Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

Immunotherapy and stereotactic ablative radiotherapy (ISABR): a curative approach?

Abstract

Conventional radiotherapy, in addition to its well-established tumoricidal effects, can also activate the host immune system. Radiation therapy modulates tumour phenotypes, enhances antigen presentation and tumour immunogenicity, increases production of cytokines and alters the tumour microenvironment, enabling destruction of the tumour by the immune system. Investigating the combination of radiotherapy with immunotherapeutic agents, which also promote the host antitumour immune response is, therefore, a logical progression. As the spectrum of clinical use of stereotactic radiotherapy continues to broaden, the question arose as to whether the ablative radiation doses used can also stimulate immune responses and, if so, whether we can amplify these effects by combining immunotherapy and stereotactic ablative radiotherapy (SABR). In this Perspectives article, we explore the preclinical and clinical evidence supporting activation of the immune system following SABR. We then examine studies that provide data on the effectiveness of combining these two techniques — immunotherapy and SABR — in an approach that we have termed 'ISABR'. Lastly, we provide general guiding principles for the development of future clinical trials to investigate the efficacy of ISABR in the hope of generating further interest in these exciting developments.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Antitumour effects of stereotactic ablative radiotherapy (SABR).

Similar content being viewed by others

References

  1. Imaizumi, N., Monnier, Y., Hegi, M., Mirimanoff, R. O. & Ruegg, C. Radiotherapy suppresses angiogenesis in mice through TGF-βRI/ALK5-dependent inhibition of endothelial cell sprouting. PLoS ONE 5, e11084 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  2. Kamrava, M., Bernstein, M. B., Camphausen, K. & Hodge, J. W. Combining radiation, immunotherapy, and antiangiogenesis agents in the management of cancer: the Three Musketeers or just another quixotic combination? Mol. Biosyst. 5, 1262–1270 (2009). This review examines preclinical and clinical data on the interaction between immunotherapy and radiation, and discusses the potential synergy between these two modalities and angiogenesis inhibitors.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Chen, Z. et al. Efficient antitumor immunity derived from maturation of dendritic cells that had phagocytosed apoptotic/necrotic tumor cells. Int. J. Cancer 93, 539–548 (2001).

    Article  CAS  PubMed  Google Scholar 

  4. Kotera, Y., Shimizu, K. & Mule, J. J. Comparative analysis of necrotic and apoptotic tumor cells as a source of antigen(s) in dendritic cell-based immunization. Cancer Res. 61, 8105–8109 (2001).

    CAS  PubMed  Google Scholar 

  5. Melcher, A., Gough, M., Todryk, S. & Vile, R. Apoptosis or necrosis for tumor immunotherapy: what's in a name? J. Mol. Med. (Berl.) 77, 824–833 (1999).

    Article  CAS  Google Scholar 

  6. Yu, P., Rowley, D. A., Fu, Y. X. & Schreiber, H. The role of stroma in immune recognition and destruction of well-established solid tumors. Curr. Opin. Immunol. 18, 226–231 (2006).

    Article  CAS  PubMed  Google Scholar 

  7. Ma, Y., Aymeric, L., Locher, C., Kroemer, G. & Zitvogel, L. The dendritic cell-tumor cross-talk in cancer. Curr. Opin. Immunol. 23, 146–152 (2011).

    Article  CAS  PubMed  Google Scholar 

  8. McBride, W. H. et al. A sense of danger from radiation. Radiat. Res. 162, 1–19 (2004).

    Article  CAS  PubMed  Google Scholar 

  9. Demaria, S., Bhardwaj, N., McBride, W. H. & Formenti, S. C. Combining radiotherapy and immunotherapy: a revived partnership. Int. J. Radiat. Oncol. Biol. Phys. 63, 655–666 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  10. Friedman, E. J. Immune modulation by ionizing radiation and its implications for cancer immunotherapy. Curr. Pharm. Des. 8, 1765–1780 (2002).

    Article  CAS  PubMed  Google Scholar 

  11. Kwilas, A. R., Donahue, R. N., Bernstein, M. B. & Hodge, J. W. In the field: exploiting the untapped potential of immunogenic modulation by radiation in combination with immunotherapy for the treatment of cancer. Front. Oncol. 2, 104 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Gameiro, S. R. et al. Radiation-induced immunogenic modulation of tumor enhances antigen processing and calreticulin exposure, resulting in enhanced T-cell killing. Oncotarget 5, 403–416 (2014). This study provided evidence that radiation induces a continuum of immunogenic alterations of tumour biology, from immunogenic modulation to immunogenic cell death.

    Article  PubMed  Google Scholar 

  13. Hodge, J. W., Ardiani, A., Farsaci, B., Kwilas, A. R. & Gameiro, S. R. The tipping point for combination therapy: cancer vaccines with radiation, chemotherapy, or targeted small molecule inhibitors. Semin. Oncol. 39, 323–339 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Gameiro, S. R., Caballero, J. A., Higgins, J. P., Apelian, D. & Hodge, J. W. Exploitation of differential homeostatic proliferation of T-cell subsets following chemotherapy to enhance the efficacy of vaccine-mediated antitumor responses. Cancer Immunol. Immunother. 60, 1227–1242 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Hodge, J. W. et al. Chemotherapy-induced immunogenic modulation of tumor cells enhances killing by cytotoxic T lymphocytes and is distinct from immunogenic cell death. Int. J. Cancer 133, 624–636 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Reits, E. A. et al. Radiation modulates the peptide repertoire, enhances MHC class I expression, and induces successful antitumor immunotherapy. J. Exp. Med. 203, 1259–1271 (2006). This study showed that directed radiotherapy can improve the efficacy of tumor immunotherapy and result in successful eradication of murine colon adenocarcinoma.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Chang, J. Y. et al. Stereotactic ablative radiotherapy: a potentially curable approach to early stage multiple primary lung cancer. Cancer 119, 3402–3410 (2013).

    Article  PubMed  Google Scholar 

  18. Palma, D. A. et al. The oligometastatic state — separating truth from wishful thinking. Nat. Rev. Clin. Oncol. 11, 549–557 (2014).

    Article  PubMed  Google Scholar 

  19. Timmerman, R. D., Herman, J. & Cho, L. C. Emergence of stereotactic body radiation therapy and its impact on current and future clinical practice. J. Clin. Oncol. 32, 2847–2854 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  20. Bernstein, M. B. et al. Radiation-induced modulation of costimulatory and coinhibitory T-cell signaling molecules on human prostate carcinoma cells promotes productive antitumor immune interactions. Cancer Biother. Radiopharm. 29, 153–161 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Schaue, D., Ratikan, J. A., Iwamoto, K. S. & McBride, W. H. Maximizing tumor immunity with fractionated radiation. Int. J. Radi. Oncol. Biol. Phys. 83, 1306–1310 (2012).

    Article  CAS  Google Scholar 

  22. Formenti, S. C. & Demaria, S. Radiation therapy to convert the tumor into an in situ vaccine. Int. J. Radi. Oncol. Biol. Phys. 84, 879–880 (2012). This paper summarizes important evidence that local radiotherapy and immunotherapy can successfully synergize and produce therapeutically effective anti-tumour immune responses, even in metastatic cancer.

    Article  Google Scholar 

  23. Zhang, H. et al. An in situ autologous tumor vaccination with combined radiation therapy and TLR9 agonist therapy. PLoS ONE 7, e38111 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Lee, Y. et al. Therapeutic effects of ablative radiation on local tumor require CD8+ T cells: changing strategies for cancer treatment. Blood 114, 589–595 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Lugade, A. A. et al. Local radiation therapy of B16 melanoma tumors increases the generation of tumor antigen-specific effector cells that traffic to the tumor. J. Immunol. 174, 7516–7523 (2005).

    Article  CAS  PubMed  Google Scholar 

  26. Nishikawa, H. & Sakaguchi, S. Regulatory T cells in tumor immunity. Int. J. Cancer 127, 759–767 (2010).

    CAS  PubMed  Google Scholar 

  27. Aryankalayil, M. J. et al. Defining molecular signature of pro-immunogenic radiotherapy targets in human prostate cancer cells. Radiat. Res. 182, 139–148 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Said, E. A. et al. Programmed death-1-induced interleukin-10 production by monocytes impairs CD4+ T cell activation during HIV infection. Nat. Med. 16, 452–459 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Egen, J. G., Kuhns, M. S. & Allison, J. P. CTLA-4: new insights into its biological function and use in tumor immunotherapy. Nat. Immunol. 3, 611–618 (2002).

    Article  CAS  PubMed  Google Scholar 

  30. Demaria, S. et al. Immune-mediated inhibition of metastases after treatment with local radiation and CTLA-4 blockade in a mouse model of breast cancer. Clin. Cancer Res. 11, 728–734 (2005).

    CAS  PubMed  Google Scholar 

  31. Dewan, M. Z. et al. Fractionated but not single-dose radiotherapy induces an immune-mediated abscopal effect when combined with anti-CTLA-4 antibody. Clin. Cancer Res. 15, 5379–5388 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Verbrugge, I. et al. Radiotherapy increases the permissiveness of established mammary tumors to rejection by immunomodulatory antibodies. Cancer Res. 72, 3163–3174 (2012).

    Article  CAS  PubMed  Google Scholar 

  33. Twyman-Saint Victor, C. et al. Radiation and dual checkpoint blockade activate non-redundant immune mechanisms in cancer. Nature 520, 373–377 (2015).

    Article  CAS  PubMed  Google Scholar 

  34. Zegers, C. M. et al. Radiotherapy combined with the immunocytokine L19-IL2 provides long-lasting antitumor effects. Clin. Cancer Res. 21, 1151–1160 (2015).

    Article  CAS  PubMed  Google Scholar 

  35. Postow, M. A. et al. Immunologic correlates of the abscopal effect in a patient with melanoma. N. Engl. J. Med. 366, 925–931 (2012). This paper details the abscopal effect, a phenomenon in which local radiotherapy is associated with regression of metastatic cancer at a distance from the irradiate site.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Hodge, J. W., Sharp, H. J. & Gameiro, S. R. Abscopal regression of antigen disparate tumors by antigen cascade after systemic tumor vaccination in combination with local tumor radiation. Cancer Biother. Radiopharm. 27, 12–22 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Hiniker, S. M. et al. A systemic complete response of metastatic melanoma to local radiation and immunotherapy. Transl. Oncol. 5, 404–407 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  38. Golden, E. B., Demaria, S., Schiff, P. B., Chachoua, A. & Formenti, S. C. An abscopal response to radiation and ipilimumab in a patient with metastatic non-small cell lung cancer. Cancer Immunol. Res. 1, 365–372 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  39. Silk, A. W., Bassetti, M. F., West, B. T., Tsien, C. I. & Lao, C. D. Ipilimumab and radiation therapy for melanoma brain metastases. Cancer Med. 2, 899–906 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Stamell, E. F., Wolchok, J. D., Gnjatic, S., Lee, N. Y. & Brownell, I. The abscopal effect associated with a systemic anti-melanoma immune response. Int. J. Radiat. Oncol. Biol. Phys. 85, 293–295 (2013).

    Article  PubMed  Google Scholar 

  41. Karbach, J. et al. Long-term complete remission following radiosurgery and immunotherapy in a melanoma patient with brain metastasis: immunologic correlates. Cancer Immunol. Res. 2, 404–409 (2014).

    Article  PubMed  Google Scholar 

  42. Kiess, A. P. et al. Stereotactic radiosurgery for melanoma brain metastases in patients receiving ipilimumab: safety profile and efficacy of combined treatment. Int. J. Radiat. Oncol. Biol. Phys. 92, 368–375 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  43. Kwon, E. D. et al. Ipilimumab versus placebo after radiotherapy in patients with metastatic castration-resistant prostate cancer that had progressed after docetaxel chemotherapy (CA184-043): a multicentre, randomised, double-blind, phase 3 trial. Lancet Oncol. 15, 700–712 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Seung, S. K. et al. Phase 1 study of stereotactic body radiotherapy and interleukin-2 — tumor and immunological responses. Sci. Transl. Med. 4, 137ra174 (2012).

    Article  Google Scholar 

  45. US National Library of Science. ClinicalTrials.gov [online] (2014).

  46. US National Library of Science. ClinicalTrials.gov [online] (2014).

  47. US National Library of Science. ClinicalTrials.gov [online] (2014)

  48. Crittenden, M. et al. Current clinical trials testing combinations of immunotherapy and radiation. Semin. Radiat. Oncol. 25, 54–64 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  49. Chang, J. Y. et al. Clinical outcome and predictors of survival and pneumonitis after stereotactic ablative radiotherapy for stage I non-small cell lung cancer. Radiat. Oncol. 7, 152 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  50. Timmerman, R. et al. Stereotactic body radiation therapy for inoperable early stage lung cancer. JAMA 303, 1070–1076 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Senthi, S., Lagerwaard, F. J., Haasbeek, C. J., Slotman, B. J. & Senan, S. Patterns of disease recurrence after stereotactic ablative radiotherapy for early stage non-small-cell lung cancer: a retrospective analysis. Lancet Oncol. 13, 802–809 (2012).

    Article  PubMed  Google Scholar 

  52. Timmerman, R. et al. RTOG 0618: stereotactic body radiation therapy (SBRT) to treat operable early-stage lung cancer patients. J. Clin. Oncol. 31, S7523 (2013).

    Google Scholar 

  53. Chang, J. Y. et al. Stereotactic ablative radiotherapy versus lobectomy for operable stage I non-small-cell lung cancer: a pooled analysis of two randomised trials. Lancet Oncol. 16, 630–637 (2015). An important study showing SABR as an option for therapy in operable stage I non-small cell lung cancer.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Shirvani, S. M. et al. Lobectomy, sublobar resection, and stereotactic ablative radiotherapy for early-stage non-small cell lung cancers in the elderly. JAMA Surg. 149, 1244–1253 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  55. Vansteenkiste, J. F. et al. MAGRIT, a double-blind, randomized, placebo-controlled Phase III study to assess the efficacy of the recMAGE-A3 + AS15 cancer immunotherapeutic as adjuvant therapy in patients with resected MAGE-A3-positive non-small cell lung cancer (NSCLC). Presented at the European Society for Medical Oncology, Madrid Spain (2014).

  56. US National Library of Science. ClinicalTrials.gov [online] (2015).

  57. Kalbasi, A., June, C. H., Haas, N. & Vapiwala, N. Radiation and immunotherapy: a synergistic combination. J. Clin. Invest. 123, 2756–2763 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Young, K., Cottam, B., Baird, J. R., Gough, M. J. & Crittenden, M. Ideal timing of immunotherapy with radiation in murine tumor models. Int. J. Radiat. Oncol. 90, S58 (2014).

    Article  Google Scholar 

  59. Rooney, M. S., Shukla, S. A., Wu, C. J., Getz, G. & Hacohen, N. Molecular and genetic properties of tumors associated with local immune cytolytic activity. Cell 160, 48–61 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Henn, B. M., Botigue, L. R., Bustamante, C. D., Clark, A. G. & Gravel, S. Estimating the mutation load in human genomes. Nat. Rev. Genet. 16, 333–343 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Rizvi, N. A. et al. Mutational landscape determines sensitivity to PD-1 blockade in non-small cell lung cancer. Science 348, 124–128 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Cha, E. et al. Improved survival with T cell clonotype stability after anti-CTLA-4 treatment in cancer patients. Science Transl. Med. 6, 238ra270 (2014).

    Article  Google Scholar 

  63. Kwek, S. S. et al. Diversity of antigen-specific responses induced in vivo with CTLA-4 blockade in prostate cancer patients. J. Immunol. 189, 3759–3766 (2012).

    Article  CAS  PubMed  Google Scholar 

  64. Disis, M. L. et al. HER-2/neu vaccine-primed autologous T-cell infusions for the treatment of advanced stage HER-2/neu expressing cancers. Cancer Immunol. Immunother. 63, 101–109 (2014).

    Article  CAS  PubMed  Google Scholar 

  65. Gulley, J. L. et al. Immune impact induced by PROSTVAC (PSA-TRICOM), a therapeutic vaccine for prostate cancer. Cancer Immunol. Res. 2, 133–141 (2014).

    Article  CAS  PubMed  Google Scholar 

  66. Rosenberg, S. A. et al. Tumor progression can occur despite the induction of very high levels of self/tumor antigen-specific CD8+ T cells in patients with melanoma. J. Immunol. 175, 6169–6176 (2005).

    Article  CAS  PubMed  Google Scholar 

  67. Pardoll, D. M. The blockade of immune checkpoints in cancer immunotherapy. Nat. Rev. Cancer 12, 252–264 (2012). This review discusses the promising approach of utilizing immune checkpoint blockade to enhance antitumour immunity with the potential to produce durable clinical responses.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. US National Library of Science. ClinicalTrials.gov [online] (2015).

  69. US National Library of Science. ClinicalTrials.gov [online] (2013).

  70. US National Library of Science. ClinicalTrials.gov [online] (2015).

  71. US National Library of Science. ClinicalTrials.gov [online] (2015).

  72. US National Library of Science. ClinicalTrials.gov [online] (2015).

  73. US National Library of Science. ClinicalTrials.gov [online] (2015).

  74. Bolli, M. et al. Tissue microarray evaluation of Melanoma antigen E (MAGE) tumor-associated antigen expression: potential indications for specific immunotherapy and prognostic relevance in squamous cell lung carcinoma. Ann. Surg. 236, 785–793; discussion 793 (2002).

    Article  PubMed  PubMed Central  Google Scholar 

  75. Jungbluth, A. A. et al. Expression of MAGE-antigens in normal tissues and cancer. Int. J. Cancer 85, 460–465 (2000).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors researched data for this manuscript, made a substantial contribution to discussions of content, wrote the manuscript and reviewed and/or edited the manuscript prior to submission.

Corresponding author

Correspondence to Joe Y. Chang.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bernstein, M., Krishnan, S., Hodge, J. et al. Immunotherapy and stereotactic ablative radiotherapy (ISABR): a curative approach?. Nat Rev Clin Oncol 13, 516–524 (2016). https://doi.org/10.1038/nrclinonc.2016.30

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrclinonc.2016.30

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing