Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The changing landscape of phase I trials in oncology

Key Points

  • Several aspects of the design of phase I trials have evolved in the era of molecular targeted agents to enable better assessment of these novel therapies and maximize the efficiency of drug development

  • Current phase I trial designs increasingly use new dose-escalation approaches and biomarker-driven patient selection, while expanding study objectives to include efficacy evaluation and pharmacokinetics/ pharmacodynamics (PK/PD), in addition to safety

  • Preclinical evidence supporting a biological or pharmacological rationale and exploration of PK/PD interactions between drug partners are necessary for phase I trials of combination therapies that include targeted agents

  • Changes to the regulatory approval process help to expedite drug development, particularly for novel agents with a well-established biological mechanism, a predictive biomarker, and clear evidence of efficacy in early trials

  • Changes in the goals and conduct of phase I trials have resulted in a shift towards multi-institutional studies and centralized management, with a significant impact on the structure of phase I programmes

  • Both the efficiency and rate of drug approval need to improve despite the limited acceptance of novel trial designs and difficulties associated with early phase biomarker integration

Abstract

Advances in our knowledge of the molecular pathogenesis of cancer have led to increased interest in molecularly targeted agents (MTAs), which target specific oncogenic drivers and are now a major focus of cancer drug development. MTAs differ from traditional cytotoxic agents in various aspects, including their toxicity profiles and the potential availability of predictive biomarkers of response. The landscape of phase I oncology trials is evolving to adapt to these novel therapies and to improve the efficiency of drug development. In this Review, we discuss new strategies used in phase I trial design, such as novel dose-escalation schemes to circumvent limitations of the classic 3 + 3 design and enable faster dose escalation and/or more-precise dose determinations using statistical modelling; improved selection of patients based on genetic or molecular biomarkers; pharmacokinetic and pharmacodynamic analyses; and the early evaluation of efficacy — in addition to safety. Indeed, new expedited approval pathways that can accelerate drug development require demonstration of efficacy in early phase trials. The application of molecular tumour profiling for matched therapy and the testing of drug combinations based on a strong biological rationale are also increasingly seen in phase I studies. Finally, the shift towards multi-institutional trials and centralized study management results in consequent implications for institutions and investigators. These issues are also highlighted herein.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Considerations for the evolution of phase I oncology trials in the MTA era.

Similar content being viewed by others

References

  1. American Cancer Society. Cancer Facts and Figures 2015 [online], (2015).

  2. Euhus, D., Di Carlo, P. A. & Khouri, N. F. Breast cancer screening. Surg. Clin. North Am. 95, 991–1011 (2015).

    Article  PubMed  Google Scholar 

  3. National Lung Screening Trial Research Team. Reduced lung-cancer mortality with low-dose computed tomographic screening. N. Engl. J. Med. 365, 395–409 (2011).

  4. Rajput, A. & Bullard Dunn, K. Surgical management of rectal cancer. Semin. Oncol. 34, 241–249 (2007).

    Article  PubMed  Google Scholar 

  5. van Gijn, W. et al. Preoperative radiotherapy combined with total mesorectal excision for resectable rectal cancer: 12-year follow-up of the multicentre, randomised controlled TME trial. Lancet Oncol. 12, 575–582 (2011).

    Article  PubMed  Google Scholar 

  6. Pharmaceutical Research and Manufacturers of America. Medicines in development: Cancer [online], (2014).

  7. Hay, M., Thomas, D. W., Craighead, J. L., Economides, C. & Rosenthal, J. Clinical development success rates for investigational drugs. Nat. Biotechnol. 32, 40–51 (2014).

    Article  CAS  PubMed  Google Scholar 

  8. Pharmaceutical Research and Manufacturers of America. Researching Cancer Medicines: Setbacks and Stepping Stones [online], (2014).

  9. DiMasi, J. A. & Grabowski, H. G. Economics of new oncology drug development. J. Clin. Oncol. 25, 209–216 (2007).

    Article  PubMed  Google Scholar 

  10. Le Tourneau, C., Stathis, A., Vidal, L., Moore, M. J. & Siu, L. L. Choice of starting dose for molecularly targeted agents evaluated in first-in-human phase I cancer clinical trials. J. Clin. Oncol. 28, 1401–1407 (2010).

    Article  CAS  PubMed  Google Scholar 

  11. Ivy, S. P., Siu, L. L., Garrett-Mayer, E. & Rubinstein, L. Approaches to phase 1 clinical trial design focused on safety, efficiency, and selected patient populations: a report from the clinical trial design task force of the national cancer institute investigational drug steering committee. Clin. Cancer Res. 16, 1726–1736 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Le Tourneau, C., Lee, J. J. & Siu, L. L. Dose escalation methods in phase I cancer clinical trials. J. Natl Cancer Inst. 101, 708–720 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. LoRusso, P. M., Boerner, S. A. & Seymour, L. An overview of the optimal planning, design, and conduct of phase I studies of new therapeutics. Clin. Cancer Res. 16, 1710–1718 (2010).

    Article  CAS  PubMed  Google Scholar 

  14. Mick, R. & Ratain, M. J. Model-guided determination of maximum tolerated dose in phase I clinical trials: evidence for increased precision. J. Natl Cancer Inst. 85, 217–223 (1993).

    Article  CAS  PubMed  Google Scholar 

  15. Dowlati, A. et al. Multi-institutional phase I trials of anticancer agents. J. Clin. Oncol. 26, 1926–1931 (2008).

    Article  PubMed  Google Scholar 

  16. Postel-Vinay, S. et al. Towards new methods for the determination of dose limiting toxicities and the assessment of the recommended dose for further studies of molecularly targeted agents — dose-Limiting Toxicity and Toxicity Assessment Recommendation Group for Early Trials of Targeted therapies, an European Organisation for Research and Treatment of Cancer-led study. Eur. J. Cancer 50, 2040–2049 (2014).

    Article  PubMed  Google Scholar 

  17. Le Tourneau, C. et al. Heterogeneity in the definition of dose-limiting toxicity in phase I cancer clinical trials of molecularly targeted agents: a review of the literature. Eur. J. Cancer 47, 1468–1475 (2011).

    Article  CAS  PubMed  Google Scholar 

  18. Paoletti, X. et al. Defining dose-limiting toxicity for phase 1 trials of molecularly targeted agents: results of a DLT-TARGETT international survey. Eur. J. Cancer 50, 2050–2056 (2014).

    Article  CAS  PubMed  Google Scholar 

  19. Adamina, M. & Joerger, M. Dose-toxicity models in oncology. Expert Opin. Drug Metab. Toxicol. 7, 201–211 (2011).

    Article  PubMed  Google Scholar 

  20. Simon, R. et al. Accelerated titration designs for phase I clinical trials in oncology. J. Natl Cancer Inst. 89, 1138–1147 (1997).

    Article  CAS  PubMed  Google Scholar 

  21. Penel, N. et al. “Classical 3 + 3 design” versus “accelerated titration designs”: analysis of 270 phase 1 trials investigating anti-cancer agents. Invest. New Drugs 27, 552–556 (2009).

    Article  PubMed  Google Scholar 

  22. Dancey, J., Freidlin, B. & Rubinstein, L. in Statistical methods for dose-finding experiments (ed. Chevret, S.) 91 (Wiley Press, 2006).

    Book  Google Scholar 

  23. Skolnik, J. M., Barrett, J. S., Jayaraman, B., Patel, D. & Adamson, P. C. Shortening the timeline of pediatric phase I trials: the rolling six design. J. Clin. Oncol. 26, 190–195 (2008).

    Article  PubMed  Google Scholar 

  24. Onar-Thomas, A. & Xiong, Z. A simulation-based comparison of the traditional method, Rolling-6 design and a frequentist version of the continual reassessment method with special attention to trial duration in pediatric phase I oncology trials. Contemp. Clin. Trials 31, 259–270 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  25. Doussau, A. et al. Dose-finding designs in pediatric phase I clinical trials: comparison by simulations in a realistic timeline framework. Contemp. Clin. Trials 33, 657–665 (2012).

    Article  CAS  PubMed  Google Scholar 

  26. Sposto, R. & Groshen, S. A wide-spectrum paired comparison of the properties of the Rolling 6 and 3+3 Phase I study designs. Contemp. Clin. Trials 32, 694–703 (2011).

    Article  PubMed  Google Scholar 

  27. O'Quigley, J., Pepe, M. & Fisher, L. Continual reassessment method: a practical design for phase 1 clinical trials in cancer. Biometrics 46, 33–48 (1990).

    Article  CAS  PubMed  Google Scholar 

  28. Iasonos, A., Zohar, S. & O'Quigley, J. Incorporating lower grade toxicity information into dose finding designs. Clin. Trials 8, 370–379 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  29. Yuan, Z., Chappell, R. & Bailey, H. The continual reassessment method for multiple toxicity grades: a Bayesian quasi-likelihood approach. Biometrics 63, 173–179 (2007).

    Article  CAS  PubMed  Google Scholar 

  30. Ezzalfani, M., Zohar, S., Qin, R., Mandrekar, S. J. & Deley, M. C. Dose-finding designs using a novel quasi-continuous endpoint for multiple toxicities. Stat Med. 32, 2728–2746 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  31. Van Meter, E. M., Garrett-Mayer, E. & Bandyopadhyay, D. Proportional odds model for dose-finding clinical trial designs with ordinal toxicity grading. Stat. Med. 30, 2070–2080 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  32. Van Meter, E. M., Garrett-Mayer, E. & Bandyopadhyay, D. Dose-finding clinical trial design for ordinal toxicity grades using the continuation ratio model: an extension of the continual reassessment method. Clin. Trials 9, 303–313 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  33. Goodman, S. N., Zahurak, M. L. & Piantadosi, S. Some practical improvements in the continual reassessment method for phase I studies. Stat. Med. 14, 1149–1161 (1995).

    Article  CAS  PubMed  Google Scholar 

  34. Piantadosi, S., Fisher, J. D. & Grossman, S. Practical implementation of a modified continual reassessment method for dose-finding trials. Cancer Chemother. Pharmacol. 41, 429–436 (1998).

    Article  CAS  PubMed  Google Scholar 

  35. Rogatko, A., Babb, J. S., Tighiouart, M., Khuri, F. R. & Hudes, G. New paradigm in dose-finding trials: patient-specific dosing and beyond phase I. Clin. Cancer Res. 11, 5342–5346 (2005).

    Article  CAS  PubMed  Google Scholar 

  36. O'Quigley, J. & Shen, L. Z. Continual reassessment method: a likelihood approach. Biometrics 52, 673–684 (1996).

    Article  CAS  PubMed  Google Scholar 

  37. Cheung, Y. K. & Chappell, R. Sequential designs for phase I clinical trials with late-onset toxicities. Biometrics 56, 1177–1182 (2000).

    Article  CAS  PubMed  Google Scholar 

  38. O'Quigley, J. & Conaway, M. Extended model-based designs for more complex dose-finding studies. Stat. Med. 30, 2062–2069 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  39. Zhang, W., Sargent, D. J. & Mandrekar, S. An adaptive dose-finding design incorporating both toxicity and efficacy. Stat. Med. 25, 2365–2383 (2006).

    Article  PubMed  Google Scholar 

  40. Thall, P. F. & Cook, J. D. Dose-finding based on efficacy-toxicity trade-offs. Biometrics 60, 684–693 (2004).

    Article  PubMed  Google Scholar 

  41. Thall, P. F., Cook, J. D & Estey, E. H. Adaptive dose selection using efficacy-toxicity trade-offs: illustrations and practical considerations. J. Biopharm. Stat. 16, 623–638 (2006).

    Article  PubMed  Google Scholar 

  42. Mandrekar, S. J., Qin, R. & Sargent, D. J. Model-based phase I designs incorporating toxicity and efficacy for single and dual agent drug combinations: methods and challenges. Stat. Med. 29, 1077–1083 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  43. Le Tourneau, C., Gan, H. K., Razak, A. R. & Paoletti, X. Efficiency of new dose escalation designs in dose-finding phase I trials of molecularly targeted agents. PLoS ONE 7, e51039 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Jaki, T., Clive, S. & Weir, C. J. Principles of dose finding studies in cancer: a comparison of trial designs. Cancer Chemother. Pharmacol. 71, 1107–1114 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  45. Rogatko, A. et al. Translation of innovative designs into phase I trials. J. Clin. Oncol. 25, 4982–4986 (2007).

