Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Fusions in solid tumours: diagnostic strategies, targeted therapy, and acquired resistance

Key Points

  • Oncogenic gene fusions are common in patients with solid tumours and occur across a wide spectrum of tumour types

  • Common methods of fusion detection used in the clinic include break-apart fluorescence in situ hybridization (FISH), immunohistochemistry, and next-generation sequencing

  • Gene fusions frequently involve tyrosine kinases and can cause constitutive kinase activation, augmentation of downstream signalling, and tumour proliferation

  • Targeted therapies are remarkably effective and are approved for patients with fusions involving ALK, ROS1, and PDGFB, and show promise in tumours harbouring fusions in RET, NTRK1/2/3, FGFR1/2/3, and BRAF/CRAF

  • Despite the success of tyrosine-kinase inhibitors (TKIs) in treating tumours with kinase fusions, resistance often develops owing to secondary mutations that disrupt drug binding

  • Treatment with later-generation TKIs can overcome acquired resistance and lead to improved outcomes for patients

Abstract

Structural gene rearrangements resulting in gene fusions are frequent events in solid tumours. The identification of certain activating fusions can aid in the diagnosis and effective treatment of patients with tumours harbouring these alterations. Advances in the techniques used to identify fusions have enabled physicians to detect these alterations in the clinic. Targeted therapies directed at constitutively activated oncogenic tyrosine kinases have proven remarkably effective against cancers with fusions involving ALK, ROS1, or PDGFB, and the efficacy of this approach continues to be explored in malignancies with RET, NTRK1/2/3, FGFR1/2/3, and BRAF/CRAF fusions. Nevertheless, prolonged treatment with such tyrosine-kinase inhibitors (TKIs) leads to the development of acquired resistance to therapy. This resistance can be mediated by mutations that alter drug binding, or by the activation of bypass pathways. Second-generation and third-generation TKIs have been developed to overcome resistance, and have variable levels of activity against tumours harbouring individual mutations that confer resistance to first-generation TKIs. The rational sequential administration of different inhibitors is emerging as a new treatment paradigm for patients with tumours that retain continued dependency on the downstream kinase of interest.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Discovery of oncogenic fusions.
Figure 2: Structural modelling of putative targeted therapy resistance mutations.
Figure 3: Activity profile of kinase inhibitors targeting specific resistance mutations.
Figure 4: Distribution of kinase fusions across primary tumour sites.

Similar content being viewed by others

References

  1. Stransky, N., Cerami, E., Schalm, S., Kim, J. L. & Lengauer, C. The landscape of kinase fusions in cancer. Nat. Commun. 5, 4846 (2014).

    CAS  PubMed  Google Scholar 

  2. Mitelman, F., Johansson, B. & Mertens, F. The impact of translocations and gene fusions on cancer causation. Nat. Rev. Cancer 7, 233–245 (2007).

    CAS  PubMed  Google Scholar 

  3. Nowell, P. & Hungerford, D. Minute chromosome in human chronic granulocytic leukemia. Science 132, 1497–1497 (1960).

    Google Scholar 

  4. Rowley, J. D. A new consistent chromosomal abnormality in chronic myelogenous leukaemia identified by quinacrine fluorescence and Giemsa staining. Nature 243, 290–293 (1973).

    CAS  PubMed  Google Scholar 

  5. Mertens, F., Johansson, B., Fioretos, T. & Mitelman, F. The emerging complexity of gene fusions in cancer. Nat. Rev. Cancer 15, 371–381 (2015).

    CAS  PubMed  Google Scholar 

  6. Mark, J., Dahlenfors, R., Ekedahl, C. & Stenman, G. The mixed salivary gland tumor — a normally benign human neoplasm frequently showing specific chromosomal abnormalities. Cancer Genet. Cytogenet. 2, 231–241 (1980).

    Google Scholar 

  7. Kas, K. et al. Promoter swapping between the genes for a novel zinc finger protein and β-catenin in pleiomorphic adenomas with t(3;8)(p21;q12) translocations. Nat. Genet. 15, 170–174 (1997).

    CAS  PubMed  Google Scholar 

  8. Aurias, A., Rimbaut, C., Buffe, D., Dubousset, J. & Mazabraud, A. Chromosomal translocations in Ewing's sarcoma. N. Engl. J. Med. 309, 496–497 (1983).

    Google Scholar 

  9. Turc-Carel, C., Philip, I., Berger, M., Philip, T. & Lenoir, G. Chromosomal translocations in Ewing's sarcoma. N. Engl. J. Med. 309, 497–498 (1983).

    Google Scholar 

  10. Delattre, O. et al. Gene fusion with an ETS DNA-binding domain caused by chromosome translocation in human tumours. Nature 359, 162–165 (1992).

    CAS  PubMed  Google Scholar 

  11. de Jong, B., Molenaar, I. M., Leeuw, J. A., Idenberg, V. J. & Oosterhuis, J. W. Cytogenetics of a renal adenocarcinoma in a 2-year-old child. Cancer Genet. Cytogenet. 21, 165–169 (1986).

    CAS  PubMed  Google Scholar 

  12. Stenman, G., Sandros, J., Dahlenfors, R., Juberg-Ode, M. & Mark, J. 6q- and loss of the Y chromosome — two common deviations in malignant human salivary gland tumors. Cancer Genet. Cytogenet. 22, 283–293 (1986).

    CAS  PubMed  Google Scholar 

  13. Sidhar, S. K. et al. The t(X;1)(p11.2;q21.2) translocation in papillary renal cell carcinoma fuses a novel gene PRCC to the TFE3 transcription factor gene. Hum. Mol. Genet. 5, 1333–1338 (1996).

    CAS  PubMed  Google Scholar 

  14. Persson, M. et al. Recurrent fusion of MYB and NFIB transcription factor genes in carcinomas of the breast and head and neck. Proc. Natl Acad. Sci. USA 106, 18740–18744 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Langer-Safer, P. R., Levine, M. & Ward, D. C. Immunological method for mapping genes on Drosophila polytene chromosomes. Proc. Natl Acad. Sci. USA 79, 4381–4385 (1982).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Bongarzone, I. et al. High frequency of activation of tyrosine kinase oncogenes in human papillary thyroid carcinoma. Oncogene 4, 1457–1462 (1989).

    CAS  PubMed  Google Scholar 

  17. Greco, A., Mariani, C., Miranda, C., Pagliardini, S. & Pierotti, M. A. Characterization of the NTRK1 genomic region involved in chromosomal rearrangements generating TRK oncogenes. Genomics 18, 397–400 (1993).

    CAS  PubMed  Google Scholar 

  18. Grieco, M. et al. PTC is a novel rearranged form of the ret proto-oncogene and is frequently detected in vivo in human thyroid papillary carcinomas. Cell 60, 557–563 (1990).

    CAS  PubMed  Google Scholar 

  19. Soda, M. et al. Identification of the transforming EML4-ALK fusion gene in non-small-cell lung cancer. Nature 448, 561–566 (2007).

    CAS  PubMed  Google Scholar 

  20. Fusco, A. et al. A new oncogene in human thyroid papillary carcinomas and their lymph-nodal metastases. Nature 328, 170–172 (1987).

    CAS  PubMed  Google Scholar 

  21. Tomlins, S. A. et al. Recurrent fusion of TMPRSS2 and ETS transcription factor genes in prostate cancer. Science 310, 644–648 (2005).

    CAS  PubMed  Google Scholar 

  22. Meyerson, M., Gabriel, S. & Getz, G. Advances in understanding cancer genomes through second-generation sequencing. Nat. Rev. Genet. 11, 685–696 (2010).

    CAS  PubMed  Google Scholar 

  23. Archer. Archer FusionPlex. ArcherDX http://archerdx.com/fusionplex-assays/ (2017).

  24. Mitelman, F., Johansson, B. & Mertens, F. Mitelman Database of Chromosome Aberrations and Gene Fusions in Cancer. https://ulib.iupui.edu/databases/mitelman-database-chromosome-aberrations-and-gene-fusions-cancer (2014).

  25. The Jackson Laboratory. TCGA fusion gene data portal: landscape of cancer-associated fusions using the pipeline for RNA sequencing data analysis. The Jackson Laboratory http://54.84.12.177/PanCanFusV2/ (2017).

  26. Bourgon, R. et al. High-throughput detection of clinically relevant mutations in archived tumor samples by multiplexed PCR and next-generation sequencing. Clin. Cancer Res. 20, 2080–2091 (2014).

    CAS  PubMed  Google Scholar 

  27. Lou, D. I. et al. High-throughput DNA sequencing errors are reduced by orders of magnitude using circle sequencing. Proc. Natl Acad. Sci. USA 110, 19872–19877 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Hedegaard, J. et al. Next-generation sequencing of RNA and DNA isolated from paired fresh-frozen and formalin-fixed paraffin-embedded samples of human cancer and normal tissue. PLoS ONE 9, e98187 (2014).

    PubMed  PubMed Central  Google Scholar 

  29. Ozsolak, F. & Milos, P. M. RNA sequencing: advances, challenges and opportunities. Nat. Rev. Genet. 12, 87–98 (2011).

    CAS  PubMed  Google Scholar 

  30. Zhang, Y. et al. Chimeric transcript generated by cis-splicing of adjacent genes regulates prostate cancer cell proliferation. Cancer Discov. 2, 598–607 (2012).

    CAS  PubMed  Google Scholar 

  31. Li, H., Wang, J., Mor, G. & Sklar, J. A neoplastic gene fusion mimics trans-splicing of RNAs in normal human cells. Science 321, 1357–1361 (2008).

    CAS  PubMed  Google Scholar 

  32. Cheng, D. T. et al. Memorial sloan kettering-integrated mutation profiling of actionable cancer targets (MSK-IMPACT): a hybridization capture-based next-generation sequencing clinical assay for solid tumor molecular oncology. J. Mol. Diagn. 17, 251–264 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Pailler, E. et al. Detection of circulating tumor cells harboring a unique ALK rearrangement in ALK-positive non-small-cell lung cancer. J. Clin. Oncol. 31, 2273–2281 (2013).

    PubMed  Google Scholar 

  34. Food And Drug Administration. List of cleared or approved companion diagnostic devices (in vitro and imaging tools). FDA https://www.fda.gov/MedicalDevices/ProductsandMedicalProcedures/InVitroDiagnostics/ucm301431 (2017).

  35. Bubendorf, L. et al. Testing for ROS1 in non-small cell lung cancer: a review with recommendations. Virchows Arch. 469, 489–503 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Frampton, G. M. et al. Development and validation of a clinical cancer genomic profiling test based on massively parallel DNA sequencing. Nat. Biotechnol. 31, 1023–1031 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Zehir, A. et al. Mutational landscape of metastatic cancer revealed from prospective clinical sequencing of 10,000 patients. Nat. Med. 23, 703–713 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Cui, S. et al. Use of capture-based next-generation sequencing to detect ALK fusion in plasma cell-free DNA of patients with non-small-cell lung cancer. Oncotarget 8, 2771–2780 (2017).

    PubMed  Google Scholar 

  39. Vogelstein, B. et al. Cancer genome landscapes. Science 339, 1546–1558 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Yoshihara, K. et al. The landscape and therapeutic relevance of cancer-associated transcript fusions. Oncogene 34, 4845–4854 (2015).

    CAS  PubMed  Google Scholar 

  41. Chmielecki, J. et al. Targeted next-generation sequencing of DNA regions proximal to a conserved GXGXXG signaling motif enables systematic discovery of tyrosine kinase fusions in cancer. Nucleic Acids Res. 38, 6985–6996 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Wang, R. et al. RET fusions define a unique molecular and clinicopathologic subtype of non-small-cell lung cancer. J. Clin. Oncol. 30, 4352–4359 (2012).

    CAS  PubMed  Google Scholar 

  43. Hutchinson, K. E. et al. BRAF fusions define a distinct molecular subset of melanomas with potential sensitivity to MEK inhibition. Clin. Cancer Res. 19, 6696–6702 (2013).

    CAS  PubMed  Google Scholar 

  44. Wu, Y.-M. et al. Identification of targetable FGFR gene fusions in diverse cancers. Cancer Discov. 3, 636–647 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Parker, B. C. & Zhang, W. Fusion genes in solid tumors: an emerging target for cancer diagnosis and treatment. Chin. J. Cancer 32, 594–603 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Majewski, I. J. et al. Identification of recurrent FGFR3 fusion genes in lung cancer through kinome-centred RNA sequencing. J. Pathol. 230, 270–276 (2013).

    CAS  PubMed  Google Scholar 

  47. Shaw, A. T., Hsu, P. P., Awad, M. M. & Engelman, J. A. Tyrosine kinase gene rearrangements in epithelial malignancies. Nat. Rev. Cancer 13, 772–787 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Ciampi, R. et al. Oncogenic AKAP9-BRAF fusion is a novel mechanism of MAPK pathway activation in thyroid cancer. J. Clin. Invest. 115, 94–101 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. May, W. A. et al. Ewing sarcoma 11;22 translocation produces a chimeric transcription factor that requires the DNA-binding domain encoded by FLI1 for transformation. Proc. Natl Acad. Sci. USA 90, 5752–5756 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Owen, L. A., Kowalewski, A. A. & Lessnick, S. L. EWS/FLI mediates transcriptional repression via NKX2.2 during oncogenic transformation in Ewing's sarcoma. PLoS ONE 3, e1965 (2008).

    PubMed  PubMed Central  Google Scholar 

  51. Selvanathan, S. P. et al. Oncogenic fusion protein EWS-FLI1 is a network hub that regulates alternative splicing. Proc. Natl Acad. Sci. USA 112, E1307–E1316 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Yu, J. et al. An integrated network of androgen receptor, polycomb, and TMPRSS2-ERG gene fusions in prostate cancer progression. Cancer Cell 17, 443–454 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Sirvent, N., Maire, G. & Pedeutour, F. Genetics of dermatofibrosarcoma protuberans family of tumors: from ring chromosomes to tyrosine kinase inhibitor treatment. Genes Chromosomes Cancer 37, 1–19 (2003).

    CAS  PubMed  Google Scholar 

  54. Kumar-Sinha, C., Kalyana-Sundaram, S. & Chinnaiyan, A. M. Landscape of gene fusions in epithelial cancers: seq and ye shall find. Genome Med. 7, 129 (2015).

    PubMed  PubMed Central  Google Scholar 

  55. French, C. A. Demystified molecular pathology of NUT midline carcinomas. J. Clin. Pathol. 63, 492–496 (2010).

    PubMed  Google Scholar 

  56. Tognon, C. et al. Expression of the ETV6-NTRK3 gene fusion as a primary event in human secretory breast carcinoma. Cancer Cell 2, 367–376 (2002).

    CAS  PubMed  Google Scholar 

  57. Ito, Y. et al. Mammary analogue secretory carcinoma of salivary glands: a clinicopathologic and molecular study including 2 cases harboring ETV6-X fusion. Am. J. Surg. Pathol. 39, 602–610 (2015).

    PubMed  Google Scholar 

  58. Hughes, T. et al. Monitoring CML patients responding to treatment with tyrosine kinase inhibitors: review and recommendations for harmonizing current methodology for detecting BCR-ABL transcripts and kinase domain mutations and for expressing results. Blood 108, 28–37 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Drilon, A. et al. A next-generation TRK kinase inhibitor overcomes acquired resistance to prior TRK kinase inhibition in patients with TRK fusion-positive solid tumors. Cancer Discov. http://dx.doi.org/10.1158/2159-8290.CD-17-0507 (2017).

  60. Roskoski, R. Classification of small molecule protein kinase inhibitors based upon the structures of their drug-enzyme complexes. Pharmacol. Res. 103, 26–48 (2016).

    CAS  PubMed  Google Scholar 

  61. Singh, J., Petter, R. C., Baillie, T. A. & Whitty, A. The resurgence of covalent drugs. Nat. Rev. Drug Discov. 10, 307–317 (2011).

    CAS  PubMed  Google Scholar 

  62. Drilon, A. et al. What hides behind the MASC: clinical response and acquired resistance to entrectinib after ETV6-NTRK3 identification in a mammary analogue secretory carcinoma (MASC). Ann. Oncol. 27, 920–926 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Doebele, R. C. et al. Mechanisms of resistance to crizotinib in patients with ALK gene rearranged non-small cell lung cancer. Clin. Cancer Res. 18, 1472–1482 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Katayama, R. et al. Mechanisms of acquired crizotinib resistance in ALK-rearranged lung cancers. Sci. Transl Med. 4, 120ra17 (2012).

    PubMed  PubMed Central  Google Scholar 

  65. Gainor, J. F. et al. Molecular mechanisms of resistance to first- and second-generation ALK inhibitors in ALK-rearranged lung cancer. Cancer Discov. 6, 1118–1133 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Sasaki, T. et al. A novel ALK secondary mutation and EGFR signaling cause resistance to ALK kinase inhibitors. Cancer Res. 71, 6051–6060 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Toyokawa, G. et al. Identification of a novel ALK G1123S mutation in a patient with ALK-rearranged non-small-cell lung cancer exhibiting resistance to ceritinib. J. Thorac. Oncol. 10, e55–e57 (2015).

    PubMed  Google Scholar 

  68. Katayama, R. et al. Two novel ALK mutations mediate acquired resistance to the next-generation ALK inhibitor alectinib. Clin. Cancer Res. 20, 5686–5696 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Shaw, A. T. et al. Resensitization to crizotinib by the lorlatinib ALK resistance mutation L1198F. N. Engl. J. Med. 374, 54–61 (2016).

    CAS  PubMed  Google Scholar 

  70. Ou, S.-H. et al. ALK F1174V mutation confers sensitivity while ALK I1171 mutation confers resistance to alectinib. The importance of serial biopsy post progression. Lung Cancer 91, 70–72 (2016).

    PubMed  Google Scholar 

  71. Sakamoto, H. et al. CH5424802, a selective ALK inhibitor capable of blocking the resistant gatekeeper mutant. Cancer Cell 19, 679–690 (2011).

    CAS  PubMed  Google Scholar 

  72. Kodityal, S. et al. A novel acquired ALK F1245C mutation confers resistance to crizotinib in ALK-positive NSCLC but is sensitive to ceritinib. Lung Cancer 92, 19–21 (2016).

    PubMed  Google Scholar 

  73. Ceccon, M. et al. Treatment efficacy and resistance mechanisms using the second-generation ALK inhibitor AP26113 in human NPM-ALK–positive anaplastic large cell loymphoma. Mol. Cancer Res. 13, 775–783 (2015).

    CAS  PubMed  Google Scholar 

  74. Zou, H. Y. et al. PF-06463922, an ALK/ROS1 inhibitor, overcomes resistance to first and second generation ALK inhibitors in preclinical models. Cancer Cell 28, 70–81 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Song, A. et al. Molecular changes associated with acquired resistance to crizotinib in ROS1-rearranged non-small cell lung cancer. Clin. Cancer Res. 21, 2379–2387 (2015).

    CAS  PubMed  Google Scholar 

  76. Davare, M. A. et al. Structural insight into selectivity and resistance profiles of ROS1 tyrosine kinase inhibitors. Proc. Natl Acad. Sci. USA 112, E5381–E5390 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Zou, H. Y. et al. PF-06463922 is a potent and selective next-generation ROS1/ALK inhibitor capable of blocking crizotinib-resistant ROS1 mutations. Proc. Natl Acad. Sci. USA 112, 3493–3498 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Drilon, A. et al. A novel crizotinib-resistant solvent-front mutation responsive to cabozantinib therapy in a patient with ROS1-rearranged lung cancer. Clin. Cancer Res. 22, 2351–2358 (2016).

    CAS  PubMed  Google Scholar 

  79. Katayama, R. et al. Cabozantinib overcomes crizotinib resistance in ROS1 fusion–positive cancer. Clin. Cancer Res. 21, 166–174 (2015).

    CAS  PubMed  Google Scholar 

  80. Mologni, L., Redaelli, S., Morandi, A., Plaza-Menacho, I. & Gambacorti-Passerini, C. Ponatinib is a potent inhibitor of wild-type and drug-resistant gatekeeper mutant RET kinase. Mol. Cell. Endocrinol. 377, 1–6 (2013).

    CAS  PubMed  Google Scholar 

  81. Yoh, K. et al. Vandetanib in patients with previously treated RET-rearranged advanced non-small-cell lung cancer (LURET): an open-label, multicentre phase 2 trial. Lancet Respir. Med. 5, 42–50 (2017).

    CAS  PubMed  Google Scholar 

  82. Drilon, A. et al. Cabozantinib in patients with advanced RET-rearranged non-small-cell lung cancer: an open-label, single-centre, phase 2, single-arm trial. Lancet Oncol. 17, 1653–1660 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Yakes, F. M. et al. Cabozantinib (XL184), a novel MET and VEGFR2 inhibitor, simultaneously suppresses metastasis, angiogenesis, and tumor growth. Mol. Cancer Ther. 10, 2298–2308 (2011).

    CAS  PubMed  Google Scholar 

  84. Vaishnavi, A. et al. Oncogenic and drug sensitive NTRK1 rearrangements in lung cancer. Nat. Med. 19, 1469–1472 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Menichincheri, M. et al. Discovery of entrectinib: a new 3-aminoindazole as a potent anaplastic lymphoma kinase (ALK), c-ros oncogene 1 kinase (ROS1), and pan-tropomyosin receptor kinases (pan-TRKs) inhibitor. J. Med. Chem. 59, 3392–3408 (2016).

    CAS  PubMed  Google Scholar 

  86. Estrada-Bernal, A., Le, A. T., Tuch, B., Kutateladze, T. G. & Doebele, R. C. Identification of TRKA and TRKB kinase domain mutations that induce resistance to a pan-TRK inhibitor [abstract]. Cancer Res. 76, LB-118 (2016).

    Google Scholar 

  87. Wang, X. et al. Development of peptidomimetic inhibitors of the ERG gene fusion product in prostate cancer. Cancer Cell 31, 532–548.e7 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Adamo, P. & Ladomery, M. R. The oncogene ERG: a key factor in prostate cancer. Oncogene 35, 403–414 (2016).

    CAS  PubMed  Google Scholar 

  89. Takeuchi, K. et al. RET, ROS1 and ALK fusions in lung cancer. Nat. Med. 18, 378–381 (2012).

    CAS  PubMed  Google Scholar 

  90. Wong, D. W.-S. et al. The EML4-ALK fusion gene is involved in various histologic types of lung cancers from nonsmokers with wild-type EGFR and KRAS. Cancer 115, 1723–1733 (2009).

    CAS  PubMed  Google Scholar 

  91. Pan, Y. et al. ALK, ROS1 and RET fusions in 1139 lung adenocarcinomas: a comprehensive study of common and fusion pattern-specific clinicopathologic, histologic and cytologic features. Lung Cancer 84, 121–126 (2014).

    PubMed  Google Scholar 

  92. Lin, E. et al. Exon array profiling detects EML4-ALK fusion in breast, colorectal, and non-small cell lung cancers. Mol. Cancer Res. 7, 1466–1476 (2009).

    CAS  PubMed  Google Scholar 

  93. Wiesner, T. et al. Kinase fusions are frequent in Spitz tumors and spitzoid melanomas. Nat. Commun. 5, 3116 (2014).

    PubMed  Google Scholar 

  94. Drilon, A. et al. Safety and antitumor activity of the multi-targeted pan-TRK, ROS1, and ALK inhibitor entrectinib (RXDX-101): combined results from two phase 1 trials (ALKA-372-001 and STARTRK-1). Cancer Discov. 4, 400–409 (2017).

    Google Scholar 

  95. Solomon, B. J. et al. First-line crizotinib versus chemotherapy in ALK-positive lung cancer. N. Engl. J. Med. 371, 2167–2177 (2014).

    PubMed  Google Scholar 

  96. Shaw, A. T. et al. Crizotinib versus chemotherapy in advanced ALK-positive lung cancer. N. Engl. J. Med. 368, 2385–2394 (2013).

    CAS  PubMed  Google Scholar 

  97. Shaw, A. T. et al. Ceritinib in ALK-rearranged non-small-cell lung cancer. N. Engl. J. Med. 370, 1189–1197 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Scagliotti, G., Crino, L., Liu, G. & Gridelli, C. Ceritinib versus chemotherapy (CT) in patients (pts) with advanced anaplastic lymphoma kinase (ALK)-rearranged (ALK+) non-small cell lung cancer (NSCLC) previously treated with CT and crizotinib (CRZ): results from the confirmatory phase 3 ASCEND-5 study [abstract]. Ann. Oncol. 27, LBA42_PR (2016).

    Google Scholar 

  99. Hida, T. et al. Alectinib versus crizotinib in patients with ALK-positive non-small-cell lung cancer (J-ALEX): an open-label, randomised phase 3 trial. Lancet 390, 29–39 (2017).

    CAS  PubMed  Google Scholar 

  100. Gadgeel, S. M. et al. Pooled analysis of CNS response to alectinib in two studies of pretreated patients with ALK-positive non-small-cell lung cancer. J. Clin. Oncol. 34, 4079–4085 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Wolf, J. et al. ALUR: a phase 3 study of alectinib versus chemotherapy in previously treated ALK+ non-small cell lung cancer (NSCLC) [abstract]. Ann. Oncol. 27, a1290TiP (2016).

    Google Scholar 

  102. Kim, D.-W. et al. Brigatinib in patients with crizotinib-refractory anaplastic lymphoma kinase-positive non-small-cell lung cancer: a randomized, multicenter phase II trial. J. Clin. Oncol. 35, 2490–2498 (2017).

    CAS  PubMed  Google Scholar 

  103. Soria, J.-C. et al. First-line ceritinib versus platinum-based chemotherapy in advanced ALK-rearranged non-small-cell lung cancer (ASCEND-4): a randomised, open-label, phase 3 study. Lancet 389, 917–929 (2017).

    CAS  PubMed  Google Scholar 

  104. Peters, S. et al. Alectinib versus crizotinib in untreated ALK-positive non-small-cell lung cancer. N. Engl. J. Med. http://dx.doi.org/10.1056/NEJMoa1704795 (2017).

  105. Solomon, B. J. et al. Safety and efficacy of lorlatinib (PF-06463922) from the dose-escalation component of a study in patients with advanced ALK+ or ROS1+ non-small cell lung cancer (NSCLC). J. Clin. Oncol. 34, 9009–9009 (2016).

    Google Scholar 

  106. Yamaguchi, N. et al. Dual ALK and EGFR inhibition targets a mechanism of acquired resistance to the tyrosine kinase inhibitor crizotinib in ALK rearranged lung cancer. Lung Cancer 83, 37–43 (2014).

    PubMed  Google Scholar 

  107. Lovly, C. M. et al. Rationale for co-targeting IGF-1R and ALK in ALK fusion-positive lung cancer. Nat. Med. 20, 1027–1034 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Mossé, Y. P. et al. Safety and activity of crizotinib for paediatric patients with refractory solid tumours or anaplastic large-cell lymphoma: a Children's Oncology Group phase 1 consortium study. Lancet Oncol. 14, 472–480 (2013).

    PubMed  PubMed Central  Google Scholar 

  109. Davies, K. D. & Doebele, R. C. Molecular pathways: ROS1 fusion proteins in cancer. Clin. Cancer Res. 19, 4040–4045 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Shaw, A. T. et al. Crizotinib in ROS1-rearranged non-small-cell lung cancer. N. Engl. J. Med. 371, 1963–1971 (2014).

    PubMed  PubMed Central  Google Scholar 

  111. Awad, M. M. et al. Acquired resistance to crizotinib from a mutation in CD74–ROS1. N. Engl. J. Med. 368, 2395–2401 (2013).

    CAS  PubMed  Google Scholar 

  112. Davies, K. D. et al. Resistance to ROS1 inhibition mediated by EGFR pathway activation in non-small cell lung cancer. PLoS ONE 8, e82236 (2013).

    PubMed  PubMed Central  Google Scholar 

  113. Lim, S. et al. Ceritinib in ROS1-rearranged non-small-cell lung cancer: a Korean nationwide phase II study. Ann. Oncol. 27, 415–454 (2016).

    Google Scholar 

  114. Gettinger, S. N. et al. Activity and safety of brigatinib in ALK-rearranged non-small-cell lung cancer and other malignancies: a single-arm, open-label, phase 1/2 trial. Lancet Oncol. 17, 1683–1696 (2016).

    CAS  PubMed  Google Scholar 

  115. Mendenhall, W. M., Zlotecki, R. A. & Scarborough, M. T. Dermatofibrosarcoma protuberans. Cancer 101, 2503–2508 (2004).

    PubMed  Google Scholar 

  116. Rutkowski, P. et al. Imatinib mesylate in advanced dermatofibrosarcoma protuberans: pooled analysis of two phase II clinical trials. J. Clin. Oncol. 28, 1772–1779 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  117. Lee, S.-H. et al. Vandetanib in pretreated patients with advanced non-small cell lung cancer-harboring RET rearrangement: a phase II clinical trial. Ann. Oncol. 28, 292–297 (2016).

    Google Scholar 

  118. Velcheti, V. et al. Phase 2 study of lenvatinib (LN) in patients (pts) with RET fusion-positive adenocarcinoma of the lung [abstract]. Ann. Oncol. 27, a1204PD (2016).

    Google Scholar 

  119. Gautschi, O. et al. Targeting RET in patients with RET-rearranged lung cancers: results from a global, multicenter RET registry. J. Clin. Oncol. 35, 1403–1410 (2016).

    Google Scholar 

  120. Martin-Zanca, D., Hughes, S. H. & Barbacid, M. A human oncogene formed by the fusion of truncated tropomyosin and protein tyrosine kinase sequences. Nature 319, 743–748 (1986).

    CAS  PubMed  Google Scholar 

  121. Vaishnavi, A., Le, A. T. & Doebele, R. C. TRKing down an old oncogene in a new era of targeted therapy. Cancer Discov. 5, 25–34 (2015).

    CAS  PubMed  Google Scholar 

  122. Amatu, A., Sartore-Bianchi, A. & Siena, S. NTRK gene fusions as novel targets of cancer therapy across multiple tumour types. ESMO Open 1, e000023 (2016).

    PubMed  PubMed Central  Google Scholar 

  123. Hyman, D. M. et al. The efficacy of larotrectinib (LOXO-101), a selective tropomyosin receptor kinase (TRK) inhibitor, in adult and pediatric TRK fusion cancers [abstract]. J. Clin. Oncol. 35, LBA2501 (2017).

    Google Scholar 

  124. Russo, M. et al. Acquired resistance to the TRK inhibitor entrectinib in colorectal cancer. Cancer Discov. 6, 36–44 (2016).

    CAS  PubMed  Google Scholar 

  125. Nanda, N., Fennell, T., Brandhuber, B., Tuch, B. B. & Low, J. A. Identification of tropomyosin kinase receptor (TRK) point mutations in cancer [abstract]. J. Clin. Oncol. a1553 (2015).

  126. Helsten, T. et al. The FGFR landscape in cancer: analysis of 4,853 tumors by next-generation sequencing. Clin. Cancer Res. 22, 259–267 (2016).

    CAS  PubMed  Google Scholar 

  127. Turner, N. & Grose, R. Fibroblast growth factor signalling: from development to cancer. Nat. Rev. Cancer 10, 116–129 (2010).

    CAS  PubMed  Google Scholar 

  128. Singh, D. et al. Transforming fusions of FGFR and TACC genes in human glioblastoma. Science 337, 1231–1235 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  129. Wang, R. et al. FGFR1/3 tyrosine kinase fusions define a unique molecular subtype of non-small cell lung cancer. Clin. Cancer Res. 20, 4107–4114 (2014).

    CAS  PubMed  Google Scholar 

  130. Tabernero, J. et al. Phase I dose-escalation study of JNJ-42756493, an oral pan-fibroblast growth factor receptor inhibitor, in patients with advanced solid tumors. J. Clin. Oncol. 33, 3401–3408 (2015).

    CAS  PubMed  Google Scholar 

  131. Nogova, L. et al. Evaluation of BGJ398, a fibroblast growth factor receptor 1–3 kinase inhibitor, in patients with advanced solid tumors harboring genetic alterations in fibroblast growth factor receptors: results of a global phase I, dose-escalation and dose-expansion study. J. Clin. Oncol. 35, 157–165 (2016).

    PubMed  PubMed Central  Google Scholar 

  132. Mazzaferro, V. et al. ARQ 087, an oral pan- fibroblast growth factor receptor (FGFR) inhibitor, in patients (pts) with advanced and/or metastatic intrahepatic cholangiocarcinoma (iCCA) [abstract]. Ann. Oncol. 35, 4017 (2016).

    Google Scholar 

  133. Ross, J. S. et al. The distribution of BRAF gene fusions in solid tumors and response to targeted therapy. Int. J. Cancer 138, 881–890 (2016).

    CAS  PubMed  Google Scholar 

  134. Poulikakos, P. I. et al. RAF inhibitor resistance is mediated by dimerization of aberrantly spliced BRAF(V600E). Nature 480, 387–390 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  135. Sievert, A. J. et al. Paradoxical activation and RAF inhibitor resistance of BRAF protein kinase fusions characterizing pediatric astrocytomas. Proc. Natl Acad. Sci. USA 110, 5957–5962 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  136. Jain, P. et al. Pediatric low-grade gliomas with CRAF gene fusions respond differentially to targeted therapeutics based on dimerization profiles [abstract LG-25]. Neuro. Oncol. 18, iii84 (2016).

    PubMed Central  Google Scholar 

  137. Tap, W. D. et al. Structure-guided blockade of CSF1R kinase in tenosynovial giant-cell tumor. N. Engl. J. Med. 373, 428–437 (2015).

    CAS  PubMed  Google Scholar 

  138. Konduri, K. et al. EGFR fusions as novel therapeutic targets in lung cancer. Cancer Discov. 6, 601–611 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

A.M.S. gratefully acknowledges funding support from the National Institutes of Health (award T32-CA009207).

Author information

Authors and Affiliations

Authors

Contributions

A.M.S. and A.D. researched data for the article and made a substantial contribution to discussions of content. All authors made a substantial contribution to writing the manuscript and editing and/or reviewing the manuscript before publication.

Corresponding author

Correspondence to Alison M. Schram.

Ethics declarations

Competing interests

A.D. has received honoraria from and is an advisory board member for Ariad, AstraZeneca, Blueprint Medicines, Exelixis, Genentech/Roche, Ignyta and Loxo Oncology and has received research funding from Foundation Medicine. The other authors declare no competing interests.

Supplementary information

Supplementary Figure 1

Introduction of agents and novel detection methods for oncogenic fusions in solid tumours. (DOC 138 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schram, A., Chang, M., Jonsson, P. et al. Fusions in solid tumours: diagnostic strategies, targeted therapy, and acquired resistance. Nat Rev Clin Oncol 14, 735–748 (2017). https://doi.org/10.1038/nrclinonc.2017.127

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrclinonc.2017.127

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing