Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Targeting the NLRP3 inflammasome in inflammatory diseases

A Corrigendum to this article was published on 17 August 2018

This article has been updated

Abstract

Danger signals are a hallmark of many common inflammatory diseases, and these stimuli can function to activate the cytosolic innate immune signalling receptor NLRP3 (NOD-, LRR- and pyrin domain-containing 3). Once activated, NLRP3 nucleates the assembly of an inflammasome, leading to caspase 1-mediated proteolytic activation of the interleukin-1β (IL-1β) family of cytokines, and induces an inflammatory, pyroptotic cell death. Pharmacological inhibition of NLRP3 activation results in potent therapeutic effects in a wide variety of rodent models of inflammatory diseases, effects that are mirrored by genetic ablation of NLRP3. Although these findings highlight the potential of NLRP3 as a drug target, an understanding of NLRP3 structure and activation mechanisms is incomplete, which has hampered the discovery and development of novel therapeutics against this target. Here, we review recent advances in our understanding of NLRP3 activation and regulation, highlight the evolving landscape of NLRP3 modulators and discuss opportunities for pharmacologically targeting NLRP3 with novel small molecules.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Models of NLRP3 activation.
Figure 2: Post-translational modifications regulate NLRP3 through multiple signalling pathways.
Figure 3: Strategies for inhibition of NLRP3 inflammasome activation.

Similar content being viewed by others

Change history

  • 17 August 2018

    A sentence mentioning the authors of reference 122 has been amended to include both corresponding authors.

References

  1. Netea, M. G. et al. Trained immunity: a program of innate immune memory in health and disease. Science 352, 1098–1098 (2016).

    Article  CAS  Google Scholar 

  2. Cooper, M. D. & Alder, M. N. The evolution of adaptive immune systems. Cell 124, 815–822 (2006).

    Article  CAS  PubMed  Google Scholar 

  3. GBD 2015 Mortality and Causes of Death Collaborators. Global, regional, and national life expectancy, all-cause mortality, and cause-specific mortality for 249 causes of death, 1980-2015: a systematic analysis for the Global Burden of Disease Study 2015. Lancet 388, 1459–1544 (2016). This study highlights the rise of non-communicable, lifestyle-based diseases on a global scale.

  4. Próchnicki, T., Mangan, M. S. & Latz, E. Recent insights into the molecular mechanisms of the NLRP3 inflammasome activation. F1000Res. 5, 1469 (2016).

    Article  CAS  Google Scholar 

  5. Próchnicki, T. & Latz, E. Inflammasomes on the crossroads of innate immune recognition and metabolic control. Cell. Metab. 26, 71–93 (2017).

    Article  CAS  PubMed  Google Scholar 

  6. Lu, A. et al. Unified polymerization mechanism for the assembly of ASC-dependent inflammasomes. Cell 156, 1193–1206 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Fernandes-Alnemri, T. et al. The pyroptosome: a supramolecular assembly of ASC dimers mediating inflammatory cell death via caspase-1 activation. Cell Death Differ. 14, 1590–1604 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Hoss, F., Rodriguez-Alcazar, J. F. & Latz, E. Assembly and regulation of ASC specks. Cell. Mol. Life Sci. 74, 1211–1229 (2017).

    Article  CAS  PubMed  Google Scholar 

  9. Keller, M., Rüegg, A., Werner, S. & Beer, H.-D. Active caspase-1 is a regulator of unconventional protein secretion. Cell 132, 818–831 (2008).

    Article  CAS  PubMed  Google Scholar 

  10. Kanneganti, T.-D. et al. Bacterial RNA and small antiviral compounds activate caspase-1 through cryopyrin/Nalp3. Nature 440, 233–236 (2006).

    Article  CAS  PubMed  Google Scholar 

  11. Willingham, S. B. et al. NLRP3 (NALP3, Cryopyrin) facilitates in vivo caspase-1 activation, necrosis, and HMGB1 release via inflammasome-dependent and -independent pathways. J. Immunol. 183, 2008–2015 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Moltke, von, J. et al. Rapid induction of inflammatory lipid mediators by the inflammasome in vivo. Nature 490, 107–111 (2013).

    Article  CAS  Google Scholar 

  13. Sharma, D. & Kanneganti, T.-D. The cell biology of inflammasomes: mechanisms of inflammasome activation and regulation. J. Cell Biol. 213, 617–629 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Duncan, J. A. et al. Cryopyrin/NALP3 binds ATP/dATP, is an ATPase, and requires ATP binding to mediate inflammatory signaling. Proc. Natl Acad. Sci. USA 104, 8041–8046 (2007).

    Article  CAS  PubMed  Google Scholar 

  15. Liston, A. & Masters, S. L. Homeostasis-altering molecular processes as mechansims of inflammasome activation. Nat. Rev. Immunol. 17, 208–214 (2017).

    Article  CAS  PubMed  Google Scholar 

  16. Bauernfeind, F. G. et al. Cutting edge: NF- B activating pattern recognition and cytokine receptors license NLRP3 inflammasome activation by regulating NLRP3 expression. J. Immunol. 183, 787–791 (2009). This is the original description (together with reference 17) that NLRP3 priming is a requirement for NLRP3 activation.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Franchi, L., Eigenbrod, T. & Nunez, G. Cutting edge: TNF- mediates sensitization to ATP and Silica via the NLRP3 inflammasome in the absence of microbial stimulation. J. Immunol. 183, 792–796 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Haneklaus, M. et al. Cutting edge: miR-223 and EBV miR-BART15 regulate the NLRP3 inflammasome and IL-1 production. J. Immunol. 189, 3795–3799 (2012).

    Article  CAS  PubMed  Google Scholar 

  19. Stutz, A. et al. NLRP3 inflammasome assembly is regulated by phosphorylation of the pyrin domain. J. Exp. Med. 214, 1725–1736 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Spalinger, M. R. et al. NLRP3 tyrosine phosphorylation is controlled by protein tyrosine phosphatase PTPN22. J. Clin. Invest. 126, 1783–1800 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Song, N. et al. NLRP3 phosphorylation is an essential priming event for inflammasome activation. Mol. Cell 68, 185–197 (2017).

    Article  CAS  PubMed  Google Scholar 

  22. Mortimer, L., Moreau, F., MacDonald, J. A. & Chadee, K. NLRP3 inflammasome inhibition is disrupted in a group of auto-inflammatory disease CAPS mutations. Nat. Immunol. 17, 1176–1186 (2016).

    Article  CAS  PubMed  Google Scholar 

  23. Zhang, Z. et al. Protein kinase D at the Golgi controls NLRP3 inflammasome activation. J. Exp. Med. 214, 2671–2693 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Han, S. et al. Lipopolysaccharide primes the NALP3 inflammasome by inhibiting its ubiquitination and degradation mediated by the SCFFBXL2 E3 ligase. J. Biol. Chem. 290, 18124–18133 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Yan, Y. et al. Dopamine controls systemic inflammation through inhibition of NLRP3 inflammasome. Cell 160, 62–73 (2015).

    Article  CAS  PubMed  Google Scholar 

  26. Song, H. et al. The E3 ubiquitin ligase TRIM31 attenuates NLRP3 inflammasome activation by promoting proteasomal degradation of NLRP3. Nat. Commun. 7, 1–11 (2016).

    Google Scholar 

  27. Py, B. F., Kim, M.-S., Vakifahmetoglu-Norberg, H. & Yuan, J. Deubiquitination of NLRP3 by BRCC3 critically regulates inflamamsome activity. Mol. Cell 49, 331–338 (2013).

    Article  CAS  PubMed  Google Scholar 

  28. Rodgers, M. A. et al. The linear ubiquitin assembly complex (LUBAC) is essential for NLRP3 inflammasome activation. J. Exp. Med. 211, 1333–1347 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  29. Pétrilli, V. et al. Activation of the NALP3 inflammasome is triggered by low intracellular potassium concentration. Cell Death Differ. 14, 1583–1589 (2007).

    Article  CAS  PubMed  Google Scholar 

  30. Greaney, A. J., Leppla, S. H. & Moayeri, M. Bacterial exotoxins and the inflammasome. Front. Immunol. 6, 1013 (2015).

    Article  CAS  Google Scholar 

  31. Compan, V. et al. Cell volume regulation modulates NLRP3 inflammasome activation. Immunity 37, 487–500 (2012).

    Article  CAS  PubMed  Google Scholar 

  32. Daniels, M. J. D. et al. Fenamate NSAIDs inhibit the NLRP3 inflammasome and protect against Alzheimer's disease in rodent models. Nat. Commun. 7, 1–10 (2016). This is the first paper to demonstrate that the fenamate class of NSAIDs, already approved by the FDA for other treatments, is able to inhibit NLRP3.

    Article  CAS  Google Scholar 

  33. Tang, T. et al. CLICs-dependent chloride efflux is an essential and proximal upstream event for NLRP3 inflammasome activation. Nat. Commun. 8, 202 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Domingo- Fernández, R., Coll, R. C., Kearney, J., Breit, S. & O'Neill, L. A. J. The intracellular chloride channel proteins CLIC1 and CLIC4 induce IL-1β transcription and activate the NLRP3 inflammasome. J. Biol. Chem. 292, 12077–12087 (2017).

    Article  Google Scholar 

  35. Muñoz-Planillo, R. et al. K+ efflux is the common trigger of NLRP3 inflammasome activation by bacterial toxins and particulate matter. Immunity 38, 1142–1153 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Hornung, V. et al. Silica crystals and aluminum salts activate the NALP3 inflammasome through phagosomal destabilization. Nat. Immunol. 9, 847–856 (2008). This paper identifies the lysosomal damage pathway upstream of NLRP3 activation.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Orlowski, G. M. et al. Multiple cathepsins promote pro-IL-1β synthesis and NLRP3-mediated IL-1β activation. J. Immunol. 195, 1685–1697 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Riteau, N. et al. ATP release and purinergic signaling: a common pathway for particle-mediated inflammasome activation. Cell Death Dis. 3, e403–e410 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Martinon, F., Petrilli, V., Mayor, A., Tardivel, A. & Tschopp, J. Gout-associated uric acid crystals activate the NALP3 inflammasome. Nature 440, 237–241 (2006). This is the first report of a crystal that activates the NLRP3 inflammasome.

    Article  CAS  PubMed  Google Scholar 

  40. Duewell, P. et al. NLRP3 inflammasomes are required for atherogenesis and activated by cholesterol crystals. Nature 464, 1357–1361 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Dostert, C. et al. Innate immune activation through Nalp3 inflammasome sensing of asbestos and silica. Science 320, 674–677 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Halle, A. et al. The NALP3 inflammasome is involved in the innate immune response to amyloid-β. Nat. Immunol. 9, 857–865 (2008). This article reports for the first time that aggregate peptides can trigger NLRP3 inflammasome activation.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Masters, S. L. et al. Activation of the NLRP3 inflammasome by islet amyloid polypeptide provides a mechanism for enhanced IL-1β in type 2 diabetes. Nat. Immunol. 11, 897–904 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Franklin, B. S., Mangan, M. S. & Latz, E. Crystal formation in inflammation. Annu. Rev. Immunol. 34, 173–202 (2016).

    Article  CAS  PubMed  Google Scholar 

  45. Sanman, L. E. et al. Disruption of glycolytic flux is a signal for inflammasome signaling and pyroptotic cell death. eLife 5, 1–32 (2016).

    Article  Google Scholar 

  46. Groß, C. J. et al. Efflux-independent NLRP3 inflammasome activation by small molecules targeting mitochondria. Immunity 45, 761–773 (2016).

    Article  CAS  PubMed  Google Scholar 

  47. Wolf, A. J. et al. Hexokinase is an innate immune receptor for the detection of bacterial peptidoglycan. Cell 166, 624–636 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Abais, J. M., Xia, M., Zhang, Y., Boini, K. M. & Li, P.-L. Redox regulation of NLRP3 inflammasomes: ROS as trigger or effector? Antioxid. Redox Signal 22, 1111–1129 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Shimada, K. et al. Oxidized mitochondrial DNA activates the NLRP3 inflammasome during apoptosis. Immunity 36, 401–414 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Yu, J. et al. Inflammasome activation leads to caspase-1-dependent mitochondrial damage and block of mitophagy. Proc. Natl Acad. Sci. 111, 15514–15519 (2014).

    Article  CAS  PubMed  Google Scholar 

  51. Iyer, S. S. et al. Mitochondrial cardiolipin is required for Nlrp3 inflammasome activation. Immunity 39, 311–323 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Dudek, J. Role of cardiolipin in mitochondrial signaling pathways. Front. Cell Dev. Biol. 5, 8383 (2017).

    Article  Google Scholar 

  53. Greten, F. R. et al. NF-κB is a negative regulator of IL-1β secretion as revealed by genetic and pharmacological inhibition of IKKβ. Cell 130, 918–931 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Lupfer, C. et al. Receptor interacting protein kinase 2–mediated mitophagy regulates inflammasome activation during virus infection. Nat. Immunol. 14, 480–488 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. van der Burgh, R. et al. Defects in mitochondrial clearance predispose human monocytes to interleukin-1 hypersecretion. J. Biol. Chem. 289, 5000–5012 (2014).

    Article  CAS  PubMed  Google Scholar 

  56. Kayagaki, N. et al. Caspase-11 cleaves gasdermin D for non-canonical inflammasome signaling. Nature 526, 666–671 (2015).

    Article  CAS  PubMed  Google Scholar 

  57. Baker, P. J. et al. NLRP3 inflammasome activation downstream of cytoplasmic LPS recognition by both caspase-4 and caspase-5. Eur. J. Immunol. 45, 2918–2926 (2015).

    Article  CAS  PubMed  Google Scholar 

  58. Zanoni, I. et al. An endogenous caspase-11 ligand elicits interleukin-1 release from living dendritic cells. Science 352, 1232–1236 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Evavold, C. L. et al. The pore-forming protein gasdermin D regulates interleukin-1 secretion from living macrophages. Immunity 48, 35–44.e6 (2018).

    Article  CAS  PubMed  Google Scholar 

  60. Zanoni, I., Tan, Y., Di Gioia, M., Springstead, J. R. & Kagan, J. C. By capturing inflammatory lipids released from dying cells, the receptor CD14 induces inflammasome-dependent phagocyte hyperactivation. Immunity 47, 697–709.e3 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Gaidt, M. M. et al. Human monocytes engage an alternative inflammasome pathway. Immunity 44, 833–846 (2016). This article is the first description of the alternative inflammasome activation pathway in monocytes.

    Article  CAS  PubMed  Google Scholar 

  62. Humphries, F., Yang, S., Wang, B. & Moynagh, P. N. RIP kinases: key decision makers in cell death and innate immunity. Cell Death Differ. 22, 225–236 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Conos, S. A. et al. Active MLKL triggers the NLRP3 inflammasome in a cell-intrinsic manner. Proc. Natl Acad. Sci. 114, 961–969 (2017).

    Article  CAS  Google Scholar 

  64. Lawlor, K. E. et al. RIPK3 promotes cell death and NLRP3 inflammasome activation in the absence of MLKL. Nat. Commun. 6, 1–19 (2015).

    Article  CAS  Google Scholar 

  65. Shi, H. et al. NLRP3 activation and mitosis are mutually exclusive events coordinated by NEK7, a new inflammasome component. Nat. Immunol. 17, 250–258 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. He, Y., Zeng, M. Y., Yang, D., Motro, B. & Nuñez, G. NEK7 is an essential mediator of NLRP3 activation downstream of potassium efflux. Nature 530, 354–357 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Schmid-Burgk, J. L. et al. A genome-wide CRISPR (clustered regularly interspaced short palindromic repeats) screen identifies NEK7 as an essential component of NLRP3 inflammasome activation. J. Biol. Chem. 291, 103–109 (2016).

    Article  CAS  PubMed  Google Scholar 

  68. Gurung, P. et al. FADD and caspase-8 mediate priming and activation of the canonical and noncanonical Nlrp3 inflammasomes. J. Immunol. 192, 1835–1846 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Ito, M. et al. Bruton's tyrosine kinase is essential for NLRP3 inflammasome activation and contributes to ischaemic brain injury. Nat. Commun. 6, 1–11 (2015).

    Google Scholar 

  70. Liu, X. et al. Human NACHT, LRR, and PYD domain–containing protein 3 (NLRP3) inflammasome activity is regulated by and potentially targetable through Bruton tyrosine kinase. J. Allergy Clin. Immunol. 140, 1054–1067 (2017).

    Article  CAS  PubMed  Google Scholar 

  71. Broderick, L., De Nardo, D., Franklin, B. S., Hoffman, H. M. & Latz, E. The inflammasomes and autoinflammatory syndromes. Annu. Rev. Pathol. 10, 395–424 (2015).

    Article  CAS  PubMed  Google Scholar 

  72. Sarrauste de Menthiere, C. INFEVERS: the Registry for FMF and hereditary inflammatory disorders mutations. Nucleic Acids Res. 31, 282–285 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Brydges, S. D. et al. Divergence of IL-1, IL-18, and cell death in NLRP3 inflammasomopathies. J. Clin. Invest. 123, 4695–4705 (2013). This important paper details the effects of hyperactive NLRP3 activation and its relative dependence on IL-1β, IL-18 and caspase 1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Saberi, M. et al. Hematopoietic cell-specific deletion of Toll-like receptor 4 ameliorates hepatic and adipose tissue insulin resistance in high-fat-fed mice. Cell. Metab. 10, 419–429 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Shi, H. et al. TLR4 links innate immunity and fatty acid–induced insulin resistance. J. Clin. Invest. 116, 3015–3025 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Vandanmagsar, B. et al. The NLRP3 inflammasome instigates obesity-induced inflammation and insulin resistance. Nat. Med. 17, 179–188 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Ralston, J. C., Lyons, C. L., Kennedy, E. B., Kirwan, A. M. & Roche, H. M. Fatty acids and NLRP3 inflammasome-mediated inflammation in metabolic tissues. Annu. Rev. Nutr. 37, 77–102 (2017).

    Article  CAS  PubMed  Google Scholar 

  78. Youm, Y.-H. et al. Canonical Nlrp3 inflammasome links systemic low-grade inflammationto functional decline in aging. Cell. Metab. 18, 519–532 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Camell, C. D. et al. Inflammasome-driven catecholamine catabolism in macrophages blunts lipolysis during ageing. Nature 550, 119–123 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Acosta, J. C. et al. A complex secretory program orchestrated by the inflammasome controls paracrine senescence. Nat. Cell Biol. 15, 978–990 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Chow, M. T. et al. NLRP3 suppresses NK cell-mediated responses to carcinogen-induced tumors and metastases. Cancer Res. 72, 5721–5732 (2012).

    Article  CAS  PubMed  Google Scholar 

  82. van Deventer, H. W. et al. The inflammasome component NLRP3 impairs antitumor vaccine by enhancing the accumulation of tumor-associated myeloid-derived suppressor cells. Cancer Res. 70, 10161–10169 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Ridker, P. M. et al. Effect of interleukin-1β inhibition with canakinumab on incident lung cancer in patients with atherosclerosis: exploratory results from a randomised, double-blind, placebo-controlled trial. Lancet 390, 1833–1842 (2017).

    Article  CAS  PubMed  Google Scholar 

  84. Cris¸an, T. O. et al. Soluble uric acid primes TLR-induced proinflammatory cytokine production by human primary cells via inhibition of IL-1Ra. Ann. Rheum. Dis. 75, 755–762 (2016).

    Article  CAS  Google Scholar 

  85. Kim, T. W. et al. The critical role of IL-1 receptor-associated kinase 4-mediated NF-kB activation in modified low-density lipoprotein-induced inflammatory gene expression and atherosclerosis. J. Immunol. 186, 2871–2880 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Mulay, S. R. et al. Calcium oxalate crystals induce renal inflammation by NLRP3-mediated IL-1β secretion. J. Clin. Invest. 123, 236–246 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Heneka, M. T. et al. NLRP3 is activated in Alzheimer's disease and contributes to pathology in APP/PS1 mice. Nature 493, 674–678 (2014).

    Article  CAS  Google Scholar 

  88. Venegas, C. et al. Microglia-derived ASC specks cross- seed amyloid. Nature 552, 355–361 (2017).

    Article  CAS  PubMed  Google Scholar 

  89. Sharp, F. A. et al. Uptake of particulate vaccine adjuvants by dendritic cells activates the NALP3 inflammasome. Proc. Natl Acad. Sci. 106, 870–875 (2009).

    Article  PubMed  Google Scholar 

  90. Kool, M. et al. Cutting edge: alum adjuvant stimulates inflammatory dendritic cells through activation of the NALP3 inflammasome. J. Immunol. 181, 3755–3759 (2008).

    Article  CAS  PubMed  Google Scholar 

  91. Franchi, L. & Nuñez, G. The Nlrp3 inflammasome is critical for aluminium hydroxide-mediated IL-1beta secretion but dispensable for adjuvant activity. Eur. J. Immunol. 38, 2085–2089 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. McKee, A. S. et al. Alum induces innate immune responses through macrophage and mast cell sensors, but these sensors are not required for alum to act as an adjuvant for specific immunity. J. Immunol. 183, 4403–4414 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Dagenais, M. & Saleh, M. Linking cancer-induced Nlrp3 inflammasome activation to efficient NK cell-mediated immunosurveillance. Oncoimmunology 5, e1129484 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Pfirschke, C. et al. Immunogenic chemotherapy sensitizes tumors to checkpoint blockade therapy. Immunity 44, 343–354 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Dietsch, G. N. et al. Coordinated activation of Toll-like receptor 8 (TLR8) and NLRP3 by the TLR8 agonist, VTX-2337, ignites tumoricidal natural killer cell activity. PLoS ONE 11, 1–18 (2016).

    Article  CAS  Google Scholar 

  96. Bahia, M. S., Kaur, M., Silakari, P. & Silakari, O. Interleukin-1 receptor associated kinase inhbitors: potential therapeutic agents for inflammatory- and immune-related disorders. Cell. Signal. 27, 1039–1055 (2015).

    Article  CAS  PubMed  Google Scholar 

  97. Huang, X. & Dixit, V. M. Drugging the undruggables: exploring the ubiquitin system for drug development. Cell Res. 26, 484–498 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Jesus, A. A. & Goldbach-Mansky, R. IL-1 blockade in autoinflammatory syndromes. Annu. Rev. Med. 65, 223–244 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Dinarello, C. A., Simon, A. & van der Meer, J. W. M. Treating inflammation by blocking interleukin-1 in a broad spectrum of diseases. Nat. Rev. Drug Discov. 11, 633–652 (2012). An important review detailing the development, role, use and future directions of IL-1 inhibitory therapies.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Calabrese, L. H. Anakinra treatment of patients with rheumatoid arthritis. Ann. Pharmacother. 36, 1204–1209 (2002).

    Article  CAS  PubMed  Google Scholar 

  101. Granowitz, E. V. et al. Pharmacokinetics, safety and immunomodulatory effects of human recombinant interleukin-1 receptor antagonist in healthy humans. Cytokine 4, 353–360 (1992).

    Article  CAS  PubMed  Google Scholar 

  102. Chakraborty, A. et al. Pharmacokinetic and pharmacodynamic properties of canakinumab, a human anti-interleukin-1β monoclonal antibody. Clin. Pharmacokinet. 51, e1–18 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Ridker, P. M. et al. Antiinflammatory therapy with canakinumab for atherosclerotic disease. N. Engl. J. Med. 377, 1119–1131 (2017). This paper describes the first large-scale clinical trial to assess the effectiveness of IL-1β blockade in reducing atherosclerotic-based diseases.

    Article  CAS  PubMed  Google Scholar 

  104. Moran, A. et al. Interleukin-1 antagonism in type 1 diabetes of recent onset: two multicentre, randomised, double-blind, placebo-controlled trials. Lancet 381, 1905–1915 (2013).

    Article  CAS  PubMed  Google Scholar 

  105. Rossi-Semerano, L. Tolerance and efficacy of off-label anti-interleukin-1 treatments in France: a nationwide survey. Orphanet J. Rare Dis. 10, 19 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  106. Fox, E. et al. The serum and cerebrospinal fluid pharmacokinetics of anakinra after intravenous administration to non-human primates. J. Neuroimmunol. 223, 138–140 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Man, S. M. & Kanneganti, T.-D. Regulation of inflammasome activation. Immunol. Rev. 265, 6–21 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Boxer, M. B. et al. A highly potent and selective caspase 1 inhibitor that utilizes a key 3-cyanopropanoic acid moiety. ChemMedChem 5, 730–738 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Wannamaker, W. et al. (S)-1-((S)-2- -3,3-dimethyl-butanoyl)-pyrrolidine-2-carboxylic acid ((2R,3S)-2-ethoxy-5-oxo-tetrahydro-furan-3-yl)-amide (VX-765), an orally available selective interleukin (IL)-converting enzyme/caspase-1 inhibitor, exhibits potent anti-inflammatory activities by inhibiting the release of IL-1beta and IL-18. J. Pharmacol. Exp. Ther. 321, 509–516 (2007).

    Article  CAS  PubMed  Google Scholar 

  110. Rudolphi, K., Gerwin, N., Verzijl, N., van der Kraan, P. & van den Berg, W. Pralnacasan, an inhibitor of interleukin-1β converting enzyme, reduces joint damage in two murine models of osteoarthritis. Osteoarthritis Cartilage 11, 738–746 (2003).

    Article  CAS  PubMed  Google Scholar 

  111. MacKenzie, S. H. et al. The potential for caspases in drug discovery. Curr. Opin. Drug Discov. Devel. 13, 568–576 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Baldwin, A. G., Brough, D. & Freeman, S. Inhibiting the inflammasome: a chemical perspective. J. Med. Chem. 59, 1691–1710 (2016).

    Article  CAS  PubMed  Google Scholar 

  113. Redondo-Castro, E. et al. Development of a characterised tool kit for the interrogation of NLRP3 inflammasome-dependent responses. Sci. Rep. 8, 5667 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Jiang, H. et al. Identification of a selective and direct NLRP3 inhibitor to treat inflammatory disorders. J. Exp. Med. 214, 3219–3238 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Bowes, J. et al. Reducing safety-related drug attrition: the use of in vitro pharmacological profiling. Nat. Rev. Drug Discov. 11, 909–922 (2012).

    Article  CAS  PubMed  Google Scholar 

  116. Perregaux, D. G. et al. Identification and characterization of a novel class of interleukin-1 post-translational processing inhibitors. J. Pharmacol. Exp. Ther. 299, 187–197 (2001).

    CAS  PubMed  Google Scholar 

  117. Coll, R. C. et al. A small-molecule inhibitor of the NLRP3 inflammasome for the treatment of inflammatory diseases. Nat. Med. 21, 248–255 (2015). This is the first paper to demonstrate that CP-456,773 is a comprehensive, specific NLRP3 inhibitor.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Ashcroft, F. M. ATP-sensitive potassium channelopathies: focus on insulin secretion. J. Clin. Invest. 115, 2047–2058 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Lamkanfi, M. et al. Glyburide inhibits the Cryopyrin/Nalp3 inflammasome. J. Cell Biol. 187, 61–70 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Liao, J. et al. The NLRP3 inflammasome is critically involved in the development of bronchopulmonary dysplasia. Nat. Commun. 6, 8977 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Marchetti, C. et al. A novel pharmacologic inhibitor of the NLRP3 inflammasome limits myocardial injury after ischemia-reperfusion in the mouse. J. Cardiovasc. Pharmacol. 63, 316–322 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Hill, J. R. et al. Sulfonylureas as concomitant insulin secretagogues and NLRP3 inflammasome inhibitors. ChemMedChem 12, 1449–1457 (2017).

    Article  CAS  PubMed  Google Scholar 

  123. Guo, C. et al. Development and characterization of a hydroxyl-sulfonamide analogue, 5-chloro-N-[2-(4-hydroxysulfamoyl-phenyl)-ethyl]-2-methoxy-benzamide, as a novel NLRP3 inflammasome inhibitor for potential treatment of multiple sclerosis. ACS Chem. Neurosci. 8, 2194–2201 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Baldwin, A. G. et al. Boron-based inhibitors of the NLRP3 inflammasome. Cell Chem. Biol. 24, 1321–1335.e5 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Liu, W. et al. A novel benzo[d]imidazole derivate prevents the development of dextran sulfate sodium-induced murine experimental colitis via inhibition of NLRP3 inflammasome. Biochem. Pharmacol. 85, 1504–1512 (2013).

    Article  CAS  PubMed  Google Scholar 

  126. Zhang, A. H., Liu, W., Jiang, N., Xu, Q. & Tan, R. X. Spirodalesol, an NLRP3 inflammasome activation inhibitor. Org. Lett. 18, 6496–6499 (2016).

    Article  CAS  PubMed  Google Scholar 

  127. Cocco, M. et al. Electrophilic warhead-based design of compounds preventing NLRP3 inflammasome-dependent pyroptosis. J. Med. Chem. 57, 10366–10382 (2014).

    Article  CAS  PubMed  Google Scholar 

  128. Cocco, M. et al. Design, synthesis, and evaluation of acrylamide derivatives as direct NLRP3 inflammasome inhibitors. ChemMedChem 11, 1790–1803 (2016).

    Article  CAS  PubMed  Google Scholar 

  129. Cocco, M. et al. Development of an acrylate derivative targeting the NLRP3 inflammasome for the treatment of inflammatory bowel disease. J. Med. Chem. 60, 3656–3671 (2017).

    Article  CAS  PubMed  Google Scholar 

  130. He, Y. et al. 3,4-Methylenedioxy-β-nitrostyrene inhibits NLRP3 inflammasome activation by blocking assembly of the inflammasome. J. Biol. Chem. 289, 1142–1150 (2014).

    Article  CAS  PubMed  Google Scholar 

  131. Marchetti, C. et al. OLT1177, a β-sulfonyl nitrile compound, safe in humans, inhibits the NLRP3 inflammasome and reverses the metabolic cost of inflammation. Proc. Natl Acad. Sci. 115, E1530–E1539 (2018).

    Article  CAS  PubMed  Google Scholar 

  132. Kim, B.-H. et al. Benzoxathiol derivative BOT-4-one suppresses L540 lymphoma cell survival and proliferation via inhibition of JAK3/STAT3 signaling. Exp. Mol. Med. 43, 313–321 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Lee, H. G. et al. Immunomodulatory activities of the benzoxathiole derivative BOT-4-One ameliorate pathogenic skin inflammation in mice. J. Invest. Dermatol. 136, 107–116 (2016).

    Article  CAS  PubMed  Google Scholar 

  134. Shim, D.-W. et al. BOT-4-one attenuates NLRP3 inflammasome activation:NLRP3 alkylation leading to the regulation of its ATPase activity and ubiquitination. Sci. Rep. 7, 1–12 (2017).

    Article  CAS  Google Scholar 

  135. Juliana, C. et al. Anti-inflammatory compounds Parthenolide and Bay 11–7082 are direct inhibitors of the inflammasome. J. Biol. Chem. 285, 9792–9802 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Krishnan, N., Bencze, G., Cohen, P. & Tonks, N. K. The anti-inflammatory compound BAY-11-7082 is a potent inhibitor of protein tyrosine phosphatases. FEBS J. 280, 2830–2841 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Strickson, S. et al. The anti-inflammatory drug BAY 11–7082 suppresses the MyD88-dependent signalling network by targeting the ubiquitin system. Biochem. J. 451, 427–437 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Allen, I. C. et al. The NLRP3 inflammasome mediates in vivo innate immunity to influenza A virus through recognition of viral RNA. Immunity 30, 556–565 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Hise, A. G. et al. An essential role for the NLRP3 inflammasome in host defense against the human fungal pathogen Candida albicans. Cell Host Microbe 5, 487–497 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. McNeela, E. A. et al. Pneumolysin activates the NLRP3 inflammasome and promotes proinflammatory cytokines independently of TLR4. PLoS Pathog. 6, 1–16 (2010).

    Article  CAS  Google Scholar 

  141. Maltez, V. I. & Miao, E. A. Reassessing the evolutionary importance of inflammasomes. J. Immunol. 196, 956–962 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Zaki, M. H. et al. The NLRP3 inflammasome protects against loss of epithelial integrity and mortality during experimental colitis. Immunity 32, 379–391 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Kanai, T. et al. Interleukin 18 is a potent proliferative factor for intestinal mucosal lymphocytes in Crohn's disease. Gastroenterology 119, 1514–1523 (2000).

    Article  CAS  PubMed  Google Scholar 

  144. Hove, Ten, T. et al. Blockade of endogenous IL-18 ameliorates TNBS-induced colitis by decreasing local TNF-alpha production in mice. Gastroenterology 121, 1372–1379 (2001).

    Article  CAS  Google Scholar 

  145. Nowarski, R. et al. Epithelial IL-18 equilibrium controls barrier function in colitis. Cell 163, 1444–1456 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Bauer, C. et al. Colitis induced in mice with dextran sulfate sodium (DSS) is mediated by the NLRP3 inflammasome. Gut 59, 1192–1199 (2010).

    Article  CAS  PubMed  Google Scholar 

  147. Youm, Y.-H. et al. The ketone metabolite β-hydroxybutyrate blocks NLRP3 inflammasome–mediated inflammatory disease. Nat. Med. 21, 263–269 (2015). This is the first paper to demonstrate that a molecule produced endogenously in response to fasting conditions is a potent NLRP3 inhibitor, opening the possibility of treating autoinflammatory diseases without pharmaceutical intervention.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Goldberg, E. L. et al. b-Hydroxybutyrate deactivates neutrophil NLRP3 inflammasome to relieve gout flares. Cell Rep. 18, 2077–2087 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Guarda, G. et al. Type I interferon inhibits interleukin-1 production and inflammasome activation. Immunity 34, 213–223 (2011). This report links type I interferons to inhibition of NLRP3 inflammasome activation.

    Article  CAS  PubMed  Google Scholar 

  150. Inoue, M. et al. Interferon-β therapy against EAE is effective only when development of the disease depends on the NLRP3 inflammasome. Sci. Signal. 5, ra38 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Malhotra, S. et al. NLRP3 inflammasome is associated with the response to IFN-β in patients with multiple sclerosis. Brain 138, 644–652 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  152. Sokolowska, M. et al. Prostaglandin E2 inhibits NLRP3 inflammasome activation through EP4 receptor and intracellular cyclic AMP in human macrophages. J. Immunol. 194, 5472–5487 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Song, N. et al. Salmeterol, agonist of beta2-aderenergic receptor, prevents systemic inflammation via inhibiting NLRP3 inflammasome. Biochem. Pharmacol. 150, 245–255 (2018).

    Article  CAS  PubMed  Google Scholar 

  154. Carta, S. et al. Cell stress increases ATP release in NLRP3 inflammasome-mediated autoinflammatory diseases, resulting in cytokine imbalance. Proc. Natl Acad. Sci. USA 112, 2835–2840 (2015).

    Article  CAS  PubMed  Google Scholar 

  155. Di Virgilio, F., Ben, D. D., Sarti, A. C., Giuliani, A. L. & Falzoni, S. The P2X7 Receptor in Infection and Inflammation. Immunity 47, 15–31 (2017).

    Article  CAS  PubMed  Google Scholar 

  156. Dempsey, C. et al. Inhibiting the NLRP3 inflammasome with MCC950 promotes non-phlogistic clearance of amyloid-beta and cognitive function in APP/PS1 mice. Brain Behav. Immun. 61, 306–316 (2017).

    Article  CAS  PubMed  Google Scholar 

  157. van der Heijden, T. et al. NLRP3 inflammasome inhibition by MCC950 reduces atherosclerotic lesion development in apolipoprotein E-deficient mice-brief report. Arterioscler. Thromb. Vasc. Biol. 37, 1457–1461 (2017).

    Article  CAS  PubMed  Google Scholar 

  158. Besnard, A.-G. et al. NLRP3 inflammasome is required in murine asthma in the absence of aluminum adjuvant. Allergy 66, 1047–1057 (2011).

    Article  CAS  PubMed  Google Scholar 

  159. Kim, R. Y. et al. Role for NLRP3 inflammasome-mediated, IL-1beta-dependent responses in severe, steroid-resistant asthma. Am. J. Respir. Crit. Care Med. 196, 283–297 (2017).

    Article  CAS  PubMed  Google Scholar 

  160. Primiano, M. J. et al. Efficacy and pharmacology of the NLRP3 inflammasome inhibitor CP-456,773 (CRID3) in murine models of dermal and pulmonary inflammation. J. Immunol. 197, 2421–2433 (2016).

    Article  CAS  PubMed  Google Scholar 

  161. Ruiz-Miyazawa, K. W. et al. Quercetin inhibits gout arthritis in mice: induction of an opioid-dependent regulation of inflammasome. Inflammopharmacology https://doi.org/10.1007/s10787-017-0356-x (2017).

    Article  CAS  Google Scholar 

  162. Neudecker, V. et al. Myeloid-derived miR-223 regulates intestinal inflammation via repression of the NLRP3 inflammasome. J. Exp. Med. 214, 1737–1752 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Henao-Mejia, J. et al. Inflammasome-mediated dysbiosis regulates progression of NAFLD and obesity. Nature 482, 179–185 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Wree, A. et al. NLRP3 inflammasome activation is required for fibrosis development in NAFLD. J. Mol. Med. 92, 1069–1082 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Mridha, A. R. et al. NLRP3 inflammasome blockade reduces liver inflammation and fibrosis in experimental NASH in mice. J. Hepatol. 66, 1037–1046 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Krishnan, S. M. et al. Inflammasome activity is essential for one kidney/deoxycorticosterone acetate/salt-induced hypertension in mice. Br. J. Pharmacol. 173, 752–765 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. van Hout, G. P. J. et al. The selective NLRP3-inflammasome inhibitor MCC950 reduces infarct size and preserves cardiac function in a pig model of myocardial infarction. Eur. Heart J. 38, 828–836 (2017).

    CAS  PubMed  Google Scholar 

  168. Sandanger, O. et al. The NLRP3 inflammasome is up-regulated in cardiac fibroblasts and mediates myocardial ischaemia-reperfusion injury. Cardiovasc. Res. 99, 164–174 (2013).

    Article  CAS  PubMed  Google Scholar 

  169. Gris, D. et al. NLRP3 plays a critical role in the development of experimental autoimmune encephalomyelitis by mediating Th1 and Th17 responses. J. Immunol. 185, 974–981 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Ludwig-Portugall, I. et al. An NLRP3-specific inflammasome inhibitor attenuates crystal-induced kidney fibrosis in mice. Kidney Int. 90, 525–539 (2016).

    Article  CAS  PubMed  Google Scholar 

  171. Coates, B. M. et al. Inhibition of the NOD-like receptor protein 3 inflammasome is protective in juvenile influenza A virus infection. Front. Immunol. 8, 1–12 (2017).

    Article  CAS  Google Scholar 

  172. Tate, M. D. et al. Reassessing the role of the NLRP3 inflammasome during pathogenic influenza A virus infection via temporal inhibition. Sci. Rep. 6, 27912 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Jankovic, D. et al. The Nlrp3 inflammasome regulates acute graft-versus-host disease. J. Exp. Med. 210, 1899–1910 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Yang, F. et al. NLRP3 deficiency ameliorates neurovascular damage in experimental ischemic stroke. J. Cereb. Blood Flow Metab. 34, 660–667 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Ren, H. et al. Selective NLRP3 (pyrin domain-containing protein 3) inflammasome inhibitor reduces brain injury after intracerebral hemorrhage. Stroke 49, 184–192 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Cassel, S. L. et al. The Nalp3 inflammasome is essential for the development of silicosis. Proc. Natl Acad. Sci. USA 105, 9035–9040 (2008).

    Article  PubMed  Google Scholar 

  177. Hu, C. et al. NLRP3 deficiency protects from type 1 diabetes through the regulation of chemotaxis into the pancreatic islets. Proc. Natl Acad. Sci. USA 112, 11318–11323 (2015).

    Article  CAS  PubMed  Google Scholar 

  178. Vande Walle, L. et al. Negative regulation of the NLRP3 inflammasome by A20 protects against arthritis. Nature 512, 69–73 (2014).

    Article  CAS  PubMed  Google Scholar 

  179. Basiorka, A. A. et al. The NLRP3 inflammasome functions as a driver of the myelodysplastic syndrome phenotype. Blood 128, 2960–2975 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Sutterwala, F. S. et al. Critical role for NALP3/CIAS1/Cryopyrin in innate and adaptive immunity through its regulation of caspase-1. Immunity 24, 317–327 (2006).

    Article  CAS  PubMed  Google Scholar 

  181. Chen, W. et al. Specific inhibition of NLRP3 in chikungunya disease reveals a role for inflammasomes in alphavirus-induced inflammation. Nat. Microbiol. 2, 1435–1445 (2017).

    Article  CAS  PubMed  Google Scholar 

  182. Irrera, N. et al. Lack of the Nlrp3 inflammasome improves mice recovery following traumatic brain injury. Front. Pharmacol. 8, 459 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Ismael, S., Nasoohi, S. & Ishrat, T. MCC950, the selective NLRP3 inflammasome inhibitor protects mice against traumatic brain injury. J. Neurotrauma 35, 1294–1303 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank L. Franchi for advice during the preparation of this document. E.L. is supported by grants from the Deutsche Forschungsgesellschaft (DFG SFBs 645, 670, 1123; TRRs 83, 57), a grant from the National Institutes of Health (1R01HL112661) and by a European Research Council (ERC) Consolidator grant (InflammAct). E.L. is a member of the excellence cluster ImmunoSensation, which is funded by the DFG.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Matthew S. J. Mangan or Eicke Latz.

Ethics declarations

Competing interests

E.L. is a consultant to IFM Therapeutics. E.J.O., W.R.R., H.M.S. and G.D.G. are employees of IFM Therapeutics.

PowerPoint slides

Glossary

Innate immune memory

Epigenetic reprogramming of innate immune cells following an initial encounter with a pathogen, leading to changed chromatin accessibility and altered transcriptional responsiveness in response to subsequent stimuli.

Antagonistically pleiotropic

A situation in which one gene controls for more than one trait and at least one of these traits is beneficial to the organism's fitness and at least one is detrimental to the organism's fitness.

ASC speck

Multimeric protein aggregates that result from helical fibril formation of ASC that is initiated by the homo-oligomerization of inflammasome proteins.

Cathepsins

A family of cysteine proteases that reside in the lysosomes of cells.

Mitophagy

The deliberate, specific degradation of mitochondria by an autophagic mechanism.

Astrogliosis

An increase in the number of astrocytes that accompanies the death or damage of nearby neuronal cells. The purpose of astrogliosis is likely to limit damage and remove noxious or infectious agents but can lead to scar formation.

Atherosclerosis

A disease in which the lumen of an artery narrows owing to the build-up of a plaque, which, when it ruptures, occludes the vessel and prevents blood flow.

APP/PS1 mouse line

A double-transgenic mouse line that expresses a chimaeric mouse–human amyloid precursor protein and a mutant human presenilin 1, both of which are expressed in central nervous system neurons.

M2-like

A type of macrophage, also known as an alternatively activated macrophage, that is considered anti-inflammatory and is important in wound healing and tissue repair.

Adjuvants

Substances that enhance the body's immune response to an antigen.

Delayed-type hypersensitivity

A cell-mediated immune response to an antigen that takes several days to develop.

Michael acceptors

The accepting molecules in a Michael reaction. The Michael reaction or Michael addition is the nucleophilic addition of a carbanion or another nucleophile to an α,β-unsaturated carbonyl compound.

CEREP

A service platform that provides over 630 validated in vitro pharmacological assays that cover a broad range of targets, including receptors, ion channels, transporters, enzymes and second messengers. These assays can be used to identify lead compounds, to define mechanism of action and to identify off-target activities.

Walker A motif

A type of phosphate-binding protein motif.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mangan, M., Olhava, E., Roush, W. et al. Targeting the NLRP3 inflammasome in inflammatory diseases. Nat Rev Drug Discov 17, 588–606 (2018). https://doi.org/10.1038/nrd.2018.97

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrd.2018.97

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research