    Article  PubMed  Google Scholar 

  46. Wood, L. D. et al. The genomic landscapes of human breast and colorectal cancers. Science 318, 1108–1113 (2007).

    Article  CAS  PubMed  Google Scholar 

  47. Wong, K. M., Hudson, T. J. & McPherson, J. D. Unraveling the genetics of cancer: genome sequencing and beyond. Annu. Rev. Genomics Hum. Genet. 12, 407–430 (2011).

    Article  CAS  PubMed  Google Scholar 

  48. Gerdes, M. J. et al. Emerging understanding of multiscale tumor heterogeneity. Front. Oncol. 4, 366 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  49. Ludwig, J. A. & Weinstein, J. N. Biomarkers in cancer staging, prognosis and treatment selection. Nat. Rev. Cancer 5, 845–856 (2005).

    Article  CAS  PubMed  Google Scholar 

  50. Henry, N. L. & Hayes, D. F. Cancer biomarkers. Mol. Oncol. 6, 140–146 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Gonzalez de Castro, D., Clarke, P. A., Al-Lazikani, B. & Workman, P. Personalized cancer medicine: molecular diagnostics, predictive biomarkers, and drug resistance. Clin. Pharmacol. Ther. 93, 252–259 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Hollebecque, A. et al. Modifying phase I methodology to facilitate enrolment of molecularly selected patients. Eur. J. Cancer 49, 1515–1520 (2013).

    Article  PubMed  Google Scholar 

  53. Kwak, E. L. et al. Anaplastic lymphoma kinase inhibition in non-small-cell lung cancer. N. Engl. J. Med. 363, 1693–1703 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Shaw, A. T. et al. Ceritinib in ALK-rearranged non-small-cell lung cancer. N. Engl. J. Med. 370, 1189–1197 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Seto, T. et al. CH5424802 (RO5424802) for patients with ALK-rearranged advanced non-small-cell lung cancer (AF-001JP study): a single-arm, open-label, phase 1–2 study. Lancet Oncol. 14, 590–598 (2013).

    Article  CAS  PubMed  Google Scholar 

  56. Flaherty, K. T. et al. Inhibition of mutated, activated BRAF in metastatic melanoma. N. Engl. J. Med. 363, 809–819 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Dancey, J. E. et al. Guidelines for the development and incorporation of biomarker studies in early clinical trials of novel agents. Clin. Cancer Res. 16, 1745–1755 (2010).

    Article  CAS  PubMed  Google Scholar 

  58. [No authors listed] 2012 best practices for repositories collection, storage, retrieval, and distribution of biological materials for research international society for biological and environmental repositories. Biopreserv. Biobank. 10, 79–161 (2012).

  59. Chau, C. H., Rixe, O., McLeod, H. & Figg, W. D. Validation of analytic methods for biomarkers used in drug development. Clin. Cancer Res. 14, 5967–5976 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  60. Wagner, J. A. Strategic approach to fit-for-purpose biomarkers in drug development. Annu. Rev. Pharmacol. Toxicol. 48, 631–651 (2008).

    Article  CAS  PubMed  Google Scholar 

  61. Topalian, S. L. et al. Safety, activity, and immune correlates of anti-PD-1 antibody in cancer. N. Engl. J. Med. 366, 2443–2454 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Falchook, G. S. et al. Activity of the oral MEK inhibitor trametinib in patients with advanced melanoma: a phase 1 dose-escalation trial. Lancet Oncol. 13, 782–789 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Rodon, J. et al. Molecular prescreening to select patient population in early clinical trials. Nat. Rev. Clin. Oncol. 9, 359–366 (2012).

    Article  CAS  PubMed  Google Scholar 

  64. Manji, A. et al. Evolution of clinical trial design in early drug development: systematic review of expansion cohort use in single-agent phase I cancer trials. J. Clin. Oncol. 31, 4260–4267 (2013).

    Article  CAS  PubMed  Google Scholar 

  65. Bugano, D. et al. Impact of phase 1 expansion cohorts on probability of success in phase 2 and time-to-drug-approval: analysis of 385 new drugs in oncology [abstract 237]. Eur. J. Cancer 50, 79–80 (2014).

    Article  Google Scholar 

  66. Shea, M. B., Roberts, S. A., Walrath, J. C., Allen, J. D. & Sigal, E. V. Use of multiple endpoints and approval paths depicts a decade of FDA oncology drug approvals. Clin. Cancer Res. 19, 3722–3731 (2013).

    Article  PubMed  Google Scholar 

  67. Garon, E. B. et al. Pembrolizumab for the treatment of non-small-cell lung cancer. N. Engl. J. Med. 372, 2018–2028 (2015).

    Article  PubMed  Google Scholar 

  68. Brahmer, J. R. et al. Safety and activity of anti-PD-L1 antibody in patients with advanced cancer. N. Engl. J. Med. 366, 2455–2465 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Robert, C. et al. Nivolumab in previously untreated melanoma without BRAF mutation. N. Engl. J. Med. 372, 320–330 (2015).

    Article  CAS  PubMed  Google Scholar 

  70. Weber, J. S. et al. Nivolumab versus chemotherapy in patients with advanced melanoma who progressed after anti-CTLA-4 treatment (CheckMate 037): a randomised, controlled, open-label, phase 3 trial. Lancet Oncol. 16, 375–384 (2015).

    Article  CAS  PubMed  Google Scholar 

  71. Lee, S. M. & Chow, L. Q. A new addition to the PD-1 checkpoint inhibitors for non-small cell lung cancer-the anti-PDL1 antibody-MEDI4736. Transl. Lung Cancer Res. 3, 408–410 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Parulekar, W. R. & Eisenhauer, E. A. Phase I trial design for solid tumor studies of targeted, non-cytotoxic agents: theory and practice. J. Natl Cancer Inst. 96, 990–997 (2004).

    Article  CAS  PubMed  Google Scholar 

  73. Jain, R. K. et al. Phase I oncology studies: evidence that in the era of targeted therapies patients on lower doses do not fare worse. Clin. Cancer Res. 16, 1289–1297 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Postel-Vinay, S. et al. Clinical benefit in phase-I trials of novel molecularly targeted agents: does dose matter? Br. J. Cancer 100, 1373–1378 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Gupta, S. et al. Meta-analysis of the relationship between dose and benefit in phase I targeted agent trials. J. Natl Cancer Inst. 104, 1860–1866 (2012).

    Article  CAS  PubMed  Google Scholar 

  76. Dienstmann, R., Brana, I., Rodon, J. & Tabernero, J. Toxicity as a biomarker of efficacy of molecular targeted therapies: focus on EGFR and VEGF inhibiting anticancer drugs. Oncologist 16, 1729–1740 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Widakowich, C., de Castro, G. Jr, de Azambuja, E., Dinh, P. & Awada, A. Review: side effects of approved molecular targeted therapies in solid cancers. Oncologist 12, 1443–1455 (2007).

    Article  CAS  PubMed  Google Scholar 

  78. Dy, G. K. & Adjei, A. A. Understanding, recognizing, and managing toxicities of targeted anticancer therapies. CA Cancer J. Clin. 63, 249–279 (2013).

    Article  PubMed  Google Scholar 

  79. de Castro, G. Jr & Awada, A. Side effects of anti-cancer molecular-targeted therapies (not monoclonal antibodies). Curr. Opin. Oncol. 18, 307–315 (2006).

    Article  CAS  PubMed  Google Scholar 

  80. Lynch, T. J. Jr et al. Epidermal growth factor receptor inhibitor-associated cutaneous toxicities: an evolving paradigm in clinical management. Oncologist 12, 610–621 (2007).

    Article  CAS  PubMed  Google Scholar 

  81. Loriot, Y. et al. Drug insight: gastrointestinal and hepatic adverse effects of molecular-targeted agents in cancer therapy. Nat. Clin. Pract. Oncol. 5, 268–278 (2008).

    Article  CAS  PubMed  Google Scholar 

  82. Eaby, B., Culkin, A. & Lacouture, M. E. An interdisciplinary consensus on managing skin reactions associated with human epidermal growth factor receptor inhibitors. Clin. J. Oncol. Nurs. 12, 283–290 (2008).

    Article  PubMed  Google Scholar 

  83. Grothey, A. Recognizing and managing toxicities of molecular targeted therapies for colorectal cancer. Oncology (Williston Park) 20, 21–28 (2006).

    Google Scholar 

  84. Workman, P. et al. Minimally invasive pharmacokinetic and pharmacodynamic technologies in hypothesis-testing clinical trials of innovative therapies. J. Natl Cancer Inst. 98, 580–598 (2006).

    Article  CAS  PubMed  Google Scholar 

  85. Lorente, D., Mateo, J. & de Bono, J. S. Molecular characterization and clinical utility of circulating tumor cells in the treatment of prostate cancer. Am. Soc. Clin. Oncol. Educ. Book 2014, e197–e203 (2014).

    Article  Google Scholar 

  86. Diaz, L. A. Jr & Bardelli, A. Liquid biopsies: genotyping circulating tumor DNA. J. Clin. Oncol. 32, 579–586 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  87. Comets, E. & Zohar, S. A survey of the way pharmacokinetics are reported in published phase I clinical trials, with an emphasis on oncology. Clin. Pharmacokinet. 48, 387–395 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  88. Goulart, B. H. et al. Trends in the use and role of biomarkers in phase I oncology trials. Clin. Cancer Res. 13, 6719–6726 (2007).

    Article  CAS  PubMed  Google Scholar 

  89. Duffy, M. J. et al. Validation of new cancer biomarkers: a position statement from the European group on tumor markers. Clin. Chem. 61, 809–820 (2015).

    Article  CAS  PubMed  Google Scholar 

  90. Josephs, D., Spicer, J. & O'Doherty, M. Molecular imaging in clinical trials. Target Oncol. 4, 151–168 (2009).

    Article  PubMed  Google Scholar 

  91. Stephen, R. M. & Gillies, R. J. Promise and progress for functional and molecular imaging of response to targeted therapies. Pharm. Res. 24, 1172–1185 (2007).

    Article  CAS  PubMed  Google Scholar 

  92. Meric-Bernstam, F. & Mills, G. B. Overcoming implementation challenges of personalized cancer therapy. Nat. Rev. Clin. Oncol. 9, 542–548 (2012).

    Article  CAS  PubMed  Google Scholar 

  93. Hagemann, I. S., Cottrell, C. E. & Lockwood, C. M. Design of targeted, capture-based, next generation sequencing tests for precision cancer therapy. Cancer Genet. 206, 420–431 (2013).

    Article  PubMed  Google Scholar 

  94. Andre, F. et al. Comparative genomic hybridisation array and DNA sequencing to direct treatment of metastatic breast cancer: a multicentre, prospective trial (SAFIR01/UNICANCER). Lancet Oncol. 15, 267–274 (2014).

    Article  CAS  PubMed  Google Scholar 

  95. Weiss, G. J. et al. A pilot study using next-generation sequencing in advanced cancers: feasibility and challenges. PLoS ONE 8, e76438 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Janku, F., Kaseb, A. O., Tsimberidou, A. M., Wolff, R. A. & Kurzrock, R. Identification of novel therapeutic targets in the PI3K/AKT/mTOR pathway in hepatocellular carcinoma using targeted next generation sequencing. Oncotarget 5, 3012–3022 (2014).

    PubMed  PubMed Central  Google Scholar 

  97. Dienstmann, R. et al. Molecular profiling of patients with colorectal cancer and matched targeted therapy in phase I clinical trials. Mol. Cancer Ther. 11, 2062–2071 (2012).

    Article  CAS  PubMed  Google Scholar 

  98. Tuxen, I. V. et al. Personalized oncology: genomic screening in phase 1. APMIS 122, 723–733 (2014).

    Article  PubMed  Google Scholar 

  99. Tsimberidou, A. M. et al. Personalized medicine in a phase I clinical trials program: the MD Anderson Cancer Center initiative. Clin. Cancer Res. 18, 6373–6383 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Le Tourneau, C. et al. Molecularly targeted therapy based on tumour molecular profiling versus conventional therapy for advanced cancer (SHIVA): a multicentre, open-label, proof-of-concept, randomised, controlled phase 2 trial. Lancet Oncol. http://dx.doi.org/10.1016/S1470-2045(15)00188-6.

  101. Schwaederle, M. et al. Molecular tumor board: the University of California-San Diego Moores Cancer Center experience. Oncologist 19, 631–636 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  102. Cronin, M. & Ross, J. S. Comprehensive next-generation cancer genome sequencing in the era of targeted therapy and personalized oncology. Biomark. Med. 5, 293–305 (2011).

    Article  CAS  PubMed  Google Scholar 

  103. Crockford, A., Jamal-Hanjani, M., Hicks, J. & Swanton, C. Implications of intratumour heterogeneity for treatment stratification. J. Pathol. 232, 264–273 (2014).

    Article  PubMed  Google Scholar 

  104. Xuan, J., Yu, Y., Qing, T., Guo, L. & Shi, L. Next-generation sequencing in the clinic: promises and challenges. Cancer Lett. 340, 284–295 (2013).

    Article  CAS  PubMed  Google Scholar 

  105. Kruglyak, K. M., Lin, E. & Ong, F. S. Next-generation sequencing in precision oncology: challenges and opportunities. Expert Rev. Mol. Diagn. 14, 635–637 (2014).

    Article  CAS  PubMed  Google Scholar 

  106. McNeil, C. NCI-MATCH launch highlights new trial design in precision-medicine era. J. Natl Cancer Inst. 107, djv193 (2015).

    Article  PubMed  Google Scholar 

  107. National Cancer Institute. NCI-Molecular Analysis for Therapy Choice (NCI-MATCH) Trial [online], (2015).

  108. Roychowdhury, S. et al. Personalized oncology through integrative high-throughput sequencing: a pilot study. Sci. Transl. Med. 3, 111ra121 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Meric-Bernstam, F., Farhangfar, C., Mendelsohn, J. & Mills, G. B. Building a personalized medicine infrastructure at a major cancer center. J. Clin. Oncol. 31, 1849–1857 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  110. Ocana, A., Freedman, O., Amir, E., Seruga, B. & Pandiella, A. Biological insights into effective and antagonistic combinations of targeted agents with chemotherapy in solid tumors. Cancer Metastasis Rev. 33, 295–307 (2014).

    Article  CAS  PubMed  Google Scholar 

  111. Jia, J. et al. Mechanisms of drug combinations: interaction and network perspectives. Nat. Rev. Drug Discov. 8, 111–128 (2009).

    Article  CAS  PubMed  Google Scholar 

  112. Reinhardt, H. C., Jiang, H., Hemann, M. T. & Yaffe, M. B. Exploiting synthetic lethal interactions for targeted cancer therapy. Cell Cycle 8, 3112–3119 (2009).

    Article  CAS  PubMed  Google Scholar 

  113. Paller, C. J. et al. Design of phase I combination trials: recommendations of the Clinical Trial Design Task Force of the NCI Investigational Drug Steering Committee. Clin. Cancer Res. 20, 4210–4217 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  114. US National Library of Medicine. ClinicalTrials.gov [online], (2015).

  115. US National Library of Medicine. ClinicalTrials.gov [online], (2015).

  116. US National Library of Medicine. ClinicalTrials.gov [online], (2015).

  117. US National Library of Medicine. ClinicalTrials.gov [online], (2015).

  118. Cha, E., Wallin, J. & Kowanetz, M. PD-L1 inhibition with MPDL3280A for solid tumors. Semin. Oncol. 42, 484–487 (2015).

    Article  CAS  PubMed  Google Scholar 

  119. Riviere, M. K., Dubois, F. & Zohar, S. Competing designs for drug combination in phase I dose-finding clinical trials. Stat. Med. 34, 1–12 (2015).

    Article  PubMed  Google Scholar 

  120. Riviere, M. K., Le Tourneau, C., Paoletti, X., Dubois, F. & Zohar, S. Designs of drug-combination phase I trials in oncology: a systematic review of the literature. Ann. Oncol. 26, 669–674 (2015).

    Article  PubMed  Google Scholar 

  121. Hamberg, P., Ratain, M. J., Lesaffre, E. & Verweij, J. Dose-escalation models for combination phase I trials in oncology. Eur. J. Cancer 46, 2870–2878 (2010).

    Article  PubMed  Google Scholar 

  122. Harrington, J. A., Wheeler, G. M., Sweeting, M. J., Mander, A. P. & Jodrell, D. I. Adaptive designs for dual-agent phase I dose-escalation studies. Nat. Rev. Clin. Oncol. 10, 277–288 (2013).

    Article  CAS  PubMed  Google Scholar 

  123. Mandrekar, S. J. Dose-finding trial designs for combination therapies in oncology. J. Clin. Oncol. 32, 65–67 (2014).

    Article  PubMed  Google Scholar 

  124. Cannistra, S. A. Challenges and pitfalls of combining targeted agents in phase I studies. J. Clin. Oncol. 26, 3665–3667 (2008).

    Article  CAS  PubMed  Google Scholar 

  125. Dancey, J. E. & Chen, H. X. Strategies for optimizing combinations of molecularly targeted anticancer agents. Nat. Rev. Drug Discov. 5, 649–659 (2006).

    Article  CAS  PubMed  Google Scholar 

  126. Kummar, S. et al. Utilizing targeted cancer therapeutic agents in combination: novel approaches and urgent requirements. Nat. Rev. Drug Discov. 9, 843–856 (2010).

    Article  CAS  PubMed  Google Scholar 

  127. Pollyea, D. A. et al. Safety, efficacy and biological predictors of response to sequential azacitidine and lenalidomide for elderly patients with acute myeloid leukemia. Leukemia 26, 893–901 (2012).

    Article  CAS  PubMed  Google Scholar 

  128. Yoshioka, T. et al. Phase I/II study of sequential therapy with irinotecan and S-1 for metastatic colorectal cancer. Br. J. Cancer 101, 1972–1977 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Bruce, J. Y. et al. A phase I pharmacodynamic trial of sequential sunitinib with bevacizumab in patients with renal cell carcinoma and other advanced solid malignancies. Cancer Chemother. Pharmacol. 73, 485–493 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Sherman, R. E., Li, J., Shapley, S., Robb, M. & Woodcock, J. Expediting drug development — the FDA's new “breakthrough therapy” designation. N. Engl. J. Med. 369, 1877–1880 (2013).

    Article  CAS  PubMed  Google Scholar 

  131. Pignatti, F., Jonsson, B., Blumenthal, G. & Justice, R. Assessment of benefits and risks in development of targeted therapies for cancer — the view of regulatory authorities. Mol. Oncol. 9, 1034–1041 (2015).

    Article  PubMed  Google Scholar 

  132. US Food and Drug Administration. Food and Drug Administration, Regulatory Information, Food and Drug Administration Safety and Innovation Act (FDASIA) [online], (2015).

  133. Kramer, D. B. & Kesselheim, A. S. User fees and beyond — the FDA Safety and Innovation Act of 2012. N. Engl. J. Med. 367, 1277–1279 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. US Food and Drug Administration. Guidance for Industry Expedited Programs for Serious Conditions — Drugs and Biologics [online], (2014).

  135. Kesselheim, A. S. & Darrow, J. J. FDA designations for therapeutics and their impact on drug development and regulatory review outcomes. Clin. Pharmacol. Ther. 97, 29–36 (2015).

    Article  CAS  PubMed  Google Scholar 

  136. US Food and Drug Administration. Breakthrough Therapy Approvals [online], (2015).

  137. Gadgeel, S. M. et al. Safety and activity of alectinib against systemic disease and brain metastases in patients with crizotinib-resistant ALK-rearranged non-small-cell lung cancer (AF-002JG): results from the dose-finding portion of a phase 1/2 study. Lancet Oncol. 15, 1119–1128 (2014).

    Article  CAS  PubMed  Google Scholar 

  138. Khozin, S. et al. FDA approval: ceritinib for the treatment of metastatic anaplastic lymphoma kinase-positive non-small cell lung cancer. Clin. Cancer Res. 21, 2436–2439 (2015).

    Article  CAS  PubMed  Google Scholar 

  139. Wong, K. M., Noonan, S., O'Bryant, C. & Jimeno, A. Alectinib for the treatment of ALK-positive stage IV non-small cell lung cancer. Drugs Today (Barc.) 51, 161–170 (2015).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

K.M.W. performed the literature search, planned the sections of the review, and wrote the entire manuscript and subsequent revisions, A.C. reviewed the manuscript before submission. S.G.E. contributed to the contents of the manuscript and reviewed the manuscript before submission.

Corresponding author

Correspondence to S. Gail Eckhardt.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wong, K., Capasso, A. & Eckhardt, S. The changing landscape of phase I trials in oncology. Nat Rev Clin Oncol 13, 106–117 (2016). https://doi.org/10.1038/nrclinonc.2015.194

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrclinonc.2015.194

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research