  PubMed  Google Scholar 

  131. Davidson, B. L. & Breakefield, X. O. Viral vectors for gene delivery to the nervous system. Nature Rev. Neurosci. 4, 353–364 (2003). This review article focuses on the promise of gene therapy for the resolution of a variety of clinical targets.

    CAS  Google Scholar 

  132. Xu, Z. L., Mizuguchi, H., Mayumi, T. & Hayakawa, T. Regulated gene expression from adenovirus vectors: a systematic comparison of various inducible systems. Gene 309, 145–151 (2003).

    CAS  PubMed  Google Scholar 

  133. Wiesler-Frank, J., Milligan, E. D., Maier, S. F. & Watkins, L. R. in Encyclopedic Reference of Pam (eds Schmidt, R. & Willis, W. D.) (Springer, Berlin, in the press).

  134. Volterra, A. & Bezzi, P. in The Tripartite Synapse (eds Volterra, A., Magistretti, P. J. & Hayden, P. G.) 164–182 (Oxford Univ. Press, Oxford, 2002).

    Google Scholar 

Download references

Acknowledgements

Our laboratory is supported by grants from the National Institute on Drug Abuse, National Institute of Neurological Diseases and Stroke, and National Institute of Mental Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Linda R. Watkins.

Ethics declarations

Competing interests

Linda Watkins has received a grant from Avigen for work related to IL-10 gene therapy.

Related links

Related links

DATABASES

LocusLink

CX3CR1

Fractalkine

Online Mendelian Inheritance in Man

Alzheimer's disease

Crohn's disease

rheumatoid arthritis

Glossary

PAIN FACILITATION

Perceiving pain out of proportion to the initiating stimulus. Includes hyperalgesia and allodynia, below.

HYPERALGESIA

Perceiving stimuli as more painful than they would normally be.

ALLODYNIA

Perceiving normally non-painful stimuli as painful.

PHENOTYPE SHIFT

As used here, means that a neuron changes what neurotransmitter it produces and releases, creating a functional change in the pain transmission system.

GLIAL FIBRILLARY ACIDIC PROTEIN

(GFAP). An astrocyte-specific protein. Increases in GFAP are frequently used as a marker of astrocyte activation.

p38 MAP KINASE

An intracellular signalling cascade, activated in response to pro-inflammatory cytokine receptor binding. Activation of this cascade leads to production of pro-inflammatory cytokines.

IMMUNOCOMPETENT

Functioning similar to immune cells; that is, expressing receptors for bacteria/viruses and releasing pro-inflammatory cytokines and other immune cell products on activation.

NEUROPATHIC PAIN

Allodynia/hyperalgesia caused by inflammation of and/or trauma to peripheral nerves.

IL-6-NEUTRALIZING ANTIBODIES

Antibodies that bind to IL-6 and so prevent IL-6 from binding to its receptor.

PERI-SPINAL INJECTION

Administering a drug into the cerebrospinal fluid surrounding the spinal cord; also called 'intrathecal'.

SYNOVIAL TISSUES

Tissues encapsulating joints.

NUCLEAR FACTOR-κB

(NF-κB). A transcription factor that is constitutively expressed. Its activation leads (among other effects) to the production of pro-inflammatory cytokines. Although constitutively expressed, its ability to move to the nucleus to bind to DNA is tonically inhibited by binding of IκB.

INHIBITOR OF κB

(IκB). An inhibitor of NF-κB activation. It is binding to NF-κB that keeps this transcription factor from being able to move to the nucleus to activate messenger RNA transcription.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Watkins, L., Maier, S. GLIA: A novel drug discovery target for clinical pain. Nat Rev Drug Discov 2, 973–985 (2003). https://doi.org/10.1038/nrd1251

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrd1251

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing