Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Optogenetics enlightens neuroscience drug discovery

Key Points

  • Optogenetics uses light and genetics to manipulate and monitor the activities of defined cell populations, and this technique has transformed basic neuroscience research.

  • Optogenetic tools are genetically encoded proteins designed to manipulate and monitor neuronal circuits, and there are two types of proteins used: actuators (proteins that transduce light into neuronal signals for manipulation) and indicators (proteins that transduce neuronal signals into optical signals for monitoring).

  • An optogenetic approach involves light-based (optical) interventions and/or recordings of natural neural activity to elucidate the role of specified neuronal circuit elements in mammalian behaviour.

  • Numerous cognitive and emotional functions have already been studied using optogenetic approaches, including sensory perception, pain, decision-making, preference and avoidance, social interactions, and feeding behaviour; optogenetics has also been used in animal models of neuropsychiatric conditions.

  • Animal models for optogenetically induced disease states may facilitate the evaluation of drug candidates.

  • Optogenetics paves the way to novel therapeutic approaches in which chemistry is replaced by micro-optoelectronics and genetic modification of specific cells and in which modulation of specific neuronal circuits is the central mechanism of action.

Abstract

Optogenetics — the use of light and genetics to manipulate and monitor the activities of defined cell populations — has already had a transformative impact on basic neuroscience research. Now, the conceptual and methodological advances associated with optogenetic approaches are providing fresh momentum to neuroscience drug discovery, particularly in areas that are stalled on the concept of 'fixing the brain chemistry'. Optogenetics is beginning to translate and transit into drug discovery in several key domains, including target discovery, high-throughput screening and novel therapeutic approaches to disease states. Here, we discuss the exciting potential of optogenetic technologies to transform neuroscience drug discovery.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Genetically encoded targetable actuator and reporter proteins that allow the use of light to either control or report electrical activity of neurons.
Figure 2: Cell- and pathway-specific targeting of optogenetic tools.
Figure 3: Anxiety-related projections at the level of whole mouse brain, amygdala and the bed nucleus of stria terminalis.

Similar content being viewed by others

References

  1. Zheng, W., Thorne, N. & McKew, J. C. Phenotypic screens as a renewed approach for drug discovery. Drug Discov. Today 18, 1067–1073 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Belzung, C. & Lemoine, M. Criteria of validity for animal models of psychiatric disorders: focus on anxiety disorders and depression. Biol. Mood Anxiety Disord. 1, 9 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  3. Griebel, G. & Holmes, A. 50 years of hurdles and hope in anxiolytic drug discovery. Nat. Rev. Drug Discov. 12, 667–687 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Cobos, E. J. & Portillo-Salido, E. “Bedside-to-bench” behavioral outcomes in animal models of pain: beyond the evaluation of reflexes. Curr. Neuropharmacol. 11, 560–591 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Simonato, M. et al. The challenge and promise of anti-epileptic therapy development in animal models. Lancet Neurol. 13, 949–960 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  6. Pitkanen, A. et al. Issues related to development of antiepileptogenic therapies. Epilepsia 54 (Suppl. 4), 35–43 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  7. Dauer, W. & Przedborski, S. Parkinson's disease: mechanisms and models. Neuron 39, 889–909 (2003).

    Article  CAS  PubMed  Google Scholar 

  8. Knopfel, T. Genetically encoded optical indicators for the analysis of neuronal circuits. Nat. Rev. Neurosci. 13, 687–700 (2012). An introductory review on light-based circuit-centric approaches in circuit neurosciences.

    Article  CAS  PubMed  Google Scholar 

  9. Boyden, E. S., Zhang, F., Bamberg, E., Nagel, G. & Deisseroth, K. Millisecond-timescale, genetically targeted optical control of neural activity. Nat. Neurosci. 8, 1263–1268 (2005). One of the original descriptions of opsin-based neuromodulation.

    Article  CAS  PubMed  Google Scholar 

  10. Li, X. et al. Fast noninvasive activation and inhibition of neural and network activity by vertebrate rhodopsin and green algae channelrhodopsin. Proc. Natl Acad. Sci. USA 102, 17816–17821 (2005). One of the original descriptions of opsin-based neuromodulation.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Deisseroth, K. et al. Next-generation optical technologies for illuminating genetically targeted brain circuits. J. Neurosci. 26, 10380–10386 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Fenno, L., Yizhar, O. & Deisseroth, K. The development and application of optogenetics. Annu. Rev. Neurosci. 34, 389–412 (2011). An introductory review on optogenetic actuators and their application in basic neurosciences.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Steinberg, E. E., Christoffel, D. J., Deisseroth, K. & Malenka, R. C. Illuminating circuitry relevant to psychiatric disorders with optogenetics. Curr. Opin. Neurobiol. 30, 9–16 (2015). A review on the potential of optogenetic approaches for the investigation of neuropsychiatric disorders.

    Article  CAS  PubMed  Google Scholar 

  14. Hausser, M. Optogenetics: the age of light. Nat. Methods 11, 1012–1014 (2014).

    Article  CAS  PubMed  Google Scholar 

  15. Deisseroth, K. Optogenetics. Nat. Methods 8, 26–29 (2011).

    Article  CAS  PubMed  Google Scholar 

  16. Dugue, G. P., Akemann, W. & Knopfel, T. A comprehensive concept of optogenetics. Prog. Brain Res. 196, 1–28 (2012).

    Article  CAS  PubMed  Google Scholar 

  17. Adamantidis, A. R., Zhang, F., de Lecea, L. & Deisseroth, K. Optogenetics: opsins and optical interfaces in neuroscience. Cold Spring Harb. Protoc. 2014, 815–822 (2014).

    PubMed  Google Scholar 

  18. Zhang, F. et al. Optogenetic interrogation of neural circuits: technology for probing mammalian brain structures. Nat. Protoc. 5, 439–456 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Zhang, F., Aravanis, A. M., Adamantidis, A., de Lecea, L. & Deisseroth, K. Circuit-breakers: optical technologies for probing neural signals and systems. Nat. Rev. Neurosci. 8, 577–581 (2007).

    Article  CAS  PubMed  Google Scholar 

  20. Miesenbock, G. & Kevrekidis, I. G. Optical imaging and control of genetically designated neurons in functioning circuits. Annu. Rev. Neurosci. 28, 533–563 (2005). An early perspective on optogenetics.

    Article  CAS  PubMed  Google Scholar 

  21. Yizhar, O., Fenno, L. E., Davidson, T. J., Mogri, M. & Deisseroth, K. Optogenetics in neural systems. Neuron 71, 9–34 (2011).

    Article  CAS  PubMed  Google Scholar 

  22. Klapoetke, N. C. et al. Independent optical excitation of distinct neural populations. Nat. Methods 11, 338–346 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Chuong, A. S. et al. Noninvasive optical inhibition with a red-shifted microbial rhodopsin. Nat. Neurosci. 17, 1123–1129 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Chow, B. Y. et al. High-performance genetically targetable optical neural silencing by light-driven proton pumps. Nature 463, 98–102 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Govorunova, E. G., Sineshchekov, O. A., Janz, R., Liu, X. & Spudich, J. L. Natural light-gated anion channels: a family of microbial rhodopsins for advanced optogenetics. Science 349, 647–650 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Govorunova, E. G., Sineshchekov, O. A., Li, H., Janz, R. & Spudich, J. L. Characterization of a highly efficient blue-shifted channelrhodopsin from the marine alga Platymonas subcordiformis. J. Biol. Chem. 288, 29911–29922 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Cosentino, C. et al. Optogenetics. Engineering of a light-gated potassium channel. Science 348, 707–710 (2015).

    Article  CAS  PubMed  Google Scholar 

  28. Tamamaki, N. et al. Green fluorescent protein expression and colocalization with calretinin, parvalbumin, and somatostatin in the GAD67-GFP knock-in mouse. J. Comp. Neurol. 467, 60–79 (2003).

    Article  CAS  PubMed  Google Scholar 

  29. Madisen, L. et al. Transgenic mice for intersectional targeting of neural sensors and effectors with high specificity and performance. Neuron 85, 942–958 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Huang, Z. J. & Zeng, H. Genetic approaches to neural circuits in the mouse. Annu. Rev. Neurosci. 36, 183–215 (2013).

    Article  CAS  PubMed  Google Scholar 

  31. Zeng, H. & Madisen, L. Mouse transgenic approaches in optogenetics. Prog. Brain Res. 196, 193–213 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Fenno, L. E. et al. Targeting cells with single vectors using multiple-feature Boolean logic. Nat. Methods 11, 763–772 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Petreanu, L., Huber, D., Sobczyk, A. & Svoboda, K. Channelrhodopsin-2-assisted circuit mapping of long-range callosal projections. Nat. Neurosci. 10, 663–668 (2007).

    Article  CAS  PubMed  Google Scholar 

  34. Deisseroth, K. & Schnitzer, M. J. Engineering approaches to illuminating brain structure and dynamics. Neuron 80, 568–577 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Liu, X. et al. Optogenetic stimulation of a hippocampal engram activates fear memory recall. Nature 484, 381–385 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Zhang, F. et al. Multimodal fast optical interrogation of neural circuitry. Nature 446, 633–639 (2007).

    Article  CAS  PubMed  Google Scholar 

  37. Jorgenson, L. A. et al. The BRAIN Initiative: developing technology to catalyse neuroscience discovery. Philos. Trans. R. Soc. Lond B Biol. Sci. 370 (2015).

  38. Tye, K. M. & Deisseroth, K. Optogenetic investigation of neural circuits underlying brain disease in animal models. Nat. Rev. Neurosci. 13, 251–266 (2012). A review on the potential use of optogenetic approaches in animal models of brain diseases.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Lee, S. H. et al. Activation of specific interneurons improves V1 feature selectivity and visual perception. Nature 488, 379–383 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Iyer, S. M. et al. Virally mediated optogenetic excitation and inhibition of pain in freely moving nontransgenic mice. Nat. Biotech. 32, 274–278 (2014).

    Article  CAS  Google Scholar 

  41. Warden, M. R. et al. A prefrontal cortex-brainstem neuronal projection that controls response to behavioural challenge. Nature 492, 428–432 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Chaudhury, D. et al. Rapid regulation of depression-related behaviours by control of midbrain dopamine neurons. Nature 493, 532–536 (2013).

    Article  CAS  PubMed  Google Scholar 

  43. Felix-Ortiz, A. C. & Tye, K. M. Amygdala inputs to the ventral hippocampus bidirectionally modulate social behavior. J. Neurosci. 34, 586–595 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Allsop, S. A., Vander Weele, C. M., Wichmann, R. & Tye, K. M. Optogenetic insights on the relationship between anxiety-related behaviors and social deficits. Front. Behav. Neurosci. 8, 241 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  45. Carter, M. E., Soden, M. E., Zweifel, L. S. & Palmiter, R. D. Genetic identification of a neural circuit that suppresses appetite. Nature 503, 111–114 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Tye, K. M. et al. Dopamine neurons modulate neural encoding and expression of depression-related behaviour. Nature 493, 537–541 (2013).

    Article  CAS  PubMed  Google Scholar 

  47. Lammel, S., Tye, K. M. & Warden, M. R. Progress in understanding mood disorders: optogenetic dissection of neural circuits. Genes Brain Behav. 13, 38–51 (2014).

    Article  CAS  PubMed  Google Scholar 

  48. Touriño, C., Eban-Rothschild, A. & de Lecea, L. Optogenetics in psychiatric diseases. Curr. Opin. Neurobiol. 23, 430–435 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Felix-Ortiz, A. C. et al. BLA to vHPC inputs modulate anxiety-related behaviors. Neuron 79, 658–664 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Anthony, T. E. et al. Control of stress-induced persistent anxiety by an extra-amygdala septohypothalamic circuit. Cell 156, 522–536 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Kim, S. Y. et al. Diverging neural pathways assemble a behavioural state from separable features in anxiety. Nature 496, 219–223 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Tye, K. M. et al. Amygdala circuitry mediating reversible and bidirectional control of anxiety. Nature 471, 358–362 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Jennings, J. H. et al. Distinct extended amygdala circuits for divergent motivational states. Nature 496, 224–228 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Redondo, R. L. et al. Bidirectional switch of the valence associated with a hippocampal contextual memory engram. Nature 513, 426–430 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Bero, A. W. et al. Early remodeling of the neocortex upon episodic memory encoding. Proc. Natl Acad. Sci. USA 111, 11852–11857 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Ramirez, S., Tonegawa, S. & Liu, X. Identification and optogenetic manipulation of memory engrams in the hippocampus. Front. Behav. Neurosci. 7, 226 (2013).

    PubMed  Google Scholar 

  57. Miyazaki, K. W. et al. Optogenetic activation of dorsal raphe serotonin neurons enhances patience for future rewards. Curr. Biol. 24, 2033–2040 (2014).

    Article  CAS  PubMed  Google Scholar 

  58. Irmak, S. O. & de Lecea. L. Basal forebrain cholinergic modulation of sleep transitions. Sleep 37, 1941–1951 (2014).

    Article  PubMed  Google Scholar 

  59. Lerner, T. N. et al. Intact-brain analyses reveal distinct information carried by SNc dopamine subcircuits. Cell 162, 635–647 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Deisseroth, K., Etkin, A. & Malenka, R. C. Optogenetics and the circuit dynamics of psychiatric disease. JAMA 313, 2019–2020 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  61. Luthi, A. & Luscher, C. Pathological circuit function underlying addiction and anxiety disorders. Nat. Neurosci. 17, 1635–1643 (2014).

    Article  CAS  PubMed  Google Scholar 

  62. Salzman, C. D. & Fusi, S. Emotion, cognition, and mental state representation in amygdala and prefrontal cortex. Annu. Rev. Neurosci. 33, 173–202 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Dolan, R. J. Emotion, cognition, and behavior. Science 298, 1191–1194 (2002).

    Article  CAS  PubMed  Google Scholar 

  64. Bressler, S. L. & Menon, V. Large-scale brain networks in cognition: emerging methods and principles. Trends Cogn. Sci. 14, 277–290 (2010).

    Article  PubMed  Google Scholar 

  65. Varela, F., Lachaux, J. P., Rodriguez, E. & Martinerie, J. The brainweb: phase synchronization and large-scale integration. Nat. Rev. Neurosci. 2, 229–239 (2001).

    Article  CAS  PubMed  Google Scholar 

  66. Steinbeck, J. A. et al. Optogenetics enables functional analysis of human embryonic stem cell-derived grafts in a Parkinson's disease model. Nat. Biotech. 33, 204–209 (2015).

    Article  CAS  Google Scholar 

  67. Doudna, J. A. & Charpentier, E. Genome editing. The new frontier of genome engineering with CRISPR–Cas9. Science 346, 1258096 (2014).

    Article  CAS  PubMed  Google Scholar 

  68. Maggio, I. & Goncalves, M. A. Genome editing at the crossroads of delivery, specificity, and fidelity. Trends Biotechnol. 33, 280–291 (2015).

    Article  CAS  PubMed  Google Scholar 

  69. Xiao-Jie, L., Hui-Ying, X., Zun-Ping, K., Jin-Lian, C. & Li-Juan, J. CRISPR–Cas9: a new and promising player in gene therapy. J. Med. Genet. 52, 289–296 (2015).

    Article  CAS  PubMed  Google Scholar 

  70. Ding, Q. et al. Permanent alteration of PCSK9 with in vivo CRISPR-Cas9 genome editing. Circ. Res. 115, 488–492 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Polstein, L. R. & Gersbach, C. A. A light-inducible CRISPR–Cas9 system for control of endogenous gene activation. Nat. Chem. Biol. 11, 198–200 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Konermann, S. et al. Optical control of mammalian endogenous transcription and epigenetic states. Nature 500, 472–476 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Wendland, J. R. & Ehlers, M. D. Translating neurogenomics into new medicines. Biol. Psychiatry http://dx.doi.org/10.1016/j.biopsych.2015.04.027 (2015).

  74. Noebels, J. Pathway-driven discovery of epilepsy genes. Nat. Neurosci. 18, 344–350 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Wang, H., Pati, S., Pozzo-Miller, L. & Doering, L. C. Targeted pharmacological treatment of autism spectrum disorders: fragile X and Rett syndromes. Front. Cell Neurosci. 9, 55 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Abrahams, B. S. & Geschwind, D. H. Connecting genes to brain in the autism spectrum disorders. Arch. Neurol. 67, 395–399 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  77. Lotharius, J. & Brundin, P. Pathogenesis of Parkinson's disease: dopamine, vesicles and α-synuclein. Nat. Rev. Neurosci. 3, 932–942 (2002).

    Article  CAS  PubMed  Google Scholar 

  78. Berke, J. D. & Hyman, S. E. Addiction, dopamine, and the molecular mechanisms of memory. Neuron 25, 515–532 (2000).

    Article  CAS  PubMed  Google Scholar 

  79. Nutt, D. J., Lingford-Hughes, A., Erritzoe, D. & Stokes, P. R. The dopamine theory of addiction: 40 years of highs and lows. Nat. Rev. Neurosci. 16, 305–312 (2015).

    Article  CAS  PubMed  Google Scholar 

  80. Howes, O. D. et al. The nature of dopamine dysfunction in schizophrenia and what this means for treatment. Arch. Gen. Psychiatry 69, 776–786 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Barbeau, A. L-dopa therapy in Parkinson's disease: a critical review of nine years' experience. Can. Med. Assoc. J. 101, 59–68 (1969).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Cools, R., Barker, R. A., Sahakian, B. J. & Robbins, T. W. L-dopa medication remediates cognitive inflexibility, but increases impulsivity in patients with Parkinson's disease. Neuropsychologia 41, 1431–1441 (2003).

    Article  PubMed  Google Scholar 

  83. Lawrence, A. D., Evans, A. H. & Lees, A. J. Compulsive use of dopamine replacement therapy in Parkinson's disease: reward systems gone awry? Lancet Neurol. 2, 595–604 (2003).

    Article  CAS  PubMed  Google Scholar 

  84. Jenner, P. Dopamine agonists in Parkinson's disease — focus on non-motor symptoms. Eur. J. Neurol. 15 (Suppl. 2), 1 (2008).

    Article  PubMed  Google Scholar 

  85. Noyes, K., Liu, H. & Holloway, R. G. What is the risk of developing parkinsonism following neuroleptic use? Neurology 66, 941–943 (2006).

    Article  PubMed  Google Scholar 

  86. Hall, R. A., Jackson, R. B. & Swain, J. M. Neurotoxic reactions resulting from chlorpromazine administration. J. Am. Med. Assoc. 161, 214–218 (1956).

    Article  CAS  PubMed  Google Scholar 

  87. Araragi, N. & Lesch, K. P. Serotonin (5-HT) in the regulation of depression-related emotionality: insight from 5-HT transporter and tryptophan hydroxylase-2 knockout mouse models. Curr. Drug Targets 14, 549–570 (2013).

    Article  CAS  PubMed  Google Scholar 

  88. Gartside, S. E., Umbers, V., Hajos, M. & Sharp, T. Interaction between a selective 5-HT1A receptor antagonist and an SSRI in vivo: effects on 5-HT cell firing and extracellular 5-HT. Br. J. Pharmacol. 115, 1064–1070 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Trivedi, M. H. et al. Medication augmentation after the failure of SSRIs for depression. N. Engl. J. Med. 354, 1243–1252 (2006).

    Article  CAS  PubMed  Google Scholar 

  90. Rush, A. J. et al. Bupropion-SR, sertraline, or venlafaxine-XR after failure of SSRIs for depression. N. Engl. J. Med. 354, 1231–1242 (2006).

    Article  CAS  PubMed  Google Scholar 

  91. Mayberg, H. S. et al. Reciprocal limbic-cortical function and negative mood: converging PET findings in depression and normal sadness. Am. J. Psychiatry 156, 675–682 (1999).

    CAS  PubMed  Google Scholar 

  92. Floresco, S. B., West, A. R., Ash, B., Moore, H. & Grace, A. A. Afferent modulation of dopamine neuron firing differentially regulates tonic and phasic dopamine transmission. Nat. Neurosci. 6, 968–973 (2003).

    Article  CAS  PubMed  Google Scholar 

  93. Rubenstein, J. L. & Merzenich, M. M. Model of autism: increased ratio of excitation/inhibition in key neural systems. Genes Brain Behav. 2, 255–267 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Radhu, N. et al. A meta-analysis of cortical inhibition and excitability using transcranial magnetic stimulation in psychiatric disorders. Clin. Neurophysiol. 124, 1309–1320 (2013).

    Article  PubMed  Google Scholar 

  95. Zhang, Z. & Sun, Q. Q. The balance between excitation and inhibition and functional sensory processing in the somatosensory cortex. Int. Rev. Neurobiol. 97, 305–333 (2011).

    Article  CAS  PubMed  Google Scholar 

  96. Carter, M. E., de Lecea, L. & Adamantidis, A. Functional wiring of hypocretin and LC-NE neurons: implications for arousal. Front. Behav. Neurosci. 7, 43 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  97. Williams, R. H. et al. Optogenetic-mediated release of histamine reveals distal and autoregulatory mechanisms for controlling arousal. J. Neurosci. 34, 6023–6029 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Weiler, H. T. et al. Differential modulation of hippocampal signal transfer by tuberomammillary nucleus stimulation in freely moving rats dependent on behavioral state. Synapse 28, 294–301 (1998).

    Article  CAS  PubMed  Google Scholar 

  99. Dobolyi, A. et al. Receptors of peptides as therapeutic targets in epilepsy research. Curr. Med. Chem. 21, 764–787 (2014).

    Article  CAS  PubMed  Google Scholar 

  100. Schone, C. et al. Optogenetic probing of fast glutamatergic transmission from hypocretin/orexin to histamine neurons in situ. J. Neurosci. 32, 12437–12443 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Carter, M. E., Han, S. & Palmiter, R. D. Parabrachial calcitonin gene-related peptide neurons mediate conditioned taste aversion. J. Neurosci. 35, 4582–4586 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Carter, M. E. et al. Tuning arousal with optogenetic modulation of locus coeruleus neurons. Nat. Neurosci. 13, 1526–1533 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Aston-Jones, G. & Bloom, F. E. Activity of norepinephrine-containing locus coeruleus neurons in behaving rats anticipates fluctuations in the sleep-waking cycle. J. Neurosci. 1, 876–886 (1981).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Adamantidis, A. & Carter, M. C. & de Lecea, L. Optogenetic deconstruction of sleep–wake circuitry in the brain. Front. Mol. Neurosci. 2, 31 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  105. Carter, M. E. et al. Mechanism for hypocretin-mediated sleep-to-wake transitions. Proc. Natl Acad. Sci. USA 109, E2635–E2644 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Bonnavion, P., Jackson, A. C. & Carter, M. E. & de Lecea L. Antagonistic interplay between hypocretin and leptin in the lateral hypothalamus regulates stress responses. Nat. Commun. 6, 6266 (2015).

    Article  CAS  PubMed  Google Scholar 

  107. Saper, C. B., Chou, T. C. & Scammell, T. E. The sleep switch: hypothalamic control of sleep and wakefulness. Trends Neurosci. 24, 726–731 (2001).

    Article  CAS  PubMed  Google Scholar 

  108. Shan, L., Bao, A. M. & Swaab, D. F. The human histaminergic system in neuropsychiatric disorders. Trends Neurosci. 38, 167–177 (2015).

    Article  CAS  PubMed  Google Scholar 

  109. Coppen, A. The biochemistry of affective disorders. Br. J. Psychiatry 113, 1237–1264 (1967).

    Article  CAS  PubMed  Google Scholar 

  110. Liu, Z. et al. Dorsal raphe neurons signal reward through 5-HT and glutamate. Neuron 81, 1360–1374 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Ito, H. et al. Analysis of sleep disorders under pain using an optogenetic tool: possible involvement of the activation of dorsal raphe nucleus-serotonergic neurons. Mol. Brain 6, 59 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Ohmura, Y., Tanaka, K. F., Tsunematsu, T., Yamanaka, A. & Yoshioka, M. Optogenetic activation of serotonergic neurons enhances anxiety-like behaviour in mice. Int. J. Neuropsychopharmacol. 17, 1777–1783 (2014).

    Article  CAS  PubMed  Google Scholar 

  113. Dugue, G. P. et al. Optogenetic recruitment of dorsal raphe serotonergic neurons acutely decreases mechanosensory responsivity in behaving mice. PLoS ONE 9, e105941 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Alford, S. C., Wu, J., Zhao, Y., Campbell, R. E. & Knopfel, T. Optogenetic reporters. Biol. Cell 105, 14–29 (2013).

    Article  CAS  PubMed  Google Scholar 

  115. Prigge, M., Rosler, A. & Hegemann, P. Fast, repetitive light-activation of CaV3.2 using channelrhodopsin 2. Channels (Austin.) 4, 241–247 (2010).

    Article  CAS  Google Scholar 

  116. Agus, V. et al. Bringing the light to high throughput screening: use of optogenetic tools for the development of recombinant cellular assays. Proc. SPIE 9305, 93052T (2015).

    Article  Google Scholar 

  117. Esch, E. W., Bahinski, A. & Huh, D. Organs-on-chips at the frontiers of drug discovery. Nat. Rev. Drug Discov. 14, 248–260 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Birmingham, K. et al. Bioelectronic medicines: a research roadmap. Nat. Rev. Drug Discov. 13, 399–400 (2014).

    Article  CAS  PubMed  Google Scholar 

  119. Okun, M. S. Deep-brain stimulation — entering the era of human neural-network modulation. N. Engl. J. Med. 371, 1369–1373 (2014).

    Article  PubMed  Google Scholar 

  120. Deep-Brain Stimulation for Parkinson's Disease Study Group. Deep-brain stimulation of the subthalamic nucleus or the pars interna of the globus pallidus in Parkinson's disease. N. Engl. J. Med. 345, 956–963 (2001).

  121. Mayberg, H. S. et al. Deep brain stimulation for treatment-resistant depression. Neuron 45, 651–660 (2005).

    Article  CAS  PubMed  Google Scholar 

  122. Schlaepfer, T. E., Bewernick, B. H., Kayser, S., Hurlemann, R. & Coenen, V. A. Deep brain stimulation of the human reward system for major depression — rationale, outcomes and outlook. Neuropsychopharmacology 39, 1303–1314 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  123. Ressler, K. J. & Mayberg, H. S. Targeting abnormal neural circuits in mood and anxiety disorders: from the laboratory to the clinic. Nat. Neurosci. 10, 1116–1124 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Gradinaru, V., Mogri, M., Thompson, K. R., Henderson, J. M. & Deisseroth, K. Optical deconstruction of parkinsonian neural circuitry. Science 324, 354–359 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Creed, M., Pascoli, V. J. & Luscher, C. Addiction therapy. Refining deep brain stimulation to emulate optogenetic treatment of synaptic pathology. Science 347, 659–664 (2015).

    Article  CAS  PubMed  Google Scholar 

  126. Valjent, E. et al. Mechanisms of locomotor sensitization to drugs of abuse in a two-injection protocol. Neuropsychopharmacology 35, 401–415 (2010).

    Article  CAS  PubMed  Google Scholar 

  127. Pascoli, V. et al. Contrasting forms of cocaine-evoked plasticity control components of relapse. Nature 509, 459–464 (2014).

    Article  CAS  PubMed  Google Scholar 

  128. Pascoli, V., Turiault, M. & Luscher, C. Reversal of cocaine-evoked synaptic potentiation resets drug-induced adaptive behaviour. Nature 481, 71–75 (2012).

    Article  CAS  Google Scholar 

  129. Shabel, S. J., Proulx, C. D., Piriz, J. & Malinow, R. Mood regulation. GABA/glutamate co-release controls habenula output and is modified by antidepressant treatment. Science 345, 1494–1498 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Sulzer, D. et al. Dopamine neurons make glutamatergic synapses in vitro. J. Neurosci. 18, 4588–4602 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Trudeau, L. E. et al. The multilingual nature of dopamine neurons. Prog. Brain Res. 211, 141–164 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Trudeau, L. E. Glutamate co-transmission as an emerging concept in monoamine neuron function. J. Psychiatry Neurosci. 29, 296–310 (2004).

    PubMed  PubMed Central  Google Scholar 

  133. Perucca, P. & Gilliam, F. G. Adverse effects of antiepileptic drugs. Lancet Neurol. 11, 792–802 (2012).

    Article  CAS  PubMed  Google Scholar 

  134. Krook-Magnuson, E. & Soltesz, I. Beyond the hammer and the scalpel: selective circuit control for the epilepsies. Nat. Neurosci. 18, 331–338 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. de Tisi, J. et al. The long-term outcome of adult epilepsy surgery, patterns of seizure remission, and relapse: a cohort study. Lancet 378, 1388–1395 (2011).

    Article  PubMed  Google Scholar 

  136. Wykes, R. C. et al. Optogenetic and potassium channel gene therapy in a rodent model of focal neocortical epilepsy. Sci. Transl. Med. 4, 161ra152 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Krook-Magnuson, E., Armstrong, C., Oijala, M. & Soltesz, I. On-demand optogenetic control of spontaneous seizures in temporal lobe epilepsy. Nat. Commun. 4, 1376 (2013).

    Article  CAS  PubMed  Google Scholar 

  138. Paz, J. T. et al. Closed-loop optogenetic control of thalamus as a tool for interrupting seizures after cortical injury. Nat. Neurosci. 16, 64–70 (2013).

    Article  CAS  PubMed  Google Scholar 

  139. Grosenick, L., Marshel, J. H. & Deisseroth, K. Closed-loop and activity-guided optogenetic control. Neuron 86, 106–139 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Barrett, J. M., Berlinguer-Palmini, R. & Degenaar, P. Optogenetic approaches to retinal prosthesis. Vis. Neurosci. 31, 345–354 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  141. Picaud, S. & Sahel, J. A. Retinal prostheses: clinical results and future challenges. C. R. Biol. 337, 214–222 (2014).

    Article  PubMed  Google Scholar 

  142. Pearson, R. A. et al. Restoration of vision after transplantation of photoreceptors. Nature 485, 99–103 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Bi, A. et al. Ectopic expression of a microbial-type rhodopsin restores visual responses in mice with photoreceptor degeneration. Neuron 50, 23–33 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Busskamp, V. et al. Genetic reactivation of cone photoreceptors restores visual responses in retinitis pigmentosa. Science 329, 413–417 (2010).

    Article  CAS  PubMed  Google Scholar 

  145. Lagali, P. S. et al. Light-activated channels targeted to ON bipolar cells restore visual function in retinal degeneration. Nat. Neurosci. 11, 667–675 (2008).

    Article  CAS  PubMed  Google Scholar 

  146. Alilain, W. J. et al. Light-induced rescue of breathing after spinal cord injury. J. Neurosci. 28, 11862–11870 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Bryson, J. B. et al. Optical control of muscle function by transplantation of stem cell-derived motor neurons in mice. Science 344, 94–97 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Garcia-Bennett, A. E. et al. Delivery of differentiation factors by mesoporous silica particles assists advanced differentiation of transplanted murine embryonic stem cells. Stem Cells Transl. Med. 2, 906–915 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Apati, A. et al. Characterization of calcium signals in human embryonic stem cells and in their differentiated offspring by a stably integrated calcium indicator protein. Cell Signal. 25, 752–759 (2013).

    Article  CAS  PubMed  Google Scholar 

  150. Wang, S. J., Weng, C. H., Xu, H. W., Zhao, C. J. & Yin, Z. Q. Effect of optogenetic stimulus on the proliferation and cell cycle progression of neural stem cells. J. Membr. Biol. 247, 493–500 (2014).

    Article  CAS  PubMed  Google Scholar 

  151. Stroh, A. et al. Tracking stem cell differentiation in the setting of automated optogenetic stimulation. Stem Cells 29, 78–88 (2010).

    Article  CAS  Google Scholar 

  152. Flax, J. D. et al. Engraftable human neural stem cells respond to developmental cues, replace neurons, and express foreign genes. Nat. Biotech. 16, 1033–1039 (1998).

    Article  CAS  Google Scholar 

  153. Deisseroth, K. et al. Excitation-neurogenesis coupling in adult neural stem/progenitor cells. Neuron 42, 535–552 (2004).

    Article  CAS  PubMed  Google Scholar 

  154. Famm, K., Litt, B., Tracey, K. J., Boyden, E. S. & Slaoui, M. Drug discovery: a jump-start for electroceuticals. Nature 496, 159–161 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Gradinaru, V. et al. Molecular and cellular approaches for diversifying and extending optogenetics. Cell 141, 154–165 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Mattis, J. et al. Principles for applying optogenetic tools derived from direct comparative analysis of microbial opsins. Nat. Methods 9, 159–172 (2012).

    Article  CAS  Google Scholar 

  157. Gerfen, C. R., Paletzki, R. & Heintz, N. GENSAT BAC Cre-recombinase driver lines to study the functional organization of cerebral cortical and basal ganglia circuits. Neuron 80, 1368–1383 (2013).

    Article  CAS  PubMed  Google Scholar 

  158. Fishell, G. & Heintz, N. The neuron identity problem: form meets function. Neuron 80, 602–612 (2013).

    Article  CAS  PubMed  Google Scholar 

  159. Warden, M. R., Cardin, J. A. & Deisseroth, K. Optical neural interfaces. Annu. Rev. Biomed. Eng. 16, 103–129 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Rossi, M. A. et al. A wirelessly controlled implantable LED system for deep brain optogenetic stimulation. Front. Integr. Neurosci. 9, 8 (2015).

    PubMed  PubMed Central  Google Scholar 

  161. Bin, F., Ki, Y. K., Weber, A. J. & Wen, L. An implantable, miniaturized SU-8 optical probe for optogenetics-based deep brain stimulation. Conf. Proc. IEEE Eng. Med. Biol. Soc. 2014, 450–453 (2014).

    Google Scholar 

  162. Urban, D. J. & Roth, B. L. DREADDs (designer receptors exclusively activated by designer drugs): chemogenetic tools with therapeutic utility. Annu. Rev. Pharmacol. Toxicol. 55, 399–417 (2015). A description of chemogenetic approaches to target drugs to genetically specified cell classes.

    Article  CAS  PubMed  Google Scholar 

  163. Maguire, C. A., Ramirez, S. H., Merkel, S. F., Sena-Esteves, M. & Breakefield, X. O. Gene therapy for the nervous system: challenges and new strategies. Neurotherapeutics 11, 817–839 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Izpisua Belmonte, J. C. et al. Brains, genes, and primates. Neuron 86, 617–631 (2015).

    Article  CAS  PubMed  Google Scholar 

  165. Diester, I. et al. An optogenetic toolbox designed for primates. Nat. Neurosci. 14, 387–397 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Dai, J. et al. Modified toolbox for optogenetics in the nonhuman primate. Neurophotonics 2, 031202 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  167. Zhang, F. et al. The microbial opsin family of optogenetic tools. Cell 147, 1446–1457 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Airan, R. D., Thompson, K. R., Fenno, L. E., Bernstein, H. & Deisseroth, K. Temporally precise in vivo control of intracellular signalling. Nature 458, 1025–1029 (2009).

    Article  CAS  PubMed  Google Scholar 

  169. Hochbaum, D. R. et al. All-optical electrophysiology in mammalian neurons using engineered microbial rhodopsins. Nat. Methods 11, 825–833 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Rickgauer, J. P., Deisseroth, K. & Tank, D. W. Simultaneous cellular-resolution optical perturbation and imaging of place cell firing fields. Nat. Neurosci. 17, 1816–1824 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Packer, A. M., Russell, L. E., Dalgleish, H. W. & Hausser, M. Simultaneous all-optical manipulation and recording of neural circuit activity with cellular resolution in vivo. Nat. Methods 12, 140–146 (2015).

    Article  CAS  PubMed  Google Scholar 

  172. Vogt, C. C. et al. Systemic gene transfer enables optogenetic pacing of mouse hearts. Cardiovasc. Res. 106, 338–343 (2015).

    Article  CAS  PubMed  Google Scholar 

  173. Bruegmann, T. et al. Optogenetic control of heart muscle in vitro and in vivo. Nat. Methods 7, 897–900 (2010).

    Article  CAS  PubMed  Google Scholar 

  174. Ambrosi, C. M., Klimas, A., Yu, J. & Entcheva, E. Cardiac applications of optogenetics. Prog. Biophys. Mol. Biol. 115, 294–304 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Quinn, T. A. et al. Cell-specific expression of voltage-sensitive protein confirms cardiac myocyte to non-myocyte electrotonic coupling in healed murine infarct border tissue. Circulation. 130 (Suppl. 2), A11749 (2014).

    Google Scholar 

  176. Reinbothe, T. M., Safi, F., Axelsson, A. S., Mollet, I. G. & Rosengren, A. H. Optogenetic control of insulin secretion in intact pancreatic islets with β-cell-specific expression of channelrhodopsin-2. Islets 6, e28095 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  177. Nagel, G. et al. Channelrhodopsin-2, a directly light-gated cation-selective membrane channel. Proc. Natl Acad. Sci. USA 100, 13940–13945 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Knopfel, T., Gallero-Salas, Y. & Song, C. Genetically encoded voltage indicators for large scale cortical imaging come of age. Curr. Opin. Chem. Biol. 27, 75–83 (2015).

    Article  CAS  PubMed  Google Scholar 

  179. Mishina, Y., Mutoh, H., Song, C. & Knopfel, T. Exploration of genetically encoded voltage indicators based on a chimeric voltage sensing domain. Front. Mol. Neurosci. 7, 78 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Knopfel, T., Diez-Garcia, J. & Akemann, W. Optical probing of neuronal circuit dynamics: genetically encoded versus classical fluorescent sensors. Trends Neurosciences 29, 160–166 (2006).

    Article  CAS  Google Scholar 

  181. Broussard, G. J., Liang, R. & Tian, L. Monitoring activity in neural circuits with genetically encoded indicators. Front. Mol. Neurosci. 7, 97 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  182. Chen, T. W. et al. Ultrasensitive fluorescent proteins for imaging neuronal activity. Nature 499, 295–300 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Akemann, W., Song, C., Mutoh, H. & Knopfel, T. Route to genetically targeted optical electrophysiology: development and applications of voltage-sensitive fluorescent proteins. Neurophotonics 2, 021008 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Rose, T., Goltstein, P. M., Portugues, R. & Griesbeck, O. Putting a finishing touch on GECIs. Front. Mol. Neurosci. 7, 88 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors acknowledge D. Nutt and P. M. Matthews and two anonymous expert reviewers for critically reading the manuscript and their many helpful suggestions. The authors also acknowledge the many other important contributions from the optogenetics community that, regrettably, could not be included in the present review owing to focus and space constraints.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Knöpfel.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

PowerPoint slides

Glossary

Neuronal circuits

Functional entities of interconnected neurons that typically include both excitatory and inhibitory neurons.

Systems of circuits

The functional integration of local circuits; for example, sensory motor integration involves the system of sensory and motor circuitries.

PET and functional MRI imaging

PET and functional MRI are imaging modalities that produce a three-dimensional image of functional processes in the body. PET uses a radioactive substance and functional MRI uses strong magnetic fields and radio waves.

Forced swim test

The forced swim test is a rodent behavioural test used for the evaluation of endurance and motivation. This test is traditionally used to evaluate experimental manipulations that are aimed at rendering or preventing depressive-like states.

Deep-brain stimulation

(DBS). A neurosurgical procedure involving the implantation of electrodes, to electrically stimulate specific parts of the brain for the treatment of movement and neuropsychiatric disorders.

Locomotor sensitization

The locomotor response induced by acute drug administration, which is progressively augmented with repeated administration. This technique is used to evaluate addictive drug effects.

Recombinase

An enzyme that catalyses the recombination between two specific short DNA sequences (loxP sites in the case of the most widely used Cre recombinase), leading to excision or inversion of the intervening sequence. Genes that are artificially flanked with loxP sites are said to be 'floxed'. Recombination occurs if the cells both carry the floxed genes and express the recombinase. Expression of a recombinase in specific cell classes can be used to precisely target an optogenetic tool to these cells.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, C., Knöpfel, T. Optogenetics enlightens neuroscience drug discovery. Nat Rev Drug Discov 15, 97–109 (2016). https://doi.org/10.1038/nrd.2015.15

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrd.2015.15

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research