Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Revisiting tumour aneuploidy — the place of ploidy assessment in the molecular era

This article has been updated

Key Points

  • Academic interest in the role of chromosomal instability (CIN) in cancer development and the influence of the resultant large-scale genomic alterations on clinical outcomes is increasing

  • Aneuploidy — that is, the presence of an abnormal amount of cellular DNA, is an inevitable result of CIN, and this characteristic can be detected and quantified using DNA cytometry

  • DNA ploidy (cellular DNA quantity) is an independent prognostic marker in patients with node-negative invasive breast, early stage endometrioid endometrial, early stage ovarian, prostate, or colorectal cancers

  • In patients with Barrett oesophagus, DNA ploidy can be combined with other biomarkers to identify disease that will progress to high-grade dysplasia and/or carcinoma, and to improve the diagnostic sensitivity of pulmonary cytology

  • In cervical screening tests, detection of aneuploid cells in Pap smears or using liquid-based cytology is a reliable, cost-effective indicator of the early stages of neoplastic progression toward squamous-cell carcinoma

Abstract

Chromosome instability (CIN) is gaining increasing interest as a central process in cancer. CIN, either past or present, is indicated whenever tumour cells harbour an abnormal quantity of DNA, termed 'aneuploidy'. At present, the most widely used approach to detecting aneuploidy is DNA cytometry — a well-known research assay that involves staining of DNA in the nuclei of cells from a tissue sample, followed by analysis using quantitative flow cytometry or microscopic imaging. Aneuploidy in cancer tissue has been implicated as a predictor of a poor prognosis. In this Review, we have explored this hypothesis by surveying the current landscape of peer-reviewed research in which DNA cytometry has been applied in studies with disease-appropriate clinical follow up. This area of research is broad, however, and we restricted our survey to results published since 2000 relating to seven common epithelial cancers (those of the breast; endometrium, ovary, and uterine cervix; oesophagus; colon and rectum; lung; prostate; and bladder). We placed particular emphasis on results from multivariate analyses to pinpoint situations in which the prognostic value of aneuploidy as a biomarker is strong compared with that of existing indicators, such as clinical stage, histological grade, and specific molecular markers. We summarize the implications of our findings for the prognostic use of ploidy analysis in the clinic and for the theoretical understanding of the role of CIN in carcinogenesis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Assessment of DNA-ploidy status by DNA cytometry.

Similar content being viewed by others

Change history

  • 02 December 2015

    In the version of this Review originally posted online, the VICTOR trial was inaccurately referred to as the VITOR trial in one instance. This error has now been corrected in the print and online versions of the article.

References

  1. Thorpe, P. H., Gonzalez-Barrera, S. & Rothstein, R. More is not always better: the genetic constraints of polyploidy. Trends Genet. 23, 263–266 (2007).

    Article  CAS  PubMed  Google Scholar 

  2. Davoli, T. & de Lange, T. The causes and consequences of polyploidy in normal development and cancer. Annu. Rev. Cell Dev. Biol. 27, 585–610 (2011).

    Article  CAS  PubMed  Google Scholar 

  3. Oberringer, M. et al. Centrosome multiplication accompanies a transient clustering of polyploid cells during tissue repair. Mol. Cell Biol. Res. Commun. 2, 190–196 (1999).

    Article  CAS  PubMed  Google Scholar 

  4. Lara-Gonzalez, P., Westhorpe, F. G. & Taylor, S. S. The spindle assembly checkpoint. Curr. Biol. 22, R966–R980 (2012).

    Article  CAS  PubMed  Google Scholar 

  5. Nam, H. J. & van Deursen, J. M. Cyclin B2 and p53 control proper timing of centrosome separation. Nat. Cell Biol. 16, 538–549 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Rajagopalan, H. & Lengauer, C. Aneuploidy and cancer. Nature 432, 338–341 (2004).

    Article  CAS  PubMed  Google Scholar 

  7. Rehen, S. K. et al. Constitutional aneuploidy in the normal human brain. J. Neurosci. 25, 2176–2180 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Westra, J. W. et al. Neuronal DNA content variation (DCV) with regional and individual differences in the human brain. J. Comp. Neurol. 518, 3981–4000 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Boveri, T. Concerning the origin of malignant tumours by Theodor Boveri. Translated and annotated by Henry Harris. J. Cell Sci. 121 (Suppl. 1), 1–84 (2008).

    Article  PubMed  Google Scholar 

  10. Davoli, T. et al. Cumulative haploinsufficiency and triplosensitivity drive aneuploidy patterns and shape the cancer genome. Cell 155, 948–962 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. King, R. W. When 2 + 2 = 5: the origins and fates of aneuploid and tetraploid cells. Biochim. Biophys. Acta 1786, 4–14 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. de Carcer, G. & Malumbres, M. A centrosomal route for cancer genome instability. Nat. Cell Biol. 16, 504–506 (2014).

    Article  CAS  PubMed  Google Scholar 

  13. Janssen, A., van der Burg, M., Szuhai, K., Kops, G. J. & Medema, R. H. Chromosome segregation errors as a cause of DNA damage and structural chromosome aberrations. Science 333, 1895–1898 (2011).

    Article  CAS  PubMed  Google Scholar 

  14. Losada, A. Cohesin in cancer: chromosome segregation and beyond. Nat. Rev. Cancer 14, 389–393 (2014).

    Article  CAS  PubMed  Google Scholar 

  15. Lee, H. How chromosome mis-segregation leads to cancer: lessons from BubR1 mouse models. Mol. Cell 37, 713–718 (2014).

    Article  CAS  Google Scholar 

  16. Bakhoum, S. F. & Swanton, C. Chromosomal instability, aneuploidy, and cancer. Front. Oncol. 4, 161 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  17. McGranahan, N., Burrell, R. A., Endesfelder, D., Novelli, M. R. & Swanton, C. Cancer chromosomal instability: therapeutic and diagnostic challenges. EMBO Rep. 13, 528–538 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Davaadelger, B., Shen, H. & Maki, C. G. Novel roles for p53 in the genesis and targeting of tetraploid cancer cells. PLoS ONE 9, e110844 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Coward, J. & Harding, A. Size does matter: why polyploid tumor cells are critical drug targets in the war on cancer. Front. Oncol. 4, 123 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  20. Hanahan, D. & Weinberg, R. A. Hallmarks of cancer: the next generation. Cell 144, 646–674 (2011).

    Article  CAS  PubMed  Google Scholar 

  21. Vogelstein, B. et al. Genetic alterations during colorectal-tumor development. N. Engl. J. Med. 319, 525–532 (1988).

    Article  CAS  PubMed  Google Scholar 

  22. Duesberg, P., Fabarius, A. & Hehlmann, R. Aneuploidy, the primary cause of the multilateral genomic instability of neoplastic and preneoplastic cells. IUBMB Life 56, 65–81 (2004).

    Article  CAS  PubMed  Google Scholar 

  23. Pihan, G. & Doxsey, S. J. Mutations and aneuploidy: co-conspirators in cancer? Cancer Cell 4, 89–94 (2003).

    Article  CAS  PubMed  Google Scholar 

  24. Belien, J. A. et al. Gross genomic damage measured by DNA image cytometry independently predicts gastric cancer patient survival. Br. J. Cancer 101, 1011–1018 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Kristensen, G. B. et al. Large-scale genomic instability predicts long-term outcome for women with invasive stage I ovarian cancer. Ann. Oncol. 14, 1494–1500 (2003).

    Article  CAS  PubMed  Google Scholar 

  26. Bol, M. G. et al. Correlation of grade of urothelial cell carcinomas and DNA histogram features assessed by flow cytometry and automated image cytometry. Anal. Cell. Pathol. 25, 147–153 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Crisp, H., Burton, J. L., Stewart, R. & Wells, M. Refining the diagnosis of hydatidiform mole: image ploidy analysis and p57KIP2 immunohistochemistry. Histopathology 43, 363–373 (2003).

    Article  CAS  PubMed  Google Scholar 

  28. Dunn, J. M. et al. Image cytometry accurately detects DNA ploidy abnormalities and predicts late relapse to high-grade dysplasia and adenocarcinoma in Barrett's oesophagus following photodynamic therapy. Br. J. Cancer 102, 1608–1617 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Wohlrab, D., Klapperstuck, T., Holzhausen, H. J., Held, A. & Hein, W. DNA image cytometry on sections compared with flow cytometry in human bone metastases. Oncol. Rep. 14, 1005–1012 (2005).

    PubMed  Google Scholar 

  30. Baak, J. P. et al. DNA cytometric features in biopsies of TaT1 urothelial cell cancer predict recurrence and stage progression more accurately than stage, grade, or treatment modality. Urology 61, 1266–1272 (2003).

    Article  PubMed  Google Scholar 

  31. Böcking, A., Giroud, F. & Reith, A. Consensus report of the European Society for Analytical Cellular Pathology task force on standardization of diagnostic DNA image cytometry. Anal. Quant. Cytol. Histol. 17, 1–7 (1995).

    PubMed  Google Scholar 

  32. Caspersson, T. O. History of the development of cytophotometry from 1935 to the present. Anal. Quant. Cytol. Histol. 9, 2–6 (1987).

    CAS  PubMed  Google Scholar 

  33. D'Urso, V., Collodoro, A., Mattioli, E., Giordano, A. & Bagella, L. Cytometry and DNA ploidy: clinical uses and molecular perspective in gastric and lung cancer. J. Cell. Physiol. 222, 532–539 (2010).

    CAS  PubMed  Google Scholar 

  34. Ross, J. S. et al. DNA ploidy and cell cycle analysis in breast cancer. Am. J. Clin. Pathol. 120 (Suppl.), S72–S84 (2003).

    PubMed  Google Scholar 

  35. Biesterfeld, S., Beckers, S., Del, C., V & Schramm, M. Feulgen staining remains the gold standard for precise DNA image cytometry. Anticancer Res. 31, 53–58 (2011).

    PubMed  Google Scholar 

  36. Susini, T. et al. DNA ploidy is stronger than lymph node metastasis as prognostic factor in cervical carcinoma: 10-year results of a prospective study. Int. J. Gynecol. Cancer 21, 678–684 (2011).

    Article  PubMed  Google Scholar 

  37. Kipp, B. R., Sebo, T. J., Griffin, M. D., Ihrke, J. M. & Halling, K. C. Analysis of polyomavirus-infected renal transplant recipients' urine specimens: correlation of routine urine cytology, fluorescence in situ hybridization, and digital image analysis. Am. J. Clin. Pathol. 124, 854–861 (2005).

    Article  PubMed  Google Scholar 

  38. Rygiel, A. M. et al. Efficient automated assessment of genetic abnormalities detected by fluorescence in situ hybridization on brush cytology in a Barrett esophagus surveillance population. Cancer 109, 1980–1988 (2007).

    Article  CAS  PubMed  Google Scholar 

  39. Schramm, M. et al. Equivocal cytology in lung cancer diagnosis: improvement of diagnostic accuracy using adjuvant multicolor FISH, DNA-image cytometry, and quantitative promoter hypermethylation analysis. Cancer Cytopathol. 119, 177–192 (2011).

    Article  PubMed  Google Scholar 

  40. Barr Fritcher, E. G. et al. Correlating routine cytology, quantitative nuclear morphometry by digital image analysis, and genetic alterations by fluorescence in situ hybridization to assess the sensitivity of cytology for detecting pancreatobiliary tract malignancy. Am. J. Clin. Pathol. 128, 272–279 (2007).

    Article  PubMed  Google Scholar 

  41. Debes, J. D. et al. p300 modulates nuclear morphology in prostate cancer. Cancer Res. 65, 708–712 (2005).

    Article  CAS  PubMed  Google Scholar 

  42. Garner, D. Clinical application of DNA ploidy to cervical cancer screening: a review. World J. Clin. Oncol. 5, 931–965 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  43. Sun, X. R., Wang, J., Garner, D. & Palcic, B. Detection of cervical cancer and high grade neoplastic lesions by a combination of liquid-based sampling preparation and DNA measurements using automated image cytometry. Cell. Oncol. 27, 33–41 (2005).

    PubMed  PubMed Central  Google Scholar 

  44. Auffermann, W., Fohlmeister, I. & Böcking, A. Diagnostic and prognostic value of DNA image cytometry in myelodysplasia. J. Clin. Pathol. 41, 604–608 (1988).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Yildirim-Assaf, S. et al. The prognostic significance of determining DNA content in breast cancer by DNA image cytometry: the role of high grade aneuploidy in node negative breast cancer. J. Clin. Pathol. 60, 649–655 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Pradhan, M. et al. Prognostic importance of DNA ploidy and DNA index in stage I and II endometrioid adenocarcinoma of the endometrium. Ann. Oncol. 23, 1178–1184 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  47. Bagwell, C. B. et al. Optimizing flow cytometric DNA ploidy and S-phase fraction as independent prognostic markers for node-negative breast cancer specimens. Cytometry 46, 121–135 (2001).

    Article  CAS  PubMed  Google Scholar 

  48. Jonas, S. et al. Prognostic significance of the DNA-index in liver transplantation for hepatocellular carcinoma in cirrhosis. Ann. Surg. 250, 1008–1013 (2009).

    Article  PubMed  Google Scholar 

  49. Wenger, C. R. & Clark, G. M. S-phase fraction and breast cancer — a decade of experience. Breast Cancer Res. Treat. 51, 255–265 (1998).

    Article  CAS  PubMed  Google Scholar 

  50. Hiddemann, W. et al. Convention on nomenclature for DNA cytometry. Committee on Nomenclature, Society for Analytical Cytology. Cancer Genet. Cytogenet. 13, 181–183 (1984).

    Article  CAS  PubMed  Google Scholar 

  51. Haroske, G. et al. Fourth updated ESACP consensus report on diagnostic DNA image cytometry. Anal. Cell. Pathol. 23, 89–95 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Benson, N. A. & Braylan, R. C. Evaluation of sensitivity in DNA aneuploidy detection using a mathematical model. Cytometry 15, 53–58 (1994).

    Article  CAS  PubMed  Google Scholar 

  53. So, M. J. et al. Factors that influence the measurement of prostate cancer DNA ploidy and proliferation in paraffin embedded tissue evaluated by flow cytometry. Mod. Pathol. 14, 906–912 (2001).

    Article  CAS  PubMed  Google Scholar 

  54. Sebo, T. J. et al. Perineural invasion and MIB-1 positivity in addition to Gleason score are significant preoperative predictors of progression after radical retropubic prostatectomy for prostate cancer. Am. J. Surg. Pathol. 26, 431–439 (2002).

    Article  PubMed  Google Scholar 

  55. Tollefson, M. et al. Prostate cancer Ki-67 (MIB-1) expression, perineural invasion and Gleason score as biopsy-based prefictors of prostate cancer mortality: the Mayo model. Mayo Clin. Proc. 89, 308–318 (2014).

    Article  CAS  PubMed  Google Scholar 

  56. Giroud, F., Haroske, G., Reith, A. & Böcking, A. 1997 ESACP consensus report on diagnostic DNA image cytometry. Part II: specific recommendations for quality assurance. European Society for Analytical Cellular Pathology. Anal. Cell. Pathol. 17, 201–208 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Haroske, G., Giroud, F., Reith, A. & Böcking, A. 1997 ESACP consensus report on diagnostic DNA image cytometry. Part I: basic considerations and recommendations for preparation, measurement and interpretation. European Society for Analytical Cellular Pathology. Anal. Cell. Pathol. 17, 189–200 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Ormerod, M. G., Tribukait, B. & Giaretti, W. Consensus report of the task force on standardisation of DNA flow cytometry in clinical pathology. DNA Flow Cytometry Task Force of the European Society for Analytical Cellular Pathology. Anal. Cell. Pathol. 17, 103–110 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Sperandio, M. et al. Predictive value of dysplasia grading and DNA ploidy in malignant transformation of oral potentially malignant disorders. Cancer Prev. Res. (Phila.) 6, 822–831 (2013).

    Article  CAS  Google Scholar 

  60. Hering, B., Horn, L. C., Nenning, H. & Kuhndel, K. Predictive value of DNA cytometry in CIN 1 and 2. Image analysis of 193 cases. Anal. Quant. Cytol. Histol. 22, 333–337 (2000).

    CAS  PubMed  Google Scholar 

  61. Pradhan, M., Abeler, V. M., Danielsen, H. E., Tropé, C. G. & Risberg, B. A. Image cytometry DNA ploidy correlates with histological subtypes in endometrial carcinomas. Mod. Pathol. 19, 1227–1235 (2006).

    Article  CAS  PubMed  Google Scholar 

  62. Hveem, T. S. et al. Prognostic impact of genomic instability in colorectal cancer. Br. J. Cancer 110, 2159–2164 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Laubert, T. et al. Aneuploidy and elevated CEA indicate an increased risk for metachronous metastasis in colorectal cancer. Int. J. Colorectal Dis. 28, 767–775 (2013).

    Article  PubMed  Google Scholar 

  64. Grabsch, H., Kerr, D. & Quirke, P. Is there a case for routine clinical application of ploidy measurements in gastrointestinal tumours? Histopathology 45, 312–334 (2004).

    Article  CAS  PubMed  Google Scholar 

  65. Park, S. Y. et al. Heterogeneity for stem cell-related markers according to tumor subtype and histologic stage in breast cancer. Clin. Cancer Res. 16, 876–887 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Newburger, D. E. et al. Genome evolution during progression to breast cancer. Genome Res. 23, 1097–1108 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Arpino, G. et al. Gene expression profiling in breast cancer: a clinical perspective. Breast 22, 109–120 (2013).

    Article  PubMed  Google Scholar 

  68. Habermann, J. K. et al. The gene expression signature of genomic instability in breast cancer is an independent predictor of clinical outcome. Int. J. Cancer 124, 1552–1564 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Szasz, A. M. et al. The CIN4 chromosomal instability qPCR classifier defines tumor aneuploidy and stratifies outcome in grade 2 breast cancer. PLoS ONE 8, e56707 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Tryggvadottir, L. et al. Tumour diploidy and survival in breast cancer patients with BRCA2 mutations. Breast Cancer Res. Treat. 140, 375–384 (2013).

    Article  CAS  PubMed  Google Scholar 

  71. Pinto, A. E. et al. DNA ploidy is an independent predictor of survival in breast invasive ductal carcinoma: a long-term multivariate analysis of 393 patients. Ann. Surg. Oncol. 20, 1530–1537 (2013).

    Article  PubMed  Google Scholar 

  72. Karra, H. et al. Securin predicts aneuploidy and survival in breast cancer. Histopathology 60, 586–596 (2012).

    Article  PubMed  Google Scholar 

  73. Gazic, B. et al. S-phase fraction determined on fine needle aspirates is an independent prognostic factor in breast cancer — a multivariate study of 770 patients. Cytopathology 19, 294–302 (2008).

    Article  CAS  PubMed  Google Scholar 

  74. Mandard, A. M. et al. Prognostic value of DNA cytometry in 281 premenopausal patients with lymph node negative breast carcinoma randomized in a control trial: multivariate analysis with Ki-67 index, mitotic count, and microvessel density. Cancer 89, 1748–1757 (2000).

    Article  CAS  PubMed  Google Scholar 

  75. Pinto, A. E., Andre, S., Pereira, T., Silva, G. & Soares, J. DNA flow cytometry but not telomerase activity as predictor of disease-free survival in pT1–2/N0/G2 breast cancer. Pathobiology 73, 63–70 (2006).

    Article  CAS  PubMed  Google Scholar 

  76. Moureau-Zabotto, L. et al. Combined flow cytometry determination of S-phase fraction and DNA ploidy is an independent prognostic factor in node-negative invasive breast carcinoma: analysis of a series of 271 patients with stage I and II breast cancer. Breast Cancer Res. Treat. 91, 61–71 (2005).

    Article  CAS  PubMed  Google Scholar 

  77. Li, L. et al. Genomic instability and proliferative activity as risk factors for distant metastases in breast cancer. Br. J. Cancer 99, 513–519 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Hicks, J. et al. Novel patterns of genome rearrangement and their association with survival in breast cancer. Genome Res. 16, 1465–1479 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Chavez-Uribe, E. et al. Hypoploidy defines patients with poor prognosis in breast cancer. Oncol. Rep. 17, 1109–1114 (2007).

    CAS  PubMed  Google Scholar 

  80. Gadducci, A., Barsotti, C., Cosio, S., Domenici, L. & Riccardo, G. A. Smoking habit, immune suppression, oral contraceptive use, and hormone replacement therapy use and cervical carcinogenesis: a review of the literature. Gynecol. Endocrinol. 27, 597–604 (2011).

    Article  PubMed  Google Scholar 

  81. Matias-Guiu, X. & Davidson, B. Prognostic biomarkers in endometrial and ovarian carcinoma. Virchows Arch. 464, 315–331 (2014).

    Article  CAS  PubMed  Google Scholar 

  82. Werner, H. M. & Salvesen, H. B. Current status of molecular biomarkers in endometrial cancer. Curr. Oncol. Rep. 16, 403 (2014).

    Article  CAS  PubMed  Google Scholar 

  83. Mauland, K. K., Wik, E. & Salvesen, H. B. Clinical value of DNA content assessment in endometrial cancer. Cytometry B Clin. Cytom. 86, 154–163 (2014).

    Article  PubMed  Google Scholar 

  84. Steinbakk, A. et al. Biomarkers and microsatellite instability analysis of curettings can predict the behavior of FIGO stage I endometrial endometrioid adenocarcinoma. Mod. Pathol. 24, 1262–1271 (2011).

    Article  PubMed  Google Scholar 

  85. Wik, E. et al. Deoxyribonucleic acid ploidy in endometrial carcinoma: a reproducible and valid prognostic marker in a routine diagnostic setting. Am. J. Obstet. Gynecol. 201, 603–607 (2009).

    Article  CAS  PubMed  Google Scholar 

  86. Lim, P. et al. Low-risk endometrial carcinoma: assessment of a treatment policy based on tumor ploidy and identification of additional prognostic indicators. Gynecol. Oncol. 73, 191–195 (1999).

    Article  CAS  PubMed  Google Scholar 

  87. Mangili, G. et al. The role of DNA ploidy in postoperative management of stage I endometrial cancer. Ann. Oncol. 19, 1278–1283 (2008).

    Article  CAS  PubMed  Google Scholar 

  88. Hogberg, T. et al. A prospective population-based management program including primary surgery and postoperative risk assessment by means of DNA ploidy and histopathology. Adjuvant radiotherapy is not necessary for the majority of patients with FIGO stage I–II endometrial cancer. Int. J. Gynecol. Cancer 14, 437–450 (2004).

    Article  CAS  PubMed  Google Scholar 

  89. Lindahl, B., Masback, A., Persson, J., Ranstam, J. & Willlen, R. Adenocarcinoma corpus uteri stage I–II: results of a treatment programme based upon cytometry. Anticancer Res. 29, 4731–4735 (2009).

    PubMed  Google Scholar 

  90. Vang, R., Shih Ie, M. & Kurman, R. J. Ovarian low-grade and high-grade serous carcinoma: pathogenesis, clinicopathologic and molecular biologic features, and diagnostic problems. Adv. Anat. Pathol. 16, 267–282 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  91. Jones, S. et al. Low-grade serous carcinomas of the ovary contain very few point mutations. J. Pathol. 226, 413–420 (2012).

    Article  CAS  PubMed  Google Scholar 

  92. Fox, H. Ploidy in gynaecological cancers. Histopathology 46, 121–129 (2005).

    Article  CAS  PubMed  Google Scholar 

  93. Tropé, C. G., Kaern, J. & Davidson, B. Borderline ovarian tumours. Best. Pract. Res. Clin. Obstet. Gynaecol. 26, 325–336 (2012).

    Article  PubMed  Google Scholar 

  94. Pradhan, M. et al. Gross genomic alterations differ between serous borderline tumors and serous adenocarcinomas — an image cytometric DNA ploidy analysis of 307 cases with histogenetic implications. Virchows Arch. 454, 677–683 (2009).

    Article  CAS  PubMed  Google Scholar 

  95. Flezar, M. S., But, I., Kavalar, R. & Us-Krasovec, M. Flow and image cytometric DNA ploidy, including 5c exceeding cells, of serous borderline malignant ovarian tumors. Correlation with clinicopathologic characteristics. Anal. Quant. Cytol. Histol. 25, 139–145 (2003).

    PubMed  Google Scholar 

  96. Kaern, J., Tropé, C. G., Kristensen, G. B., Abeler, V. M. & Pettersen, E. O. DNA ploidy; the most important prognostic factor in patients with borderline tumors of the ovary. Int. J. Gynecol. Cancer 3, 349–358 (1993).

    Article  PubMed  Google Scholar 

  97. Böcking, A. & Nguyen, V. Q. Diagnostic and prognostic use of DNA image cytometry in cervical squamous intraepithelial lesions and invasive carcinoma. Cancer 102, 41–54 (2004).

    Article  CAS  PubMed  Google Scholar 

  98. Reich, O. & Ballon, M. DNA cytometry as a first-line method for diagnosis of cervical precancer with respect to clinical behaviour. Eur. J. Gynaecol. Oncol. 31, 372–374 (2010).

    CAS  PubMed  Google Scholar 

  99. zur Hausen, H. Cervical carcinoma and human papillomavirus: on the road to preventing a major human cancer. J. Natl Cancer Inst. 93, 252–253 (2001).

    Article  CAS  PubMed  Google Scholar 

  100. Lorenzato, M. et al. Usefulness of DNA ploidy measurement on liquid-based smears showing conflicting results between cytology and high-risk human papillomavirus typing. Am. J. Clin. Pathol. 118, 708–713 (2002).

    Article  PubMed  Google Scholar 

  101. Lorenzato, M. et al. Contribution of DNA ploidy image cytometry to the management of ASC cervical lesions. Cancer 114, 263–269 (2008).

    Article  PubMed  Google Scholar 

  102. Tong, H. et al. DNA ploidy cytometry testing for cervical cancer screening in China (DNACIC Trial): a prospective randomized, controlled trial. Clin. Cancer Res. 15, 6438–6445 (2009).

    Article  CAS  PubMed  Google Scholar 

  103. Colditz, G. A. & Crowley, J. DNA cytometry testing for cervical cancer screening: approaches and reporting standards for new technologies. Clin. Cancer Res. 17, 6971–6972 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  104. Grote, H. J. et al. Prognostic significance of DNA cytometry in carcinoma of the uterine cervix FIGO stage IB and II. Anal. Cell. Pathol. 23, 97–105 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Reid, B. J., Levine, D. S., Longton, G., Blount, P. L. & Rabinovitch, P. S. Predictors of progression to cancer in Barrett's esophagus: baseline histology and flow cytometry identify low- and high-risk patient subsets. Am. J. Gastroenterol. 95, 1669–1676 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Reid, B. J., Li, X., Galipeau, P. C. & Vaughan, T. L. Barrett's oesophagus and oesophageal adenocarcinoma: time for a new synthesis. Nat. Rev. Cancer 10, 87–101 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Borovicka, J. et al. Is there an advantage to be gained from adding digital image cytometry of brush cytology to a standard biopsy protocol in patients with Barrett's esophagus? Endoscopy 41, 409–414 (2009).

    Article  CAS  PubMed  Google Scholar 

  108. Vogt, N., Schonegg, R., Gschossmann, J. M. & Borovicka, J. Benefit of baseline cytometry for surveillance of patients with Barrett's esophagus. Surg. Endosc. 24, 1144–1150 (2010).

    Article  PubMed  Google Scholar 

  109. Bird-Lieberman, E. L. et al. Population-based study reveals new risk-stratification biomarker panel for Barrett's esophagus. Gastroenterology 143, 927–935 (2012).

    Article  CAS  PubMed  Google Scholar 

  110. Habermann, J. et al. Ulcerative colitis and colorectal carcinoma: DNA-profile, laminin-5 γ2 chain and cyclin A expression as early markers for risk assessment. Scand. J. Gastroenterol. 36, 751–758 (2001).

    Article  CAS  PubMed  Google Scholar 

  111. Friis-Ottessen, M. et al. Telomere shortening correlates to dysplasia but not to DNA aneuploidy in longstanding ulcerative colitis. BMC Gastroenterol. 14, 8 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Scarpa, M. et al. Inflammatory colonic carcinogenesis: a review on pathogenesis and immunosurveillance mechanisms in ulcerative colitis. World J. Gastroenterol. 20, 6774–6785 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Gerling, M. et al. High frequency of aneuploidy defines ulcerative colitis-associated carcinomas: a comparative prognostic study to sporadic colorectal carcinomas. Ann. Surg. 252, 74–83 (2010).

    Article  PubMed  Google Scholar 

  114. Gerling, M. et al. Aneuploidy-associated gene expression signatures characterize malignant transformation in ulcerative colitis. Inflamm. Bowel. Dis. 19, 691–703 (2013).

    Article  PubMed  Google Scholar 

  115. Jemal, A., Center, M. M., DeSantis, C. & Ward, E. M. Global patterns of cancer incidence and mortality rates and trends. Cancer Epidemiol. Biomarkers Prev. 19, 1893–1907 (2010).

    Article  PubMed  Google Scholar 

  116. Labianca, R. et al. Early colon cancer: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann. Oncol. 24 (Suppl. 6), vi64–vi72 (2013).

    PubMed  Google Scholar 

  117. Domingo, E. et al. Use of multivariate analysis to suggest a new molecular classification of colorectal cancer. J. Pathol. 229, 441–448 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Walther, A., Houlston, R. & Tomlinson, I. Association between chromosomal instability and prognosis in colorectal cancer: a meta-analysis. Gut 57, 941–950 (2008).

    Article  CAS  PubMed  Google Scholar 

  119. Araujo, S. E., Bernardo, W. M., Habr-Gama, A., Kiss, D. R. & Cecconello, I. DNA ploidy status and prognosis in colorectal cancer: a meta-analysis of published data. Dis. Colon Rectum 50, 1800–1810 (2007).

    Article  PubMed  Google Scholar 

  120. Mouradov, D. et al. Survival in stage II/III colorectal cancer is independently predicted by chromosomal and microsatellite instability, but not by specific driver mutations. Am. J. Gastroenterol. 108, 1785–1793 (2013).

    Article  CAS  PubMed  Google Scholar 

  121. Sinicrope, F. A. et al. Prognostic impact of microsatellite instability and DNA ploidy in human colon carcinoma patients. Gastroenterology 131, 729–737 (2006).

    Article  CAS  PubMed  Google Scholar 

  122. Watanabe, T. et al. Chromosomal instability (CIN) phenotype, CIN high or CIN low, predicts survival for colorectal cancer. J. Clin. Oncol. 30, 2256–2264 (2012).

    Article  PubMed  Google Scholar 

  123. Risques, R. A. et al. Genetic pathways and genome-wide determinants of clinical outcome in colorectal cancer. Cancer Res. 63, 7206–7214 (2003).

    CAS  PubMed  Google Scholar 

  124. Calistri, D. et al. KRAS, p53 and BRAF gene mutations and aneuploidy in sporadic colorectal cancer progression. Cell. Oncol. 28, 161–166 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  125. Foss, K. M. et al. miR-1254 and miR-574-5p: serum-based microRNA biomarkers for early-stage non-small cell lung cancer. J. Thorac. Oncol. 6, 482–488 (2011).

    Article  PubMed  Google Scholar 

  126. Coate, L. E., John, T., Tsao, M. S. & Shepherd, F. A. Molecular predictive and prognostic markers in non-small-cell lung cancer. Lancet Oncol. 10, 1001–1010 (2009).

    Article  CAS  PubMed  Google Scholar 

  127. Marek, W., Richartz, G., Philippou, S., Marek, L. & Kotschy-Lang, N. Sputum screening for lung cancer in radon exposed uranium miners: a comparison of semi-automated sputum cytometry and conventional cytology. J. Physiol. Pharmacol. 58 (Suppl. 5), 349–361 (2007).

    PubMed  Google Scholar 

  128. Kemp, R. A., Reinders, D. M. & Turic, B. Detection of lung cancer by automated sputum cytometry. J. Thorac. Oncol. 2, 993–1000 (2007).

    Article  PubMed  Google Scholar 

  129. Yang, J. & Zhou, Y. Detection of DNA aneuploidy in exfoliated airway epithelia cells of sputum specimens by the automated image cytometry and its clinical value in the identification of lung cancer. J. Huazhong. Univ. Sci. Technolog. Med. Sci. 24, 407–410 (2004).

    Article  CAS  PubMed  Google Scholar 

  130. Xing, S. et al. Predictive value of image cytometry for diagnosis of lung cancer in heavy smokers. Eur. Respir. J. 25, 956–963 (2005).

    Article  CAS  PubMed  Google Scholar 

  131. Varella-Garcia, M. Chromosomal and genomic changes in lung cancer. Cell Adh. Migr. 4, 100–106 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  132. Choma, D., Daures, J. P., Quantin, X. & Pujol, J. L. Aneuploidy and prognosis of non-small-cell lung cancer: a meta-analysis of published data. Br. J. Cancer 85, 14–22 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Dyszkiewicz, W., Kasprzyk, M., Piwkowski, C., Gasiorowski, L. & Ramlau, R. The prognostic value of DNA content analysis in patients with squamous cell lung cancer treated surgically. Lung Cancer 29, 161–167 (2000).

    Article  CAS  PubMed  Google Scholar 

  134. Petersen, I. et al. Core classification of lung cancer: correlating nuclear size and mitoses with ploidy and clinicopathological parameters. Lung Cancer 65, 312–318 (2009).

    Article  PubMed  Google Scholar 

  135. Sebo, T. J. et al. Predicting prostate carcinoma volume and stage at radical prostatectomy by assessing needle biopsy specimens for percent surface area and cores positive for carcinoma, perineural invasion, Gleason score, DNA ploidy and proliferation, and preoperative serum prostate specific antigen: a report of 454 cases. Cancer 91, 2196–2204 (2001).

    Article  CAS  PubMed  Google Scholar 

  136. Lorenzato, M. et al. DNA image cytometry on biopsies can help the detection of localized Gleason 3 + 3 prostate cancers. J. Urol. 172, 1311–1313 (2004).

    Article  CAS  PubMed  Google Scholar 

  137. Fine, S. W. & Epstein, J. I. A contemporary study correlating prostate needle biopsy and radical prostatectomy Gleason score. J. Urol. 179, 1335–1338 (2008).

    Article  PubMed  Google Scholar 

  138. Sengupta, S. et al. Conventional assessment of needle biopsy specimens is more useful than digital image analysis of proliferation and DNA ploidy in prediction of positive surgical margins at radical prostatectomy. Urology 68, 94–98 (2006).

    Article  PubMed  Google Scholar 

  139. Isharwal, S. et al. DNA ploidy as surrogate for biopsy Gleason score for preoperative organ versus nonorgan-confined prostate cancer prediction. Urology 73, 1092–1097 (2009).

    Article  PubMed  Google Scholar 

  140. Böcking, A., Tils, M., Schramm, M., Dietz, J. & Biesterfeld, S. DNA-cytometric grading of prostate cancer systematic review with descriptive data analysis. Pathol. Discov. 2, 1–20 (2014).

    Article  Google Scholar 

  141. Keyes, M. et al. DNA ploidy measured on archived pretreatment biopsy material may correlate with prostate-specific antigen recurrence after prostate brachytherapy. Int. J. Radiat. Oncol. Biol. Phys. 86, 829–834 (2013).

    Article  PubMed  Google Scholar 

  142. Pollack, A. et al. Prostate cancer DNA ploidy and response to salvage hormone therapy after radiotherapy with or without short-term total androgen blockade: an analysis of RTOG 8610. J. Clin. Oncol. 21, 1238–1248 (2003).

    Article  CAS  PubMed  Google Scholar 

  143. Ward, J. F., Sebo, T. J., Blute, M. L. & Zincke, H. Salvage surgery for radiorecurrent prostate cancer: contemporary outcomes. J. Urol. 173, 1156–1160 (2005).

    Article  PubMed  Google Scholar 

  144. Ross, J. S. et al. Prognostic factors in prostate cancer. Am. J. Clin. Pathol. 120 (Suppl.), S85–S100 (2003).

    PubMed  Google Scholar 

  145. Bantis, A. et al. Telomerase RNA expression and DNA ploidy as prognostic markers of prostate carcinomas. Tumori 95, 744–752 (2009).

    Article  CAS  PubMed  Google Scholar 

  146. Lau, W. K. et al. Prognostic factors for survival of patients with pathological Gleason score 7 prostate cancer: differences in outcome between primary Gleason grades 3 and 4. J. Urol. 166, 1692–1697 (2001).

    Article  CAS  PubMed  Google Scholar 

  147. Martinez-Jabaloyas, J. M., Ruiz-Cerda, J. L., Hernandez, M., Jimenez, A. & Jimenez-Cruz, F. Prognostic value of DNA ploidy and nuclear morphometry in prostate cancer treated with androgen deprivation. Urology 59, 715–720 (2002).

    Article  PubMed  Google Scholar 

  148. Deliveliotis, C. et al. The prognostic value of p53 and DNA ploidy following radical prostatectomy. World J. Urol. 21, 171–176 (2003).

    Article  CAS  PubMed  Google Scholar 

  149. Pretorius, M. E. et al. Large scale genomic instability as an additive prognostic marker in early prostate cancer. Cell. Oncol. 31, 251–259 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  150. Horninger, W. et al. Characteristics of prostate cancers detected at low PSA levels. Prostate 58, 232–237 (2004).

    Article  PubMed  Google Scholar 

  151. Shi, Q. & King, R. W. Chromosome nondisjunction yields tetraploid rather than aneuploid cells in human cell lines. Nature 437, 1038–1042 (2005).

    Article  CAS  PubMed  Google Scholar 

  152. Alvarez, A. L. High incidence of aneuploidy in low grade urothelial carcinomas. Int. J. Urol. 15, 279 (2008).

    Article  PubMed  Google Scholar 

  153. Ross, J. S. & Cohen, M. B. Biomarkers for the detection of bladder cancer. Adv. Anat. Pathol. 8, 37–45 (2001).

    Article  CAS  PubMed  Google Scholar 

  154. Ramos, D. Prognostic markers in low-grade papillary urothelial neoplams of the urinary bladder: an update. Diagn. Histopathol. 15, 42–50 (2011).

    Article  Google Scholar 

  155. Palmeira, C. A. et al. DNA image cytometry in bladder cancer: state of the art. Anticancer Res. 28, 443–450 (2008).

    PubMed  Google Scholar 

  156. Yamamoto, Y. et al. Biological characteristics in bladder cancer depend on the type of genetic instability. Clin. Cancer Res. 12, 2752–2758 (2006).

    Article  CAS  PubMed  Google Scholar 

  157. Deliveliotis, C. et al. DNA ploidy as a prognostic factor in muscle invasive transitional cell carcinoma of the bladder. Urol. Res. 33, 39–43 (2005).

    Article  CAS  PubMed  Google Scholar 

  158. Gerlinger, M. et al. Intratumor heterogeneity and branched evolution revealed by multiregion sequencing. N. Engl. J. Med. 366, 883–892 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Malhotra, A. et al. Ploidy-Seq: inferring mutational chronology by sequencing polyploid tumor subpopulations. Genome Med. 7, 6 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  160. Lengauer, C., Kinzler, K. W. & Vogelstein, B. Genetic instability in colorectal cancers. Nature 386, 623–627 (1997).

    Article  CAS  PubMed  Google Scholar 

  161. Sheltzer, J. M. A transcriptional and metabolic signature of primary aneuploidy is present in chromosomally unstable cancer cells and informs clinical prognosis. Cancer Res. 73, 6401–6412 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Ambros, P. F. et al. International consensus for neuroblastoma molecular diagnostics: report from the International Neuroblastoma Risk Group (INRG) Biology Committee. Br. J. Cancer 100, 1471–1482 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Netto, G. J. et al. Interobserver variability in histologic evaluation of radical prostatectomy between central and local pathologists: findings of TAX 3501 multinational clinical trial. Urology 77, 1155–1160 (2011).

    Article  PubMed  Google Scholar 

  164. Takanishi, D. M. Jr, Hart, J., Covarelli, P., Chappell, R. & Michelassi, F. Ploidy as a prognostic feature in colonic adenocarcinoma. Arch. Surg. 131, 587–592 (1996).

    Article  PubMed  Google Scholar 

  165. Sinicrope, F. A. et al. Apoptotic and mitotic indices predict survival rates in lymph node-negative colon carcinomas. Clin. Cancer Res. 5, 1793–1804 (1999).

    CAS  PubMed  Google Scholar 

  166. Armitage, N. C. et al. A prospective evaluation of the effect of tumor cell DNA content on recurrence in colorectal cancer. Cancer 67, 2599–2604 (1991).

    Article  CAS  PubMed  Google Scholar 

  167. Chapman, M. A., Hardcastle, J. D. & Armitage, N. C. Five-year prospective study of DNA tumor ploidy and colorectal cancer survival. Cancer 76, 383–387 (1995).

    Article  CAS  PubMed  Google Scholar 

  168. Lanza, G. et al. Prognostic significance of DNA ploidy in patients with stage II and stage III colon carcinoma: a prospective flow cytometric study. Cancer 82, 49–59 (1998).

    Article  CAS  PubMed  Google Scholar 

  169. Buglioni, S. et al. p53 nuclear accumulation and multiploidy are adverse prognostic factors in surgically resected stage II colorectal cancers independent of fluorouracil-based adjuvant therapy. Am. J. Clin. Pathol. 116, 360–368 (2001).

    Article  CAS  PubMed  Google Scholar 

  170. Kay, E. W., Mulcahy, H. E., Curran, B., O'Donoghue, D. P. & Leader, M. An image analysis study of DNA content in early colorectal cancer. Eur. J. Cancer 32A, 612–616 (1996).

    Article  CAS  PubMed  Google Scholar 

  171. Garrity, M. M. et al. Prognostic value of proliferation, apoptosis, defective DNA mismatch repair, and p53 overexpression in patients with resected Dukes' B2 or C colon cancer: a North Central Cancer Treatment Group Study. J. Clin. Oncol. 22, 1572–1582 (2004).

    Article  CAS  PubMed  Google Scholar 

  172. Zarbo, R. J. et al. Prognostic significance of DNA ploidy and proliferation in 309 colorectal carcinomas as determined by two-color multiparametric DNA flow cytometry. Cancer 79, 2073–2086 (1997).

    Article  CAS  PubMed  Google Scholar 

  173. Kokal, W. A. et al. Tumor DNA content in resectable, primary colorectal carcinoma. Ann. Surg. 209, 188–193 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Tomoda, H., Baba, H., Saito, T. & Wada, S. DNA index as a significant predictor of recurrence in colorectal cancer. Dis. Colon Rectum 41, 286–290 (1998).

    Article  CAS  PubMed  Google Scholar 

  175. Cosimelli, M. et al. The role of multiploidy as unfavorable prognostic variable in colorectal cancer. Anticancer Res. 18, 1957–1965 (1998).

    CAS  PubMed  Google Scholar 

  176. Bondi, J., Pretorius, M., Bukholm, I. & Danielsen, H. Large-scale genomic instability in colon adenocarcinomas and correlation with patient outcome. APMIS 117, 730–736 (2009).

    Article  PubMed  Google Scholar 

  177. Ahnen, D. J. Abnormal DNA content as a biomarker of large bowel cancer risk and prognosis. J. Cell. Biochem. Suppl. 16G, 143–150 (1992).

    Article  CAS  PubMed  Google Scholar 

  178. Nori, D. et al. Tumor ploidy as a risk factor for disease recurrence and short survival in surgically treated Dukes' B2 colon cancer patients. Tumour Biol. 17, 75–80 (1996).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed substantially to researching data, discussion of content, writing, and review/editing of the manuscript.

Corresponding author

Correspondence to Håvard E. Danielsen.

Ethics declarations

Competing interests

M.N. is a Medical Director at Room4 Ltd, a UK company that develops and sells ploidy systems. The other authors declare no competing interests.

Supplementary information

Supplementary Figure 1

DNA ploidy histograms generated for formalin-fixed paraffin-embedded tissues from a diploid tumour and an aneuploid tumour using FCM and ICM (DOCX 152 kb)

Supplementary Table 1

The prognostic importance of ploidy in patients with invasive breast cancer (DOCX 77 kb)

Supplementary Table 2

The prognostic importance of ploidy in patients with endometrioid endometrial cancer (DOCX 70 kb)

Supplementary Table 3

The prognostic importance of ploidy in patients with early stage ovarian cancer, including BOT (DOCX 74 kb)

Supplementary Table 4

Aneuploidy and cancer of uterine cervix (DOCX 47 kb)

Supplementary Table 5

Aneuploidy and colorectal cancer arising in patients with colitis and Crohn disease (DOCX 44 kb)

Supplementary Table 6

The prognostic importance of ploidy in colorectal cancer (DOCX 97 kb)

Supplementary Table 7

Prognosis studies with ploidy measured in pre-surgical needle or transurethral biopsy specimens from patients with prostate cancer (DOCX 67 kb)

Supplementary Table 8

Prognosis studies with ploidy measured in radical prostatectomy specimens from patients with prostate cancer (DOCX 30 kb)

Supplementary Table 9

Aneuploidy and prognosis in patients with bladder carcinoma (DOCX 22 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Danielsen, H., Pradhan, M. & Novelli, M. Revisiting tumour aneuploidy — the place of ploidy assessment in the molecular era. Nat Rev Clin Oncol 13, 291–304 (2016). https://doi.org/10.1038/nrclinonc.2015.208

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrclinonc.2015.208

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer