Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Neurotrophic factors as novel therapeutics for neuropathic pain

Key Points

  • Neuropathic pain can be defined as pain initiated or caused by a primary lesion or dysfunction in the nervous system.

  • Neuropathic pain has many causes, including physical injury of the nerve, diabetes, herpes zoster and cytotoxic cancer drugs. The relationship between the cause, neuropathic syndrome and efficacy of treatment is complex.

  • As neuropathic pain has a variety of causes and presents with differing symptoms, multiple underlying mechanisms have been proposed as being crucial for its manifestation, including afferent discharge, spinal sensitization, activation of descending facilitiation, upregulation of spinal dynorphin, redistribution of the Nav1.8 sodium channel, and anatomical reorganization.

  • Present therapies are of modest efficacy, and are palliative rather than curative. There is a high unmet need for drugs that can address neuropathic pain by normalizing the underlying neuropathophysiology.

  • Evidence indicates that neurotrophic factors — natural proteins that promote the growth and survival of particular populations of neurons — might represent such drug candidates.

  • The potential of nerve growth factor, brain-derived neurotrophic factor, neurotrophin-3, and the glial cell line-derived neurotrophic factor family are discussed.

Abstract

Neuropathic pain is a chronic condition that is caused by injury to the nervous system. Unlike acute pain, which is protective, neuropathic pain persists and serves no useful purpose, and severely affects quality of life. However, present therapies have modest efficacy in most patients, are palliative rather than curative, and their side effects represent significant limitations. Tremendous progress has been made over the past decade in our understanding of the biology of pain sensory neurons. The recent discovery that neurotrophic factors play an important role in neuropathic pain indicates that these pathways could serve as novel intervention points for therapy. Moreover, neurotrophic factors have the potential to address the underlying pathophysiology of neuropathic pain, thereby halting or reversing the disease process.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Cellular mechanisms of neuropathic pain.
Figure 2: Subclasses of dorsal root ganglia neurons and sensory input to the spinal cord.

Similar content being viewed by others

References

  1. IASP. in Task Force on Taxonomy of the IASP (eds. Merskey, H. & Bogduk, N.) 40–43 (IASP, Seattle, 1994).

  2. Max, M. B. Clarifying the definition of neuropathic pain. Pain 96, 406–407 (2002).

    PubMed  Google Scholar 

  3. Merskey, H. Clarifying definition of neuropathic pain. Pain 96, 408–409 (2002).

    PubMed  Google Scholar 

  4. Scadding, J. W. in Textbook of Pain (eds Wall, P. D. & Melzack, R.) 309–329 (Churchill Livingstone, Edinburgh, 1999).

    Google Scholar 

  5. Woolf, C. J. & Mannion, R. J. Neuropathic pain: aetiology, symptoms, mechanisms, and management. Lancet 353, 1959–1964 (1999).

    CAS  PubMed  Google Scholar 

  6. Chaplan, S. R. & Sorkin, L. S. Agonizing over pain terminology. Pain Forum 6, 81–87 (1997).

    Google Scholar 

  7. Willis, W. D. Pain terminology as it applies to animal experiments. Pain Forum 6, 88–91 (1997).

    Google Scholar 

  8. Zimmermann, M. Pathobiology of neuropathic pain. Eur. J. Pharmacol. 429, 23–37 (2001).

    CAS  PubMed  Google Scholar 

  9. Hansson, P. Neuropathic pain: clinical characteristics and diagnostic workup. Eur. J. Pain 6, S47–50 (2002).

    Google Scholar 

  10. Haythornthwaite, J. A. & Benrud-Larson, L. M. Psychological aspects of neuropathic pain. Clin. J. Pain 16, S101–S105 (2000).

    CAS  PubMed  Google Scholar 

  11. Dworkin, R. H. An overview of neuropathic pain: syndromes, symptoms, signs, and several mechanisms. Clin. J. Pain 18, 343–349 (2002).

    PubMed  Google Scholar 

  12. Melton, L. J. & Dyck, P. J. in Diabetic neuropathy (ed Dyck, P. J.) 27–35 (WB Saunders Company, Philadelphia, 1987).

    Google Scholar 

  13. Ziegler, D., Gries, F. A., Spuler, M. & Lessmann, F. The epidemiology of diabetic neuropathy. Diabetic Cardiovascular Autonomic Neuropathy Multicenter Study Group. J. Diabetes Complications 6, 49–57 (1992).

    CAS  PubMed  Google Scholar 

  14. Kost, R. G. & Straus, S. E. Postherpetic neuralgia — pathogenesis, treatment, and prevention. N. Engl. J. Med. 335, 32–42 (1996). An excellent review of postherpetic neuralgia.

    CAS  PubMed  Google Scholar 

  15. Koltzenburg, M., Torebjork, H. E. & Wahren, L. K. Nociceptor modulated central sensitization causes mechanical hyperalgesia in acute chemogenic and chronic neuropathic pain. Brain 117, 579–591 (1994).

    PubMed  Google Scholar 

  16. Devor, M. Neuropathic pain and injured nerve: peripheral mechanisms. Br. Med. Bull 47, 619–630 (1991).

    CAS  PubMed  Google Scholar 

  17. Devor, M. in Textbook of Pain (eds Wall, P. D. & Melzack, R.) 79–100 (Churchill Livingstone, Edinburgh, 1994).

    Google Scholar 

  18. Wall, P. D. & Gutnick, M. Properties of afferent nerve impulses originating from a neuroma. Nature 248, 740–743 (1974). An early study establishing ectopic discharge as a mechanism of neuropathic pain and the axotomy model.

    CAS  PubMed  Google Scholar 

  19. Kirk, E. J. Impulses in dorsal spinal nerve rootlets in cats and rabbits arising from dorsal root ganglia isolated from the periphery. J. Comp. Neurol. 155, 165–175 (1974).

    CAS  PubMed  Google Scholar 

  20. Wall, P. D. & Gutnick, M. Ongoing activity in peripheral nerves: the physiology and pharmacology of impulses originating from a neuroma. Exp. Neurol. 43, 580–593 (1974).

    CAS  PubMed  Google Scholar 

  21. Yoon, Y. W., Na, H. S. & Chung, J. M. Contributions of injured and intact afferents to neuropathic pain in an experimental rat model. Pain 64, 27–36 (1996). A suggestion that adjacent 'non–injured' nerves also evoke enhanced pain.

    CAS  PubMed  Google Scholar 

  22. Sheen, K. & Chung, J. M. Signs of neuropathic pain depend on signals from injured nerve fibers in a rat model. Brain Res. 610, 62–68 (1993).

    CAS  PubMed  Google Scholar 

  23. Eschenfelder, S., Habler, H. J. & Janig, W. Dorsal root section elicits signs of neuropathic pain rather than reversing them in rats with L5 spinal nerve injury. Pain 87, 213–219 (2000).

    CAS  PubMed  Google Scholar 

  24. Li, Y., Dorsi, M. J., Meyer, R. A. & Belzberg, A. J. Mechanical hyperalgesia after an L5 spinal nerve lesion in the rat is not dependent on input from injured nerve fibers. Pain 85, 493–502 (2000). Support for the role of 'uninjured' fibers in generating neuropathic pain.

    CAS  PubMed  Google Scholar 

  25. Liu, C. N., Michaelis, M., Amir, R. & Devor, M. Spinal nerve injury enhances subthreshold membrane potential oscillations in DRG neurons: relation to neuropathic pain. J. Neurophysiol. 84, 205–215 (2000).

    CAS  PubMed  Google Scholar 

  26. Liu, C. N. et al. Tactile allodynia in the absence of C-fiber activation: altered firing properties of DRG neurons following spinal nerve injury. Pain 85, 503–521 (2000). A study demonstrating a time-dependent decrease in ectopic discharge following injury in spite of sustained behavioural pain.

    CAS  PubMed  Google Scholar 

  27. Han, H. C., Lee, D. H. & Chung, J. M. Characteristics of ectopic discharges in a rat neuropathic pain model. Pain 84, 253–261 (2000). Time-dependent decreased discharges with sustained behavioural pain.

    CAS  PubMed  Google Scholar 

  28. Bian, D. et al. Loss of antiallodynic and antinociceptive spinal/supraspinal morphine synergy in nerve-injured rats: restoration by MK-801 or dynorphin antiserum. Brain Res. 831, 55–63 (1999).

    CAS  PubMed  Google Scholar 

  29. Chaplan, S. R., Bach, F. W., Pogrel, J. W., Chung, J. M. & Yaksh, T. L. Quantitative assessment of tactile allodynia in the rat paw. J. Neurosci. Methods 53, 55–63 (1994). Methodological description of use of von Frey filaments to document long-lasting tactile hypersensitivity following nerve injury.

    CAS  PubMed  Google Scholar 

  30. Malan, T. P. et al. Extraterritorial neuropathic pain correlates with multisegmental elevation of spinal dynorphin in nerve-injured rats. Pain 86, 185–194 (2000). Documentation of upregulation and distribution of spinal dynorphin in the neuropathic state.

    CAS  PubMed  Google Scholar 

  31. Wilcox, G. L. in Proceedings of the VIth World Congress on Pain (eds Bond, M. R. & Woolf, C. J.) 97–117 (Elsevier, Amsterdam, 1991).

    Google Scholar 

  32. Woolf, C. J. The pathophysiology of peripheral neuropathic pain—abnormal peripheral input and abnormal central processing. Acta Neurochir. Suppl. 58, 125–130 (1993).

    CAS  PubMed  Google Scholar 

  33. Ma, Q. P. & Woolf, C. J. Noxious stimuli induce an N-methyl-D-aspartate receptor-dependent hypersensitivity of the flexion withdrawal reflex to touch: implications for the treatment of mechanical allodynia. Pain 61, 383–390 (1995).

    CAS  PubMed  Google Scholar 

  34. Wall, P. D. & Woolf, C. J. The brief and the prolonged facilitatory effects of unmyelinated afferent input on the rat spinal cord are independently influenced by peripheral nerve section. Neuroscience 17, 1199–1205 (1986).

    CAS  PubMed  Google Scholar 

  35. Woolf, C. J. & Thompson, S. W. The induction and maintenance of central sensitization is dependent on N-methyl-D-aspartic acid receptor activation; implications for the treatment of post-injury pain hypersensitivity states. Pain 44, 293–299 (1991).

    CAS  PubMed  Google Scholar 

  36. Smith, A. L., Cordery, P. M. & Thompson, I. D. Manufacture and release characteristics of Elvax polymers containing glutamate receptor antagonists. J. Neurosci. Methods 60, 211–217 (1995).

    CAS  PubMed  Google Scholar 

  37. Seltzer, Z., Cohn, S., Ginzburg, R. & Beilin, B. Modulation of neuropathic pain behavior in rats by spinal disinhibition and NMDA receptor blockade of injury discharge. Pain 45, 69–75 (1991).

    CAS  PubMed  Google Scholar 

  38. Chaplan, S. R., Malmberg, A. B. & Yaksh, T. L. Efficacy of spinal NMDA receptor antagonism in formalin hyperalgesia and nerve injury evoked allodynia in the rat. J. Pharmacol. Exp. Ther. 280, 829–838 (1997).

    CAS  PubMed  Google Scholar 

  39. Ren, K., Hylden, J. L., Williams, G. M., Ruda, M. A. & Dubner, R. The effects of a non-competitive NMDA receptor antagonist, MK-801, on behavioral hyperalgesia and dorsal horn neuronal activity in rats with unilateral inflammation. Pain 50, 331–344 (1992).

    CAS  PubMed  Google Scholar 

  40. Ren, K. & Dubner, R. NMDA receptor antagonists attenuate mechanical hyperalgesia in rats with unilateral inflammation of the hindpaw. Neurosci. Lett. 163, 22–26 (1993).

    CAS  PubMed  Google Scholar 

  41. Fields, H. L., Malick, A. & Burstein, R. Dorsal horn projection targets of ON and OFF cells in the rostral ventromedial medulla. J. Neurophysiol. 74, 1742–1759 (1995). Characterization of descending pain facilitatory and inhibitory cells from the rostral ventromedial medulla.

    CAS  PubMed  Google Scholar 

  42. Morgan, M. M., Heinricher, M. M., Fields, H. L. & Department of Neurology, U. o. C. S. F. Circuitry linking opioid-sensitive nociceptive modulatory systems in periaqueductal gray and spinal cord with rostral ventromedial medulla. Neuroscience 47, 863–871 (1992).

    CAS  PubMed  Google Scholar 

  43. Fields, H. L. & Heinricher, M. M. Brainstem modulation of nociceptor-driven withdrawal reflexes. Ann. NY Acad. Sci. 563, 34–44 (1989).

    CAS  PubMed  Google Scholar 

  44. Heinricher, M. M., McGaraughty, S. & Tortorici, V. Circuitry underlying antiopioid actions of cholecystokinin within the rostral ventromedial medulla. J. Neurophysiol. 85, 280–286 (2001).

    CAS  PubMed  Google Scholar 

  45. Heinricher, M. M. & Roychowdhury, S. M. Reflex-related activation of putative pain facilitating neurons in rostral ventromedial medulla requires excitatory amino acid transmission. Neuroscience 78, 1159–1165 (1997).

    CAS  PubMed  Google Scholar 

  46. Porreca, F., Ossipov, M. H. & Gebhart, G. F. Chronic pain and medullary descending facilitation. Trends Neurosci. 25, 319–325 (2002). Review of the role of descending facilitation in mediation of inflammatory and neuropathic states.

    CAS  PubMed  Google Scholar 

  47. Pertovaara, A., Wei, H. & Hamalainen, M. M. Lidocaine in the rostroventromedial medulla and the periaqueductal gray attenuates allodynia in neuropathic rats. Neurosci. Lett. 218, 127–130 (1996).

    CAS  PubMed  Google Scholar 

  48. Kovelowski, C. J. et al. Supraspinal cholecystokinin may drive tonic descending facilitation mechanisms to maintain neuropathic pain in the rat. Pain 87, 265–273 (2000).

    CAS  PubMed  Google Scholar 

  49. Burgess, S. E. et al. Abs. Soc. Neurosci. Program No. 351. 11. (2002).

  50. Heinricher, M. M., Morgan, M. M. & Fields, H. L. Direct and indirect actions of morphine on medullary neurons that modulate nociception. Neuroscience 48, 533–543 (1992).

    CAS  PubMed  Google Scholar 

  51. Porreca, F. et al. Inhibition of neuropathic pain by selective ablation of brainstem medullary cells expressing the μ-opioid receptor. J. Neurosci. 21, 5281–5288 (2001). Demonstration of the role of putative pain facilitation cells in the rostral ventromedial medulla in expression of neuropathic pain.

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Ossipov, M. H., Hong Sun, T., Malan, P., Jr., Lai, J. & Porreca, F. Mediation of spinal nerve injury induced tactile allodynia by descending facilitatory pathways in the dorsolateral funiculus in rats. Neurosci. Lett. 290, 129–132 (2000).

    CAS  PubMed  Google Scholar 

  53. Burgess, S. E. et al. Time-dependent descending facilitation from the rostral ventromedial medulla maintains, but does not initiate, neuropathic pain. J. Neurosci. 22, 5129–5136 (2002). Demonstration of differences in processes that initiate and those that sustain experimental neuropathic pain.

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Kajander, K. C., Sahara, Y., Iadarola, M. J. & Bennett, G. J. Dynorphin increases in the dorsal spinal cord in rats with a painful peripheral neuropathy. Peptides 11, 719–728 (1990). Identification of upregulated state of spinal dynorphin following nerve injury.

    CAS  PubMed  Google Scholar 

  55. Claude, P., Gracia, N., Wagner, L. & Hargreaves, K. M. Effect of dynorphin on ICGRP release from capsaicin–sensitive fibers. Abs.9th World Congress Pain 9, 262 (1999).

    Google Scholar 

  56. Wang, Z. et al. Pronociceptive actions of dynorphin maintain chronic neuropathic pain. J. Neurosci. 21, 1779–1786 (2001). Demonstration of the dependence of the neuropathic state on expression of spinal dynorphin.

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Wagner, R., DeLeo, J. A., Coombs, D. W., Willenbring, S. & Fromm, C. Spinal dynorphin immunoreactivity increases bilaterally in a neuropathic pain model. Brain Res. 629, 323–326 (1993).

    CAS  PubMed  Google Scholar 

  58. Wagner, R. & Deleo, J. A. Pre-emptive dynorphin and N-methyl-D-aspartate glutamate receptor antagonism alters spinal immunocytochemistry but not allodynia following complete peripheral nerve injury. Neuroscience 72, 527–534 (1996).

    CAS  PubMed  Google Scholar 

  59. Kajander, K. C., Wakisaka, S. & Bennett, G. J. Spontaneous discharge originates in the dorsal root ganglion at the onset of a painful peripheral neuropathy in the rat. Neurosci. Lett. 138, 225–228 (1992).

    CAS  PubMed  Google Scholar 

  60. Kajander, K. C. & Bennett, G. J. Onset of a painful peripheral neuropathy in rat: a partial and differential deafferentation and spontaneous discharge in Aβ and Aδ primary afferent neurons. J. Neurophysiol. 68, 734–744 (1992). Electrophysiological characterization of partial deafferentation in neuropathic conditions.

    CAS  PubMed  Google Scholar 

  61. Catterall, W. A. Cellular and molecular biology of voltage-gated sodium channels. Physiol. Rev. 72, S15–S48 (1992).

    CAS  PubMed  Google Scholar 

  62. Kallen, R. G., Cohen, S. A. & Barchi, R. L. Structure, function and expression of voltage-dependent sodium channels. Mol. Neurobiol. 7, 383–428 (1993).

    CAS  PubMed  Google Scholar 

  63. Sangameswaran, L. et al. Structure and function of a novel voltage-gated, tetrodotoxin-resistant sodium channel specific to sensory neurons. J. Biol. Chem. 271, 5953–5956 (1996).

    CAS  PubMed  Google Scholar 

  64. Akopian, A. N., Chen, C. C., Ding, Y., Cesare, P. & Wood, J. N. A new member of the acid-sensing ion channel family. Neuroreport 11, 2217–2222 (2000).

    CAS  PubMed  Google Scholar 

  65. Tzoumaka, E. et al. PN3 sodium channel distribution in the dorsal root ganglia of normal and neuropathic rats. Proc. West Pharmacol. Soc. 40, 69–72 (1997).

    CAS  PubMed  Google Scholar 

  66. Novakovic, S. D. et al. Distribution of the tetrodotoxin-resistant sodium channel PN3 in rat sensory neurons in normal and neuropathic conditions. J. Neurosci. 18, 2174–2187 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Lai, J., Hunter, J. C., Ossipov, M. H. & Porreca, F. Blockade of neuropathic pain by antisense targeting of tetrodotoxin-resistant sodium channels in sensory neurons. Methods Enzymol. 314, 201–213 (2000).

    CAS  PubMed  Google Scholar 

  68. Lai, J. et al. Inhibition of neuropathic pain by decreased expression of the tetrodotoxin-resistant sodium channel, NaV1. 8. Pain 95, 143–152 (2002).

    CAS  PubMed  Google Scholar 

  69. Porreca, F. et al. A comparison of the potential role of the tetrodotoxin-insensitive sodium channels, PN3/SNS and NaN/SNS2, in rat models of chronic pain. Proc. Natl Acad. Sci. USA 96, 7640–7644 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Renganathan, M., Cummins, T. R. & Waxman, S. G. Contribution of Na(v)1. 8 sodium channels to action potential electrogenesis in DRG neurons. J. Neurophysiol. 86, 629–640 (2001).

    CAS  PubMed  Google Scholar 

  71. Decosterd, I., Ji, R. R., Abdi, S., Tate, S. & Woolf, C. J. The pattern of expression of the voltage-gated sodium channels Na(v)1. 8 and Na(v)1. 9 does not change in uninjured primary sensory neurons in experimental neuropathic pain models. Pain 96, 269–277 (2002).

    CAS  PubMed  Google Scholar 

  72. Gold, M. S. et al. Redistribution of Na(V)1. 8 in uninjured axons enables neuropathic pain. J. Neurosci. 23, 158–166 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Coward, K. et al. Immunolocalization of SNS/PN3 and NaN/SNS2 sodium channels in human pain states. Pain 85, 41–50 (2000).

    CAS  PubMed  Google Scholar 

  74. Bucknill, A. T. et al. Nerve fibers in lumbar spine structures and injured spinal roots express the sensory neuron-specific sodium channels SNS/PN3 and NaN/SNS2. Spine 27, 135–140 (2002).

    PubMed  Google Scholar 

  75. Woolf, C. J. et al. Reorganization of central terminals of myelinated primary afferents in the rat dorsal horn following peripheral axotomy. J. Comp. Neurol. 360, 121–134 (1995).

    CAS  PubMed  Google Scholar 

  76. Lekan, H. A., Chung, K., Yoon, Y. W., Chung, J. M. & Coggeshall, R. E. Loss of dorsal root ganglion cells concomitant with dorsal root axon sprouting following segmental nerve lesions. Neuroscience 81, 527–534 (1997).

    CAS  PubMed  Google Scholar 

  77. Tong, Y. G. et al. Increased uptake and transport of cholera toxin B-subunit in dorsal root ganglion neurons after peripheral axotomy: possible implications for sensory sprouting. J. Comp. Neurol. 404, 143–158 (1999).

    CAS  PubMed  Google Scholar 

  78. Bao, L. et al. Peripheral axotomy induces only very limited sprouting of coarse myelinated afferents into inner lamina II of rat spinal cord. Eur. J. Neurosci. 16, 175–185 (2002).

    PubMed  Google Scholar 

  79. Hama, A. T., Sagen, J. & Pappas, G. D. Morphological characterization of dorsal horn spinal neurons in rats with unilateral constriction nerve injury: a preliminary study. Neurol. Res. 16, 297–304 (1994)

    CAS  PubMed  Google Scholar 

  80. Thoenen, H. Neurotrophins and neuronal plasticity. Science 270, 593–598 (1995).

    CAS  PubMed  Google Scholar 

  81. Hempstead, B. L., Martin-Zanca, D., Kaplan, D. R., Parada, L. F. & Chao, M. V. High-affinity NGF binding requires coexpression of the trk proto-oncogene and the low-affinity NGF receptor. Nature 350, 678–683 (1991).

    CAS  PubMed  Google Scholar 

  82. Kaplan, D. R., Martin-Zanca, D. & Parada, L. F. Tyrosine phosphorylation and tyrosine kinase activity of the trk proto-oncogene product induced by NGF. Nature 350, 158–160 (1991).

    CAS  PubMed  Google Scholar 

  83. Klein, R., Jing, S. Q., Nanduri, V., O'Rourke, E. & Barbacid, M. The trk proto-oncogene encodes a receptor for nerve growth factor. Cell 65, 189–197 (1991).

    CAS  PubMed  Google Scholar 

  84. Jing, S., Tapley, P. & Barbacid, M. Nerve growth factor mediates signal transduction through trk homodimer receptors. Neuron 9, 1067–1079 (1992).

    CAS  PubMed  Google Scholar 

  85. Johnson, D. et al. Expression and structure of the human NGF receptor. Cell 47, 545–554 (1986). A landmark paper describing the identification of p75.

    CAS  PubMed  Google Scholar 

  86. Cohen, S. Purification of a nerve-growth promoting protein from the mouse salivary gland and its neurotoxic antiserum. Proc. Natl Acad. Sci. USA 46, 302–311 (1960).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Crowley, C. et al. Mice lacking nerve growth factor display perinatal loss of sensory and sympathetic neurons yet develop basal forebrain cholinergic neurons. Cell 76, 1001–1011 (1994).

    CAS  PubMed  Google Scholar 

  88. Smeyne, R. J. et al. Severe sensory and sympathetic neuropathies in mice carrying a disrupted Trk/NGF receptor gene. Nature 368, 246–249 (1994).

    CAS  PubMed  Google Scholar 

  89. Patel, T. D., Jackman, A., Rice, F. L., Kucera, J. & Snider, W. D. Development of sensory neurons in the absence of NGF/TrkA signaling in vivo. Neuron 25, 345–357 (2000).

    CAS  PubMed  Google Scholar 

  90. Averill, S., McMahon, S. B., Clary, D. O., Reichardt, L. F. & Priestley, J. V. Immunocytochemical localization of trkA receptors in chemically identified subgroups of adult rat sensory neurons. Eur. J. Neurosci. 7, 1484–1494 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Kaplan, D. R. & Miller, F. D. Neurotrophin signal transduction in the nervous system. Curr. Opin. Neurobiol. 10, 381–391 (2000). An excellent review on signalling pathways used by neurotrophins.

    CAS  PubMed  Google Scholar 

  92. Apfel, S. C., Arezzo, J. C., Brownlee, M., Federoff, H. & Kessler, J. A. Nerve growth factor administration protects against experimental diabetic sensory neuropathy. Brain Res. 634, 7–12 (1994).

    CAS  PubMed  Google Scholar 

  93. Apfel, S. C., Lipton, R. B., Arezzo, J. C. & Kessler, J. A. Nerve growth factor prevents toxic neuropathy in mice. Ann. Neurol. 29, 87–90 (1991).

    CAS  PubMed  Google Scholar 

  94. Apfel, S. C., Arezzo, J. C., Lipson, L. & Kessler, J. A. Nerve growth factor prevents experimental cisplatin neuropathy. Ann. Neurol. 31, 76–80 (1992).

    CAS  PubMed  Google Scholar 

  95. Tomlinson, D. R., Fernyhough, P. & Diemel, L. T. Role of neurotrophins in diabetic neuropathy and treatment with nerve growth factors. Diabetes 46, S43–49 (1997).

    CAS  PubMed  Google Scholar 

  96. Schmidt, Y., Unger, J. W., Bartke, I. & Reiter, R. Effect of nerve growth factor on peptide neurons in dorsal root ganglia after taxol or cisplatin treatment and in diabetic (db/db) mice. Exp. Neurol. 132, 16–23 (1995).

    CAS  PubMed  Google Scholar 

  97. Elias, K. A., Cronin, M. J., Stewart, T. A. & Carlsen, R. C. Peripheral neuropathy in transgenic diabetic mice: restoration of C-fiber function with human recombinant nerve growth factor. Diabetes 47, 1637–1642 (1998).

    CAS  PubMed  Google Scholar 

  98. Lewin, G. R. & Mendell, L. M. Nerve growth factor and nociception. Trends Neurosci. 16, 353–359 (1993).

    CAS  PubMed  Google Scholar 

  99. Lewin, G. R., Rueff, A. & Mendell, L. M. Peripheral and central mechanisms of NGF-induced hyperalgesia. Eur. J. Neurosci. 6, 1903–1912 (1994).

    CAS  PubMed  Google Scholar 

  100. Woolf, C. J., Safieh-Garabedian, B., Ma, Q. P., Crilly, P. & Winter, J. Nerve growth factor contributes to the generation of inflammatory sensory hypersensitivity. Neuroscience 62, 327–331 (1994).

    CAS  PubMed  Google Scholar 

  101. McMahon, S. B., Bennett, D. L., Priestley, J. V. & Shelton, D. L. The biological effects of endogenous nerve growth factor on adult sensory neurons revealed by a trkA-IgG fusion molecule. Nature Med. 1, 774–780 (1995).

    CAS  PubMed  Google Scholar 

  102. Heumann, R., Korsching, S., Bandtlow, C. & Thoenen, H. Changes of nerve growth factor synthesis in nonneuronal cells in response to sciatic nerve transection. J. Cell Biol. 104, 1623–1631 (1987).

    CAS  PubMed  Google Scholar 

  103. Ramer, M. S., French, G. D. & Bisby, M. A. Wallerian degeneration is required for both neuropathic pain and sympathetic sprouting into the DRG. Pain 72, 71–78 (1997).

    CAS  PubMed  Google Scholar 

  104. Owolabi, J. B. et al. Characterization of antiallodynic actions of ALE-0540, a novel nerve growth factor receptor antagonist, in the rat. J. Pharmacol. Exp. Ther. 289, 1271–1276 (1999).

    CAS  PubMed  Google Scholar 

  105. Boucher, T. J. et al. Potent analgesic effects of GDNF in neuropathic pain states. Science 290, 124–127 (2000). An important paper demonstrating the behavioural sensitivity of neuropathic states to trophic factors.

    CAS  PubMed  Google Scholar 

  106. Rogers, B. C. Development of recombinant human nerve growth factor (rhNGF) as a treatment for peripheral neuropathic disease. Neurotoxicology 17, 865–870 (1996).

    CAS  PubMed  Google Scholar 

  107. Petty, B. G. et al. The effect of systemically administered recombinant human nerve growth factor in healthy human subjects. Ann. Neurol. 36, 244–246 (1994).

    CAS  PubMed  Google Scholar 

  108. Apfel, S. C. et al. Recombinant human nerve growth factor in the treatment of diabetic polyneuropathy. NGF Study Group. Neurology 51, 695–702 (1998).

    CAS  PubMed  Google Scholar 

  109. Apfel, S. C. et al. Efficacy and safety of recombinant human nerve growth factor in patients with diabetic polyneuropathy: A randomized controlled trial. rhNGF Clinical Investigator Group. JAMA 284, 2215–2221 (2000).

    CAS  PubMed  Google Scholar 

  110. McArthur, J. C. et al. A phase II trial of nerve growth factor for sensory neuropathy associated with HIV infection. AIDS Clinical Trials Group Team 291. Neurology 54, 1080–1088 (2000).

    CAS  PubMed  Google Scholar 

  111. Ernfors, P., Lee, K. F. & Jaenisch, R. Mice lacking brain-derived neurotrophic factor develop with sensory deficits. Nature 368, 147–150 (1994).

    CAS  PubMed  Google Scholar 

  112. Maisonpierre, P. C. et al. NT-3, BDNF, and NGF in the developing rat nervous system: parallel as well as reciprocal patterns of expression. Neuron 5, 501–509 (1990).

    CAS  PubMed  Google Scholar 

  113. Michael, G. J. et al. Nerve growth factor treatment increases brain-derived neurotrophic factor selectively in TrkA-expressing dorsal root ganglion cells and in their central terminations within the spinal cord. J. Neurosci. 17, 8476–8490 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  114. McMahon, S. B., Armanini, M. P., Ling, L. H. & Phillips, H. S. Expression and coexpression of Trk receptors in subpopulations of adult primary sensory neurons projecting to identified peripheral targets. Neuron 12, 1161–1171 (1994).

    CAS  PubMed  Google Scholar 

  115. Carroll, P., Lewin, G. R., Koltzenburg, M., Toyka, K. V. & Thoenen, H. A role for BDNF in mechanosensation. Nature Neurosci. 1, 42–46 (1998).

    CAS  PubMed  Google Scholar 

  116. Fukuoka, T., Kondo, E., Dai, Y., Hashimoto, N. & Noguchi, K. Brain-derived neurotrophic factor increases in the uninjured dorsal root ganglion neurons in selective spinal nerve ligation model. J. Neurosci. 21, 4891–4900 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  117. Ha, S. O., Kim, J. K., Hong, H. S., Kim, D. S. & Cho, H. J. Expression of brain-derived neurotrophic factor in rat dorsal root ganglia, spinal cord and gracile nuclei in experimental models of neuropathic pain. Neuroscience 107, 301–309 (2001).

    CAS  PubMed  Google Scholar 

  118. Obata, K. et al. Contribution of injured and uninjured dorsal root ganglion neurons to pain behavior and the changes in gene expression following chronic constriction injury of the sciatic nerve in rats. Pain 101, 65–77 (2003).

    CAS  PubMed  Google Scholar 

  119. Miletic, G. & Miletic, V. Increases in the concentration of brain derived neurotrophic factor in the lumbar spinal dorsal horn are associated with pain behavior following chronic constriction injury in rats. Neurosci. Lett. 319, 137–140 (2002).

    CAS  PubMed  Google Scholar 

  120. Cho, H. J. et al. Expression of mRNA for brain-derived neurotrophic factor in the dorsal root ganglion following peripheral inflammation. Brain Res. 749, 358–362 (1997).

    CAS  PubMed  Google Scholar 

  121. Lever, I. J. et al. Brain-derived neurotrophic factor is released in the dorsal horn by distinctive patterns of afferent fiber stimulation. J. Neurosci. 21, 4469–4477 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  122. Levine, E. S., Crozier, R. A., Black, I. B. & Plummer, M. R. Brain-derived neurotrophic factor modulates hippocampal synaptic transmission by increasing N-methyl-D-aspartic acid receptor activity. Proc. Natl Acad. Sci. USA 95, 10235–10239 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  123. Kerr, B. J. et al. Brain-derived neurotrophic factor modulates nociceptive sensory inputs and NMDA-evoked responses in the rat spinal cord. J. Neurosci. 19, 5138–5148 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  124. Pezet, S. et al. Noxious stimulation induces Trk receptor and downstream ERK phosphorylation in spinal dorsal horn. Mol. Cell Neurosci. 21, 684–695 (2002).

    CAS  PubMed  Google Scholar 

  125. Shu, X. Q., Llinas, A. & Mendell, L. M. Effects of trkB and trkC neurotrophin receptor agonists on thermal nociception: a behavioral and electrophysiological study. Pain 80, 463–470 (1999).

    CAS  PubMed  Google Scholar 

  126. Zhou, X. F., Deng, Y. S., Xian, C. J. & Zhong, J. H. Neurotrophins from dorsal root ganglia trigger allodynia after spinal nerve injury in rats. Eur. J. Neurosci. 12, 100–105 (2000).

    CAS  PubMed  Google Scholar 

  127. Eaton, M. J., Blits, B., Ruitenberg, M. J., Verhaagen, J. & Oudega, M. Amelioration of chronic neuropathic pain after partial nerve injury by adeno-associated viral (AAV) vector-mediated over-expression of BDNF in the rat spinal cord. Gene Ther. 9, 1387–1395 (2002).

    CAS  PubMed  Google Scholar 

  128. Deng, Y. S., Zhong, J. H. & Zhou, X. F. Effects of endogenous neurotrophins on sympathetic sprouting in the dorsal root ganglia and allodynia following spinal nerve injury. Exp. Neurol. 164, 344–350 (2000).

    CAS  PubMed  Google Scholar 

  129. Theodosiou, M. et al. Hyperalgesia due to nerve damage: role of nerve growth factor. Pain 81, 245–255 (1999).

    CAS  PubMed  Google Scholar 

  130. Yajima, Y., Narita, M., Matsumoto, N. & Suzuki, T. Involvement of a spinal brain-derived neurotrophic factor/full-length TrkB pathway in the development of nerve injury-induced thermal hyperalgesia in mice. Brain Res. 958, 338–346 (2002).

    CAS  PubMed  Google Scholar 

  131. Snider, W. D. Functions of the neurotrophins during nervous system development: what the knockouts are teaching us. Cell 77, 627–638 (1994).

    PubMed  Google Scholar 

  132. Farinas, I., Jones, K. R., Backus, C., Wang, X. Y. & Reichardt, L. F. Severe sensory and sympathetic deficits in mice lacking neurotrophin-3. Nature 369, 658–661 (1994).

    CAS  PubMed  Google Scholar 

  133. Ernfors, P., Lee, K. F., Kucera, J. & Jaenisch, R. Lack of neurotrophin-3 leads to deficiencies in the peripheral nervous system and loss of limb proprioceptive afferents. Cell 77, 503–512 (1994).

    CAS  PubMed  Google Scholar 

  134. Zhou, X. F. et al. Satellite-cell-derived nerve growth factor and neurotrophin-3 are involved in noradrenergic sprouting in the dorsal root ganglia following peripheral nerve injury in the rat. Eur. J. Neurosci. 11, 1711–1722 (1999).

    CAS  PubMed  Google Scholar 

  135. Malcangio, M., Garrett, N. E., Cruwys, S. & Tomlinson, D. R. Nerve growth factor- and neurotrophin-3-induced changes in nociceptive threshold and the release of substance P from the rat isolated spinal cord. J. Neurosci. 17, 8459–8467 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  136. Malcangio, M., Ramer, M. S., Boucher, T. J. & McMahon, S. B. Intrathecally injected neurotrophins and the release of substance P from the rat isolated spinal cord. Eur. J. Neurosci. 12, 139–144 (2000).

    CAS  PubMed  Google Scholar 

  137. White, D. M. Neurotrophin-3 antisense oligonucleotide attenuates nerve injury-induced Aβ-fibre sprouting. Brain Res. 885, 79–86 (2000).

    CAS  PubMed  Google Scholar 

  138. Lin, L. F., Doherty, D. H., Lile, J. D., Bektesh, S. & Collins, F. GDNF: a glial cell line-derived neurotrophic factor for midbrain dopaminergic neurons. Science 260, 1130–1132 (1993).

    CAS  PubMed  Google Scholar 

  139. Kotzbauer, P. T. et al. Neurturin, a relative of glial-cell-line-derived neurotrophic factor. Nature 384, 467–470 (1996).

    CAS  PubMed  Google Scholar 

  140. Milbrandt, J. et al. Persephin, a novel neurotrophic factor related to GDNF and neurturin. Neuron 20, 245–253 (1998).

    CAS  PubMed  Google Scholar 

  141. Baloh, R. H. et al. GFRα3 is an orphan member of the GDNF/neurturin/persephin receptor family. Proc. Natl Acad. Sci. USA 95, 5801–5806 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  142. Baloh, R. H. et al. Artemin, a novel member of the GDNF ligand family, supports peripheral and central neurons and signals through the GFRα3-RET receptor complex. Neuron 21, 1291–1302 (1998).

    CAS  PubMed  Google Scholar 

  143. Masure, S. et al. Enovin, a member of the glial cell-line-derived neurotrophic factor (GDNF) family with growth promoting activity on neuronal cells. Existence and tissue-specific expression of different splice variants. Eur. J. Biochem. 266, 892–902 (1999).

    CAS  PubMed  Google Scholar 

  144. Rosenblad, C. et al. In vivo protection of nigral dopamine neurons by lentiviral gene transfer of the novel GDNF-family member neublastin/artemin. Mol. Cell Neurosci. 15, 199–214 (2000).

    CAS  PubMed  Google Scholar 

  145. Henderson, C. E. et al. GDNF: a potent survival factor for motoneurons present in peripheral nerve and muscle. Science 266, 1062–1064 (1994).

    CAS  PubMed  Google Scholar 

  146. Molliver, D. C. et al. IB4-binding DRG neurons switch from NGF to GDNF dependence in early postnatal life. Neuron 19, 849–861 (1997). An elegant demonstration of the changing neurotrophin requirements of sensory neurons.

    CAS  PubMed  Google Scholar 

  147. Fjell, J. et al. Differential role of GDNF and NGF in the maintenance of two TTX- resistant sodium channels in adult DRG neurons. Brain Res. Mol. Brain Res. 67, 267–282 (1999).

    CAS  PubMed  Google Scholar 

  148. Bjorklund, A., Rosenblad, C., Winkler, C. & Kirik, D. Studies on neuroprotective and regenerative effects of GDNF in a partial lesion model of Parkinson's disease. Neurobiol. Dis 4, 186–200 (1997).

    CAS  PubMed  Google Scholar 

  149. Hoffer, B. J. et al. Glial cell line-derived neurotrophic factor reverses toxin-induced injury to midbrain dopaminergic neurons in vivo. Neurosci. Lett. 182, 107–111 (1994).

    CAS  PubMed  Google Scholar 

  150. Bowenkamp, K. E. et al. Glial cell line-derived neurotrophic factor supports survival of injured midbrain dopaminergic neurons. J. Comp. Neurol. 355, 479–489 (1995).

    CAS  PubMed  Google Scholar 

  151. Alberch, J., Perez-Navarro, E. & Canals, J. M. Neuroprotection by neurotrophins and GDNF family members in the excitotoxic model of Huntington's disease. Brain Res. Bull 57, 817–822 (2002).

    CAS  PubMed  Google Scholar 

  152. Yan, Q., Matheson, C. & Lopez, O. T. In vivo neurotrophic effects of GDNF on neonatal and adult facial motor neurons. Nature 373, 341–344 (1995).

    CAS  PubMed  Google Scholar 

  153. Wang, Y., Chang, C. F., Morales, M., Chiang, Y. H. & Hoffer, J. Protective effects of glial cell line-derived neurotrophic factor in ischemic brain injury. Ann. N Y Acad. Sci. 962, 423–437 (2002).

    CAS  PubMed  Google Scholar 

  154. Wang, Y., Lin, S. Z., Chiou, A. L., Williams, L. R. & Hoffer, B. J. Glial cell line-derived neurotrophic factor protects against ischemia-induced injury in the cerebral cortex. J. Neurosci. 17, 4341–4348 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  155. Zhang, W. R. et al. Time dependent amelioration against ischemic brain damage by glial cell line-derived neurotrophic factor after transient middle cerebral artery occlusion in rat. Brain Res. 903, 253–256 (2001).

    CAS  PubMed  Google Scholar 

  156. Bennett, D. L. et al. A distinct subgroup of small DRG cells express GDNF receptor components and GDNF is protective for these neurons after nerve injury. J. Neurosci. 18, 3059–3072 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  157. Bradbury, E. J., Burnstock, G. & McMahon, S. B. The expression of P2X3 purinoreceptors in sensory neurons: effects of axotomy and glial-derived neurotrophic factor. Mol. Cell Neurosci. 12, 256–268 (1998).

    CAS  PubMed  Google Scholar 

  158. Cummins, T. R., Black, J. A., Dib-Hajj, S. D. & Waxman, S. G. Glial-derived neurotrophic factor upregulates expression of functional SNS and NaN sodium channels and their currents in axotomized dorsal root ganglion neurons. J. Neurosci. 20, 8754–8761 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  159. Leffler, A. et al. GDNF and NGF reverse changes in repriming of TTX-sensitive Na(+) currents following axotomy of dorsal root ganglion neurons. J. Neurophysiol. 88, 650–658 (2002).

    CAS  PubMed  Google Scholar 

  160. Boucher, T. J. & McMahon, S. B. Neurotrophic factors and neuropathic pain. Curr. Opin. Pharmacol. 1, 66–72 (2001).

    CAS  PubMed  Google Scholar 

  161. Wang, R. I. et al. GDNF Protects a subpopulation of nerve-injured neurons and prevents nerve injury-induced abnormal pain. Abs. Soc. Neurosci. Program No. 454. 12 (2002).

  162. Hoane, M. R. et al. Differential in vivo effects of neurturin and glial cell-line-derived neurotrophic factor. Exp. Neurol. 160, 235–243 (1999).

    CAS  PubMed  Google Scholar 

  163. Nutt, J. G. et al. Randomized, double-blind trial of glial cell line-derived neurotrophic factor (GDNF) in PD. Neurology 60, 69–73 (2003).

    CAS  PubMed  Google Scholar 

  164. Kordower, J. H. et al. Clinicopathological findings following intraventricular glial-derived neurotrophic factor treatment in a patient with Parkinson's disease. Ann. Neurol. 46, 419–424 (1999).

    CAS  PubMed  Google Scholar 

  165. Andres, R. et al. Multiple effects of artemin on sympathetic neurone generation, survival and growth. Development 128, 3685–3695 (2001).

    CAS  PubMed  Google Scholar 

  166. Yu, T. et al. Expression of GDNF family receptor components during development: implications in the mechanisms of interaction. J. Neurosci. 18, 4684–4696 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  167. Worby, C. A. et al. Identification and characterization of GFRα-3, a novel Co-receptor belonging to the glial cell line-derived neurotrophic receptor family. J. Biol. Chem. 273, 3502–3508 (1998).

    CAS  PubMed  Google Scholar 

  168. Widenfalk, J., Tomac, A., Lindqvist, E., Hoffer, B. & Olson, L. GFRα-3, a protein related to GFRα-1, is expressed in developing peripheral neurons and ensheathing cells. Eur. J. Neurosci. 10, 1508–1517 (1998).

    CAS  PubMed  Google Scholar 

  169. Naveilhan, P. et al. Expression and regulation of GFRα3, a glial cell line-derived neurotrophic factor family receptor. Proc. Natl Acad. Sci. USA 95, 1295–1300 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  170. Orozco, O. E., Walus, L., Sah, D. W., Pepinsky, R. B. & Sanicola, M. GFRα3 is expressed predominantly in nociceptive sensory neurons. Eur. J. Neurosci. 13, 2177–2182 (2001).

    CAS  PubMed  Google Scholar 

  171. Choi-Lundberg, D. L. & Bohn, M. C. Ontogeny and distribution of glial cell line-derived neurotrophic factor (GDNF) mRNA in rat. Brain Res. Dev. Brain Res. 85, 80–88 (1995).

    CAS  PubMed  Google Scholar 

  172. Widenfalk, J. et al. Neurturin and glial cell line-derived neurotrophic factor receptor-β (GDNFR-β), novel proteins related to GDNF and GDNFR-α with specific cellular patterns of expression suggesting roles in the developing and adult nervous system and in peripheral organs. J. Neurosci. 17, 8506–8519 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  173. Honma, Y. et al. Artemin is a vascular-derived neurotropic factor for developing sympathetic neurons. Neuron 35, 267–282 (2002). An in-depth and elegant analysis of the role of artemin in the developing peripheral nervous system, using ligand- and receptor-knock-out mice.

    CAS  PubMed  Google Scholar 

  174. Trupp, M., Raynoschek, C., Belluardo, N. & Ibanez, C. F. Multiple GPI-anchored receptors control GDNF-dependent and independent activation of the c-Ret receptor tyrosine kinase. Mol. Cell Neurosci. 11, 47–63 (1998).

    CAS  PubMed  Google Scholar 

  175. Widenfalk, J., Widmer, H. R. & Spenger, C. GDNF, RET and GFRα-1-3 mRNA expression in the developing human spinal cord and ganglia. Neuroreport 10, 1433–1439 (1999).

    CAS  PubMed  Google Scholar 

  176. Sah, D. W. Y. et al. Prevention and reversal of experimental neuropathic pain by systemic neublastin. Abs. Soc. Neurosci. Program No. 138. 15 (2001).

  177. Arner, S. & Meyerson, B. A. Lack of analgesic effect of opioids on neuropathic and idiopathic forms of pain. Pain 33, 11–23 (1988). An early report suggesting opioid-insensitivity of neuropathic pain in patients.

    CAS  PubMed  Google Scholar 

  178. McQuay, H. J. et al. Opioid sensitivity of chronic pain: a patient-controlled analgesia method. Anaesthesia 47, 757–767 (1992).

    CAS  PubMed  Google Scholar 

  179. Portenoy, R. K., Foley, K. M. & Inturrisi, C. E. The nature of opioid responsiveness and its implications for neuropathic pain: new hypotheses derived from studies of opioid infusions. Pain 43, 273–286 (1990).

    CAS  PubMed  Google Scholar 

  180. Rowbotham, M. C., Reisner-Keller, L. A. & Fields, H. L. Both intravenous lidocaine and morphine reduce the pain of postherpetic neuralgia. Neurology 41, 1024–1028 (1991). A double-blind, placebo-controlled study documenting opioid effectiveness in neuropathic pain in patients.

    CAS  PubMed  Google Scholar 

  181. Harati, Y. et al. Double-blind randomized trial of tramadol for the treatment of the pain of diabetic neuropathy. Neurology 50, 1842–1846 (1998).

    CAS  PubMed  Google Scholar 

  182. Sindrup, S. H. & Jensen, T. S. Efficacy of pharmacological treatments of neuropathic pain: an update and effect related to mechanism of drug action. Pain 83, 389–400 (1999).

    CAS  PubMed  Google Scholar 

  183. Rowbotham, M. C. Treatment of postherpetic neuralgia. Semin. Dermatol. 11, 218–225 (1992).

    CAS  PubMed  Google Scholar 

  184. Rowbotham, M. C., Davies, P. S. & Fields, H. L. Topical lidocaine gel relieves postherpetic neuralgia. Ann. Neurol. 37, 246–253 (1995). An important demonstration of the role of excitable afferents in generating neuropathic pain.

    CAS  PubMed  Google Scholar 

  185. Rowbotham, M. C., Davies, P. S., Verkempinck, C. & Galer, B. S. Lidocaine patch: double-blind controlled study of a new treatment method for post-herpetic neuralgia. Pain 65, 39–44 (1996).

    CAS  PubMed  Google Scholar 

  186. Kastrup, J., Petersen, P., Dejgard, A., Angelo, H. R. & Hilsted, J. Intravenous lidocaine infusion — a new treatment of chronic painful diabetic neuropathy? Pain 28, 69–75 (1987).

    CAS  PubMed  Google Scholar 

  187. Fields, H. L., Rowbotham, M. C. & Devor, M. in Handbook of Experimental Pharmacology (eds Dickenson, A. & Besson, J. M.) 93–116 (Springer, Berlin, 1997).

    Google Scholar 

  188. Tremont-Lukats, I. W., Megeff, C. & Backonja, M. M. Anticonvulsants for neuropathic pain syndromes: mechanisms of action and place in therapy. Drugs 60, 1029–1052 (2000).

    CAS  PubMed  Google Scholar 

  189. Ross, E. L. The evolving role of antiepileptic drugs in treating neuropathic pain. Neurology 55, S41–S46 (2000).

    CAS  PubMed  Google Scholar 

  190. Nicholson, B. Gabapentin use in neuropathic pain syndromes. Acta Neurol. Scand. 101, 359–71 (2000).

    CAS  PubMed  Google Scholar 

  191. Rose, M. A. & Kam, P. C. Gabapentin: pharmacology and its use in pain management. Anaesthesia 57, 451–462 (2002).

    CAS  PubMed  Google Scholar 

  192. Backonja, M. et al. Gabapentin for the symptomatic treatment of painful neuropathy in patients with diabetes mellitus: a randomized controlled trial. JAMA 280, 1831–1836 (1998). A landmark paper reporting the results of a Phase 3 clinical trial of gabapentin for the treatment of painful diabetic neuropathy.

    CAS  PubMed  Google Scholar 

  193. Orza, F., Boswell, M. V. & Rosenberg, S. K. Neuropathic pain: Review of mechanisms and pharmacologic management. NeuroRehabilitation 14, 15–23 (2000).

    PubMed  Google Scholar 

  194. Rowbotham, M., Harden, N., Stacey, B., Bernstein, P. & Magnus-Miller, L. Gabapentin for the treatment of postherpetic neuralgia: a randomized controlled trial. JAMA 280, 1837–1842 (1998). A landmark paper reporting the results of a Phase 3 clinical trial of gabapentin for the treatment of postherpetic neuralgia.

    CAS  PubMed  Google Scholar 

  195. Rice, A. S. & Maton, S. Gabapentin in postherpetic neuralgia: a randomised, double blind, placebo controlled study. Pain 94, 215–224 (2001).

    CAS  PubMed  Google Scholar 

  196. Max, M. B. et al. Amitriptyline, but not lorazepam, relieves postherpetic neuralgia. Neurology 38, 1427–1432 (1988).

    CAS  PubMed  Google Scholar 

  197. Max, M. B. et al. Efficacy of desipramine in painful diabetic neuropathy: a placebo-controlled trial. Pain 45, 3–9 (1991).

    CAS  PubMed  Google Scholar 

  198. Rogers, J. N. & Valley, M. A. Reflex sympathetic dystrophy. Clin. Podiatr. Med. Surg. 11, 73–83 (1994).

    CAS  PubMed  Google Scholar 

  199. Kingery, W. S. A critical review of controlled clinical trials for peripheral neuropathic pain and complex regional pain syndromes. Pain 73, 123–139 (1997).

    CAS  PubMed  Google Scholar 

  200. Garcia, J. & Altman, R. D. Chronic pain states: pathophysiology and medical therapy. Semin. Arthritis Rheum. 27, 1–16 (1997).

    CAS  PubMed  Google Scholar 

  201. Tandan, R., Lewis, G. A., Badger, G. B. & Fries, T. J. Topical capsaicin in painful diabetic neuropathy. Effect on sensory function. Diabetes Care 15, 15–18 (1992).

    CAS  PubMed  Google Scholar 

  202. Pfeifer, M. A. et al. A highly successful and novel model for treatment of chronic painful diabetic peripheral neuropathy. Diabetes Care 16, 1103–1115 (1993).

    CAS  PubMed  Google Scholar 

  203. Chad, D. A. et al. Does capsaicin relieve the pain of diabetic neuropathy? Pain 42, 387–388 (1990).

    CAS  PubMed  Google Scholar 

  204. Low, P. A., Opfer-Gehrking, T. L., Dyck, P. J., Litchy, W. J. & O'Brien, P. C. Double-blind, placebo-controlled study of the application of capsaicin cream in chronic distal painful polyneuropathy. Pain 62, 163–168 (1995).

    CAS  PubMed  Google Scholar 

  205. Paice, J. A. et al. Topical capsaicin in the management of HIV-associated peripheral neuropathy. J. Pain Symptom Manage. 19, 45–52 (2000).

    CAS  PubMed  Google Scholar 

  206. Wall, P. D., Scadding, J. W. & Tomkiewicz, M. M. The production and prevention of experimental anesthesia dolorosa. Pain 6, 175–182 (1979).

    CAS  PubMed  Google Scholar 

  207. Bennett, G. J. & Xie, Y. K. A peripheral mononeuropathy in rat that produces disorders of pain sensation like those seen in man. Pain 33, 87–107 (1988). A seminal paper which energized the field of study of neuropathic pain by establishing a very important model.

    CAS  PubMed  Google Scholar 

  208. Basbaum, A. I., Gautron, M., Jazat, F., Mayes, M. & Guilbaud, G. The spectrum of fiber loss in a model of neuropathic pain in the rat: an electron microscopic study. Pain 47, 359–367 (1991).

    CAS  PubMed  Google Scholar 

  209. Tal, M. & Bennett, G. J. Extra-territorial pain in rats with a peripheral mononeuropathy: mechano-hyperalgesia and mechano-allodynia in the territory of an uninjured nerve. Pain 57, 375–382 (1994). A critical paper demonstrating that extra-territorial pain could result from nerve injury and providing a basis for pain reported by patients outside of the area of nerve injury.

    CAS  PubMed  Google Scholar 

  210. Seltzer, Z., Dubner, R. & Shir, Y. A novel behavioral model of neuropathic pain disorders produced in rats by partial sciatic nerve injury. Pain 43, 205–218 (1990). Documentation of partial sciatic nerve ligation as an important model of neuropathic pain.

    CAS  PubMed  Google Scholar 

  211. Shir, Y. & Seltzer, Z. A-fibers mediate mechanical hyperesthesia and allodynia and C-fibers mediate thermal hyperalgesia in a new model of causalgiform pain disorders in rats. Neuroscience Letters 115, 62–67 (1990).

    CAS  PubMed  Google Scholar 

  212. Kim, S. H. & Chung, J. M. An experimental model for peripheral neuropathy produced by segmental spinal nerve ligation in the rat. Pain 50, 355–363 (1992). A seminal paper providing perhaps the most widely used and important animal model of neuropathic pain.

    CAS  Google Scholar 

  213. Decosterd, I. & Woolf, C. J. Spared nerve injury: an animal model of persistent peripheral neuropathic pain. Pain 87, 149–158 (2000).

    CAS  PubMed  Google Scholar 

  214. Courteix, C., Eschalier, A. & Lavarenne, J. Streptozocin-induced diabetic rats: behavioural evidence for a model of chronic pain. Pain 53, 81–88 (1993). Documentation of an animal model of diabetic neuropathic pain.

    CAS  PubMed  Google Scholar 

  215. Aley, K. O., Reichling, D. B. & Levine, J. D. Vincristine hyperalgesia in the rat: a model of painful vincristine neuropathy in humans. Neuroscience 73, 259–265 (1996). Documentation of an animal model of chemotherapeutic neuropathic pain.

    CAS  PubMed  Google Scholar 

  216. Tanner, K. D., Reichling, D. B. & Levine, J. D. Nociceptor hyper-responsiveness during vincristine-induced painful peripheral neuropathy in the rat. J. Neurosci. 18, 6480–6491 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frank Porreca.

Related links

Related links

DATABASES

LocusLink

Artemin

ATF3

BAX

BDNF

galanin

GDNF

GFRα1

GFRα2

GFRα3

GFRα4

neurturin

NGF

NTF3

NTF5

NTRK2

p75

persephin

RET

somatostatin

substance P

TrkA

Online Mendelian Inheritance in Man

Amyotrophic laeral sclerosis

Huntington's disease

Parkinson's disease

stroke

FURTHER INFORMATION

Encyclopedia of Life Sciences

Pain and analgesia

Pain: control

Glossary

ALLODYNIA

Pain resulting from a stimulus that does not normally provoke pain. The stimulus can be mechanical/tactile or thermal (cold or warm).

HYPERALGESIA

An increased response to a stimulus that is normally perceived as painful. The stimulus can be mechanical/tactile or thermal (cold or warm).

DORSAL ROOT GANGLIA

Groups of sensory neuron cell bodies that correspond to a particular level of the spinal cord.

RHIZOTOMY

Experimental surgery in which the dorsal roots are transected.

LIGATION

Tying a suture (or similar material) around a nerve, in order to experimentally induce nerve injury.

WALLERIAN DEGENERATION

Slow loss of the axon segment distal to damage.

C-FIBRES

Thin, unmyelinated sensory nerve fibres that transduce pain information from peripheral tissues.

DEAFFERENTATION

The loss of sensory nerve fibres that normally convey sensory information from peripheral tissues to the spinal cord.

NMDA RECEPTORS

N-methyl-D-aspartate receptors are a sub-type of glutamate receptors that are activated by NMDA.

AMPA RECEPTORS

AMPA receptors are a sub-type of glutamate receptors that are activated by AMPA as well as other glutamate agonists.

DESCENDING FACILITATION

The potentiation of neurotransmission in the spinal cord by neurons that originate in higher centres in the brain and send axons into the spinal cord to form facilitatory synaptic connections.

CALCITONIN GENE-RELATED PEPTIDE

A peptide neurotransmitter that often co-localizes with substance P in a subset of small sensory neurons that transduce pain information.

ECTOPIC DISCHARGES

Bursts of action potentials that are generated at sites that do not normally initiate firing of nerve impulses.

TETRODOTOXIN

(TTX). A potent sodium channel blocker present in puffer fish, that defines TTX-sensitive versus TTX-resistant sodium current.

Aβ-FIBRES

Large, myelinated sensory nerve fibres that normally transmit tactile and proprioceptive information from peripheral tissues to the spinal cord.

TAILFLICK

The tailflick test assesses the animal's ability to perceive acute pain by measuring the time required to lift the tail out of hot water.

SUBSTANCE P

A peptide neurotransmitter that is used by a subset of small sensory neurons that transduce pain information.

MYALGIA

Generalized muscle pain, a side effect of the administration of nerve growth factor in humans.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sah, D., Ossipo, M. & Porreca, F. Neurotrophic factors as novel therapeutics for neuropathic pain. Nat Rev Drug Discov 2, 460–472 (2003). https://doi.org/10.1038/nrd1107

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrd1107

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing