Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Surgical treatment of nonpalpable primary invasive and in situ breast cancer

Key Points

  • A range of alternative techniques to wire-guided localization are available for localization of neoplastic lesions prior to surgical management of nonpalpable breast cancer

  • The use of radioguided localization is supported by data from meta-analyses; however, overall utilization of this technique has been poor owing to the logistical and legislative issues associated with radioisotope use

  • More than 95% of localization procedures include ultrasonography, making intraoperative ultrasonography a logical alternative, but this method requires evidence from randomized controlled trials and implementation of training programmes for surgeons

  • Techniques that use the principles of radioguided localization, but that are radioisotope free, could form the basis of future therapeutic options and warrant investigation in adequately powered clinical trials

  • Non-invasive surgery using high-intensity focused ultrasound is in its infancy, but could potentially enable real-time visualization and therapy of lesions as an outpatient procedure

Abstract

Breast cancer is the most-common cancer among women worldwide, and over one-third of all cases diagnosed annually are nonpalpable at diagnosis. The increasingly widespread implementation of breast-screening programmes, combined with the use of advanced imaging modalities, such as magnetic resonance imaging (MRI), will further increase the numbers of patients diagnosed with this disease. The current standard management for nonpalpable breast cancer is localized surgical excision combined with axillary staging, using sentinel-lymph-node biopsy in the clinically and radiologically normal axilla. Wire-guided localization (WGL) during mammography is a method that was developed over 40 years ago to enable lesion localization preoperatively; this technique became the standard of care in the absence of a better alternative. Over the past 20 years, however, other technologies have been developed as alternatives to WGL in order to overcome the technical and outcome-related limitations of this technique. This Review discusses the techniques available for the surgical management of nonpalpable breast cancer; we describe their advantages and disadvantages, and highlight future directions for the development of new technologies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Radioguided occult-lesion localization.
Figure 2: Radioactive-seed localization.
Figure 3: Magnetically guided localization.
Figure 4: Intraoperative ultrasound.
Figure 5: Non-invasive localized surgery using HIFU (Echopulse® device, Theraclion, France).

Similar content being viewed by others

References

  1. ISD Scotland. Cancer Incidence in Scotland (2011) [online], (2013).

  2. Welsh Cancer Intelligence and Surveillance Unit, Health Intelligence Division, Public Health Wales. Cancer in Wales [online], (2015).

  3. Office for National Statistics. Cancer Statistics Registrations, England (Series MB1), No. 44, 2013 [online], (2015).

  4. Northern Ireland Cancer Registry. Breast [online], (2015).

  5. Westlake, S. & Cooper, N. Cancer incidence and mortality: trends in the United Kingdom and constituent countries, 1993 to 2004. Health Stat. Q. 2008, 33–46 (2008).

    Google Scholar 

  6. Health and Social Care Information Centre (HSCIC). Breast Screening Programme, England—2013–14 [online], (2015).

  7. Netherlands Centre for Population Screening, Breast Cancer Screening Programme. Breast Cancer Screening Factsheet [online], (2015).

  8. Lovrics, P. J. et al. The relationship between surgical factors and margin status after breast-conservation surgery for early stage breast cancer. Am. J. Surg. 197, 740–746 (2009).

    Article  PubMed  Google Scholar 

  9. Mittmann, N. et al. Health system costs for stage-specific breast cancer: a population-based approach. Curr. Oncol. 21, 281–293 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. [No authors listed] Effects of radiotherapy and surgery in early breast cancer. An overview of the randomized trials. Early Breast Cancer Trialists' Collaborative Group. N. Engl. J. Med. 333, 1444–1455 (1995).

  11. Morris, A. D. et al. Breast-conserving therapy vs mastectomy in early-stage breast cancer: a meta-analysis of 10-year survival. Cancer J. Sci. Am. 3, 6–12 (1997).

    PubMed  CAS  Google Scholar 

  12. Dodd, G. D., Fry, K., Delany, W. in Management of the patient with cancer (ed. Nealon, T. F. Jr) 88–113 (Saunders, 1965).

    Google Scholar 

  13. Frank, H. A., Hall, F. M. & Steer, M. L. Preoperative localization of nonpalpable breast lesions demonstrated by mammography. N. Engl. J. Med. 295, 259–260 (1976).

    Article  PubMed  CAS  Google Scholar 

  14. Rusnak, C. H., Pengelly, D. B., Hosie, R. T. & Rusnak, C. N. Preoperative needle localization to detect early breast cancer. Am. J. Surg. 157, 505–507 (1989).

    Article  PubMed  CAS  Google Scholar 

  15. Ahmed, M. & Douek, M. Intra-operative ultrasound versus wire-guided localization in the surgical management of non-palpable breast cancers: systematic review and meta-analysis. Breast Cancer Res. Treat. 140, 435–446 (2013).

    Article  PubMed  CAS  Google Scholar 

  16. Dua, S. M., Gray, R. J. & Keshtgar, M. Strategies for localisation of impalpable breast lesions. Breast 20, 246–253 (2011).

    Article  PubMed  Google Scholar 

  17. Homer, M. J. Transection of the localization hooked wire during breast biopsy. AJR Am. J. Roentgenol. 141, 929–930 (1983).

    Article  PubMed  CAS  Google Scholar 

  18. Davis, P. S., Wechsler, R. J., Feig, S. A. & March, D. E. Migration of breast biopsy localization wire. AJR Am. J. Roentgenol. 150, 787–788 (1988).

    Article  PubMed  CAS  Google Scholar 

  19. Grassi, R. et al. Unusual migration in abdomen of a wire for surgical localization of breast lesions. Acta Radiol. 45, 254–258 (2004).

    Article  PubMed  CAS  Google Scholar 

  20. Medina-Franco, H. et al. Radioguided occult lesion localization (ROLL) versus wire-guided lumpectomy for non-palpable breast lesions: a randomized prospective evaluation. J. Surg. Oncol. 97, 108–111 (2008).

    Article  PubMed  Google Scholar 

  21. Ocal, K. et al. Radioguided occult lesion localization versus wire-guided localization for non-palpable breast lesions: randomized controlled trial. Clinics (Sao Paulo) 66, 1003–1007 (2011).

    Article  Google Scholar 

  22. Mariscal Martínez, A. et al. Radioguided localization of nonpalpable breast cancer lesions: randomized comparison with wire localization in patients undergoing conservative surgery and sentinel node biopsy. AJR Am. J. Roentgenol. 193, 1001–1009 (2009).

    Article  PubMed  Google Scholar 

  23. Postma, E. L. et al. Efficacy of 'radioguided occult lesion localisation' (ROLL) versus 'wire-guided localisation' (WGL) in breast conserving surgery for non-palpable breast cancer: a randomised controlled multicentre trial. Breast Cancer Res. Treat. 136, 469–478 (2012).

    Article  PubMed  CAS  Google Scholar 

  24. Jeevan, R. et al. Reoperation rates after breast conserving surgery for breast cancer among women in England: retrospective study of hospital episode statistics. BMJ 345, e4505 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. McGhan, L. J. et al. Radioactive seed localization for nonpalpable breast lesions: review of 1,000 consecutive procedures at a single institution. Ann. Surg. Oncol. 18, 3096–3101 (2011).

    Article  PubMed  Google Scholar 

  26. Postma, E. L. et al. Cost-effectiveness of radioguided occult lesion localization (ROLL) versus wire-guided localization (WGL) in breast conserving surgery for nonpalpable breast cancer: results from a randomized controlled multicenter trial. Ann. Surg. Oncol. 20, 2219–2226 (2013).

    Article  PubMed  CAS  Google Scholar 

  27. Rao, R. et al. Experience with seed localization for nonpalpable breast lesions in a public health care system. Ann. Surg. Oncol. 17, 3241–3246 (2010).

    Article  PubMed  Google Scholar 

  28. Nasrinossadat, A. et al. Marking non-palpable breast masses with injected methylene blue dye, an easy, safe and low cost method for developing countries and resource-limited areas. Asian Pac. J. Cancer Prev. 12, 1189–1192 (2011).

    PubMed  Google Scholar 

  29. Hrung, J. M., Sonnad, S. S., Schwartz, J. S. & Langlotz, C. P. Accuracy of MR imaging in the work-up of suspicious breast lesions: a diagnostic meta-analysis. Acad. Radiol. 6, 387–397 (1999).

    Article  PubMed  CAS  Google Scholar 

  30. Peters, N. H. et al. Meta-analysis of MR imaging in the diagnosis of breast lesions. Radiology 246, 116–124 (2008).

    Article  PubMed  Google Scholar 

  31. Siegmann-Luz, K. C., Bahrs, S. D., Preibsch, H., Hattermann, V. & Claussen, C. D. Management of breast lesions detectable only on MRI. Rofo 186, 30–36 (2014).

    Article  PubMed  CAS  Google Scholar 

  32. Gossmann, A. et al. Real-time MR-guided wire localization of breast lesions by using an open 1.0-T imager: initial experience. Radiology 247, 535–542 (2008).

    Article  PubMed  Google Scholar 

  33. Landheer, M. L. et al. MRI-guided preoperative wire localization of nonpalpable breast lesions. Clin. Imaging 30, 229–233 (2006).

    Article  PubMed  Google Scholar 

  34. van den Bosch, M. A. et al. MRI-guided needle localization of suspicious breast lesions: results of a freehand technique. Eur. Radiol. 16, 1811–1817 (2006).

    Article  PubMed  CAS  Google Scholar 

  35. Luini, A. et al. Comparison of radioguided excision with wire localization of occult breast lesions. Br. J. Surg. 86, 522–525 (1999).

    Article  PubMed  CAS  Google Scholar 

  36. Monti, S. et al. Occult breast lesion localization plus sentinel node biopsy (SNOLL): experience with 959 patients at the European Institute of Oncology. Ann. Surg. Oncol. 14, 2928–2931 (2007).

    Article  PubMed  Google Scholar 

  37. Chow, M. P. et al. Isotope-guided surgery for nonpalpable breast cancer. World J. Surg. 35, 165–169 (2011).

    Article  PubMed  Google Scholar 

  38. Kim, J., Chung, D. & Spillane, A. Combined radioguided occult lesion and sentinel node localization for breast cancer. ANZ J. Surg. 74, 550–553 (2004).

    Article  PubMed  Google Scholar 

  39. van Rijk, M. C. et al. Sentinel node biopsy and concomitant probe-guided tumor excision of nonpalpable breast cancer. Ann. Surg. Oncol. 14, 627–632 (2007).

    Article  PubMed  Google Scholar 

  40. Zgajnar, J. et al. Radioguided excision of the nonpalpable breast cancer and simultaneous sentinel lymphnode biopsy using a single radiopharmaceutical: an original approach to accurate administration of the blue dye. J. Surg. Oncol. 83, 48–50 (2003).

    Article  PubMed  Google Scholar 

  41. Gray, R. J., Pockaj, B. A., Karstaedt, P. J. & Roarke, M. C. Radioactive seed localization of nonpalpable breast lesions is better than wire localization. Am. J. Surg. 188, 377–380 (2004).

    Article  PubMed  Google Scholar 

  42. Gray, R. J. et al. Randomized prospective evaluation of a novel technique for biopsy or lumpectomy of nonpalpable breast lesions: radioactive seed versus wire localization. Ann. Surg. Oncol. 8, 711–715 (2001).

    Article  PubMed  CAS  Google Scholar 

  43. Hughes, J. H. et al. A multi-site validation trial of radioactive seed localization as an alternative to wire localization. Breast J. 14, 153–157 (2008).

    Article  PubMed  Google Scholar 

  44. Lovrics, P. J. et al. A multicentered, randomized, controlled trial comparing radioguided seed localization to standard wire localization for nonpalpable, invasive and in situ breast carcinomas. Ann. Surg. Oncol. 18, 3407–3414 (2011).

    Article  PubMed  Google Scholar 

  45. Donker, M. et al. Guiding breast-conserving surgery in patients after neoadjuvant systemic therapy for breast cancer: a comparison of radioactive seed localization with the ROLL technique. Ann. Surg. Oncol. 20, 2569–2575 (2013).

    Article  PubMed  Google Scholar 

  46. Gobardhan, P. D. et al. The role of radioactive iodine-125 seed localization in breast-conserving therapy following neoadjuvant chemotherapy. Ann. Oncol. 24, 668–673 (2013).

    Article  PubMed  CAS  Google Scholar 

  47. Ahmed, M. & Douek, M. Radioactive seed localisation (RSL) in the treatment of non-palpable breast cancers: Systematic review and meta-analysis. Breast 22, 383–388 (2013).

    Article  PubMed  CAS  Google Scholar 

  48. Barentsz, M. W. et al. Radioactive seed localization for non-palpable breast cancer. Br. J. Surg. 100, 582–588 (2013).

    Article  PubMed  CAS  Google Scholar 

  49. Moreno, M. et al. Radioguided breast surgery for occult lesion localization—correlation between two methods. J. Exp. Clin. Cancer Res. 27, 29 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Rampaul, R. S. et al. Randomized clinical trial comparing radioisotope occult lesion localization and wire-guided excision for biopsy of occult breast lesions. Br. J. Surg. 91, 1575–1577 (2004).

    Article  PubMed  CAS  Google Scholar 

  51. Ahmed, M., van Hemelrijck, M. & Douek, M. Systematic review of radioguided versus wire-guided localization in the treatment of non-palpable breast cancers. Breast Cancer Res. Treat. 140, 241–252 (2013).

    Article  PubMed  CAS  Google Scholar 

  52. Cochrane, R. A., Valasiadou, P., Wilson, A. R., Al-Ghazal, S. K. & Macmillan, R. D. Cosmesis and satisfaction after breast-conserving surgery correlates with the percentage of breast volume excised. Br. J. Surg. 90, 1505–1509 (2003).

    Article  PubMed  CAS  Google Scholar 

  53. Ahmed, M. Significance of the volume of excised specimens in radio guided occult lesion localization (ROLL). J. Surg. Oncol. 107, 874 (2013).

    Article  PubMed  Google Scholar 

  54. Veronesi, U. et al. Nonpalpable breast carcinomas: long-term evaluation of 1,258 cases. Oncologist 15, 1248–1252 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  55. Burak, W. E. Jr et al. Biodistribution and localization of radiolabeled NR-LU-10 Fab fragment in human breast cancer xenografts. Nucl. Med. Biol. 25, 633–637 (1998).

    Article  PubMed  CAS  Google Scholar 

  56. Burak, W. E. Jr et al. Radioimmunoguided breast surgery using radiolabeled antibody NR-LU-10 Fab: a pilot study. Tumori 87, 142–146 (2001).

    Article  PubMed  Google Scholar 

  57. Percivale, P. et al. Radioimmunoguided surgery after primary treatment of locally advanced breast cancer. J. Clin. Oncol. 14, 1599–1603 (1996).

    Article  PubMed  CAS  Google Scholar 

  58. Hall, N. C., Povoski, S. P., Murrey, D. A., Knopp, M. V. & Martin, E. W. Jr. Combined approach of perioperative 18F-FDG PET/CT imaging and intraoperative 18F-FDG handheld gamma probe detection for tumor localization and verification of complete tumor resection in breast cancer. World J. Surg. Oncol. 5, 143 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  59. Anninga, B., Ahmed, M. & Douek, M. Magnetic guidance for cancer surgery. Br. J. Surg. 102, e12–e14 (2015).

    Article  PubMed  CAS  Google Scholar 

  60. Ahmed, M., de Rosales, R. T. & Douek, M. Preclinical studies of the role of iron oxide magnetic nanoparticles for nonpalpable lesion localization in breast cancer. J. Surg. Res. 185, 27–35 (2013).

    Article  PubMed  CAS  Google Scholar 

  61. Anninga, B. et al. Magnetic sentinel lymph node biopsy and localization properties of a magnetic tracer in an in vivo porcine model. Breast Cancer Res. Treat. 141, 33–42 (2013).

    Article  PubMed  Google Scholar 

  62. Ahmed, M. et al. Magnetic sentinel node and occult lesion localization in breast cancer (MagSNOLL Trial). Br. J. Surg. 102, 646–652 (2015).

    Article  PubMed  CAS  Google Scholar 

  63. UK Clinical Research Network: Portfolio Database. Magnetic Sentinel Node and Occult Lesion Localisation (MagSNOLL) [online], (2015).

  64. Czarnecki, D. J., Feider, H. K. & Splittgerber, G. F. Toluidine blue dye as a breast localization marker. AJR Am. J. Roentgenol. 153, 261–263 (1989).

    Article  PubMed  CAS  Google Scholar 

  65. Gumus, M. et al. How long will I be blue? Prolonged skin staining following sentinel lymph node biopsy using intradermal patent blue dye. Breast Care (Basel) 8, 199–202 (2013).

    Article  Google Scholar 

  66. Ahmed, M., Purushotham, A. D., Horgan, K., Klaase, J. M. & Douek, M. Meta-analysis of superficial versus deep injection of radioactive tracer and blue dye for lymphatic mapping and detection of sentinel lymph nodes in breast cancer. Br. J. Surg. 102, 169–181 (2015).

    Article  PubMed  CAS  Google Scholar 

  67. Tummers, Q. R. et al. Real-time intraoperative detection of breast cancer using near-infrared fluorescence imaging and methylene blue. Eur. J. Surg. Oncol. 40, 850–858 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  68. Tang, J. et al. Radiocolloid in combination with methylene dye localization, rather than wire localization, is a preferred procedure for excisional biopsy of nonpalpable breast lesions. Ann. Surg. Oncol. 18, 109–113 (2011).

    Article  PubMed  Google Scholar 

  69. Mullen, D. J., Eisen, R. N., Newman, R. D., Perrone, P. M. & Wilsey, J. C. The use of carbon marking after stereotactic large-core-needle breast biopsy. Radiology 218, 255–260 (2001).

    Article  PubMed  CAS  Google Scholar 

  70. Canavese, G. et al. Pre-operative localization of non-palpable lesions in breast cancer by charcoal suspension. Eur. J. Surg. Oncol. 21, 47–49 (1995).

    Article  PubMed  CAS  Google Scholar 

  71. Ko, K. et al. The value of ultrasound-guided tattooing localization of nonpalpable breast lesions. Korean J. Radiol. 8, 295–301 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  72. Ruiz-Delgado, M. L., López-Ruiz, J. A. & Sáiz-López, A. Abnormal mammography and sonography associated with foreign-body giant-cell reaction after stereotactic vacuum-assisted breast biopsy with carbon marking. Acta Radiol. 49, 1112–1118 (2008).

    Article  PubMed  CAS  Google Scholar 

  73. Wild, J. J. & Neal, D. Use of high-frequency ultrasonic waves for detecting changes of texture in living tissues. Lancet 1, 655–657 (1951).

    Article  PubMed  CAS  Google Scholar 

  74. Cole-Beuglet, C. et al. Ultrasound mammography: a comparison with radiographic mammography. Radiology 139, 693–698 (1981).

    Article  PubMed  CAS  Google Scholar 

  75. Jellins, J., Kossoff, G., Buddee, F. W. & Reeve, T. S. Ultrasonic visualization of the breast. Med. J. Aust. 1, 305–307 (1971).

    Article  PubMed  CAS  Google Scholar 

  76. Kobayashi, T. Diagnostic ultrasound in breast cancer: analysis of retrotumorous echo patterns correlated with sonic attenuation by cancerous connective tissue. J. Clin. Ultrasound 7, 471–479 (1979).

    Article  PubMed  CAS  Google Scholar 

  77. Ahmed, M. & Douek, M. Intra-operative ultrasound versus wire-guided localization in the surgical management of non-palpable breast cancers: systematic review and meta-analysis. Breast Cancer Res. Treat. 140, 435–446 (2013).

    Article  PubMed  CAS  Google Scholar 

  78. Parker, S. H. et al. Percutaneous large-core breast biopsy: a multi-institutional study. Radiology 193, 359–364 (1994).

    Article  PubMed  CAS  Google Scholar 

  79. Ahmed, M., Abdullah, N., Cawthorn, S., Usiskin, S. I. & Douek, M. Why should breast surgeons use ultrasound? Breast Cancer Res. Treat. 145, 1–4 (2014).

    Article  PubMed  CAS  Google Scholar 

  80. Krekel, N. M. et al. Intraoperative ultrasound guidance for palpable breast cancer excision (COBALT trial): a multicentre, randomised controlled trial. Lancet Oncol. 14, 48–54 (2013).

    Article  PubMed  Google Scholar 

  81. Smith, L. F., Henry-Tillman, R., Rubio, I. T., Korourian, S. & Klimberg, V. S. Intraoperative localization after stereotactic breast biopsy without a needle. Am. J. Surg. 182, 584–589 (2001).

    Article  PubMed  CAS  Google Scholar 

  82. Rubio, I. T., Henry-Tillman, R. & Klimberg, V. S. Surgical use of breast ultrasound. Surg. Clin. North Am. 83, 771–788 (2003).

    Article  PubMed  Google Scholar 

  83. James, T. A. et al. Intraoperative ultrasound versus mammographic needle localization for ductal carcinoma in situ. Ann. Surg. Oncol. 16, 1164–1169 (2009).

    Article  PubMed  CAS  Google Scholar 

  84. Rubio, I. T., Esgueva, A. & Salvador, R. Intraoperative ultrasound guided lumpectomy versus mammographically needle localization for breast cancer patients after neoadjuvant treatment [abstract 1251]. Eur. J. Cancer 49, S260 (2013).

    Google Scholar 

  85. Ramos, M. et al. Ultrasound-guided excision combined with intraoperative assessment of gross macroscopic margins decreases the rate of reoperations for non-palpable invasive breast cancer. Breast 22, 520–524 (2012).

    Article  PubMed  Google Scholar 

  86. Krekel, N. M. et al. A comparison of three methods for nonpalpable breast cancer excision. Eur. J. Surg. Oncol. 37, 109–115 (2011).

    Article  PubMed  CAS  Google Scholar 

  87. Rahusen, F. D. et al. Ultrasound-guided lumpectomy of nonpalpable breast cancers: a feasibility study looking at the accuracy of obtained margins. J. Surg. Oncol. 72, 72–76 (1999).

    Article  PubMed  CAS  Google Scholar 

  88. Krekel, N. M. et al. Optimising surgical accuracy in palpable breast cancer with intra-operative breast ultrasound—feasibility and surgeons' learning curve. Eur. J. Surg. Oncol. 37, 1044–1050 (2011).

    Article  PubMed  CAS  Google Scholar 

  89. Arentz, C. et al. Ten-year experience with hematoma-directed ultrasound-guided (HUG) breast lumpectomy. Ann. Surg. Oncol. 17 (Suppl. 3), 378–383 (2010).

    Article  PubMed  Google Scholar 

  90. Larrieux, G., Cupp, J. A., Liao, J., Scott-Conner, C. E. & Weigel, R. J. Effect of introducing hematoma ultrasound-guided lumpectomy in a surgical practice. J. Am. Coll. Surg. 215, 237–243 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  91. Tafra, L. et al. Pilot trial of cryoprobe-assisted breast-conserving surgery for small ultrasound-visible cancers. Ann. Surg. Oncol. 10, 1018–1024 (2003).

    Article  PubMed  Google Scholar 

  92. Tafra, L. et al. Prospective randomized study comparing cryo-assisted and needle-wire localization of ultrasound-visible breast tumors. Am. J. Surg. 192, 462–470 (2006).

    Article  PubMed  Google Scholar 

  93. Salmon, R. J., Mirlesse, V., Le Gal, M. & Durand, J. C. The value of preoperative location of microcalcifications without palpable breast tumors [French]. J. Gynecol. Obstet. Biol. Reprod. (Paris) 19, 333–336 (1990).

    CAS  Google Scholar 

  94. Giess, C. S., Raza, S. & Birdwell, R. L. Distinguishing breast skin lesions from superficial breast parenchymal lesions: diagnostic criteria, imaging characteristics, and pitfalls. Radiographics 31, 1959–1972 (2011).

    Article  PubMed  Google Scholar 

  95. Homer, M. J. Proper placement of a metallic marker on an area of concern in the breast. AJR Am. J. Roentgenol. 167, 390–391 (1996).

    Article  PubMed  CAS  Google Scholar 

  96. Klimberg, V. S. et al. Long-term results of phase II ablation after breast lumpectomy added to extend intraoperative margins (ABLATE l) trial. J. Am. Coll. Surg. 218, 741–749 (2014).

    Article  PubMed  Google Scholar 

  97. Mackey, A. et al. Radiofrequency ablation after breast lumpectomy added to extend intraoperative margins in the treatment of breast cancer (ABLATE): a single-institution experience. Ann. Surg. Oncol. 19, 2618–2619 (2012).

    Article  PubMed  Google Scholar 

  98. Rubio, I. T., Landolfi, S., Molla, M., Cortes, J. & Xercavins, J. Breast-conservative surgery followed by radiofrequency ablation of margins decreases the need for a second surgical procedure for close or positive margins. Clin. Breast Cancer 14, 346–351 (2014).

    Article  PubMed  Google Scholar 

  99. Wilson, M. et al. Long-term results of excision followed by radiofrequency ablation as the sole means of local therapy for breast cancer. Ann. Surg. Oncol. 19, 3192–3198 (2012).

    Article  PubMed  Google Scholar 

  100. Noguchi, M., Motoyoshi, A., Earashi, M. & Fujii, H. Long-term outcome of breast cancer patients treated with radiofrequency ablation. Eur. J. Surg. Oncol. 38, 1036–1042 (2012).

    Article  PubMed  CAS  Google Scholar 

  101. Palussiere, J. et al. Radiofrequency ablation as a substitute for surgery in elderly patients with nonresected breast cancer: pilot study with long-term outcomes. Radiology 264, 597–605 (2012).

    Article  PubMed  Google Scholar 

  102. Vilar, V. S. et al. Analysis by MRI of residual tumor after radiofrequency ablation for early stage breast cancer. AJR Am. J. Roentgenol. 198, W285–W291 (2012).

    Article  PubMed  Google Scholar 

  103. Kinoshita, T., Iwamoto, E., Tsuda, H. & Seki, K. Radiofrequency ablation as local therapy for early breast carcinomas. Breast Cancer 18, 10–17 (2011).

    Article  PubMed  Google Scholar 

  104. van Esser, S. et al. Ultrasound-guided laser-induced thermal therapy for small palpable invasive breast carcinomas: a feasibility study. Ann. Surg. Oncol. 16, 2259–2263 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  105. Zhou, W. et al. US-guided percutaneous microwave coagulation of small breast cancers: a clinical study. Radiology 263, 364–373 (2012).

    Article  PubMed  Google Scholar 

  106. Littrup, P. J. et al. Cryotherapy for breast cancer: a feasibility study without excision. J. Vasc. Interv. Radiol. 20, 1329–1341 (2009).

    Article  PubMed  Google Scholar 

  107. Medina-Franco, H. et al. Radiofrequency ablation of invasive breast carcinomas: a phase II trial. Ann. Surg. Oncol. 15, 1689–1695 (2008).

    Article  PubMed  Google Scholar 

  108. Morin, J. et al. Magnetic resonance-guided percutaneous cryosurgery of breast carcinoma: technique and early clinical results. Can. J. Surg. 47, 347–351 (2004).

    PubMed  PubMed Central  Google Scholar 

  109. Motoyoshi, A., Noguchi, M., Earashi, M., Zen, Y. & Fujii, H. Histopathological and immunohistochemical evaluations of breast cancer treated with radiofrequency ablation. J. Surg. Oncol. 102, 385–391 (2010).

    Article  PubMed  Google Scholar 

  110. Mumtaz, H. et al. Laser therapy for breast cancer: MR imaging and histopathologic correlation. Radiology 200, 651–658 (1996).

    Article  PubMed  CAS  Google Scholar 

  111. Nagashima, T. et al. Surrounding rim formation and reduction in size after radiofrequency ablation for primary breast cancer. Jpn J. Radiol. 27, 197–204 (2009).

    Article  PubMed  Google Scholar 

  112. Noguchi, M. et al. Radiofrequency ablation of small breast cancer followed by surgical resection. J. Surg. Oncol. 93, 120–128 (2006).

    Article  PubMed  Google Scholar 

  113. Ohtani, S. et al. Radiofrequency ablation of early breast cancer followed by delayed surgical resection—a promising alternative to breast-conserving surgery. Breast 20, 431–436 (2011).

    Article  PubMed  Google Scholar 

  114. Oura, S. et al. Radiofrequency ablation therapy in patients with breast cancers two centimeters or less in size. Breast Cancer 14, 48–54 (2007).

    Article  PubMed  Google Scholar 

  115. Pfleiderer, S. O. et al. Cryotherapy of breast cancer under ultrasound guidance: initial results and limitations. Eur. Radiol. 12, 3009–3014 (2002).

    PubMed  Google Scholar 

  116. Pusztaszeri, M., Vlastos, G., Kinkel, K. & Pelte, M. F. Histopathological study of breast cancer and normal breast tissue after magnetic resonance-guided cryotherapy ablation. Cryobiology 55, 44–51 (2007).

    Article  PubMed  Google Scholar 

  117. Sabel, M. S. et al. Cryoablation of early-stage breast cancer: work-in-progress report of a multi-institutional trial. Ann. Surg. Oncol. 11, 542–549 (2004).

    Article  PubMed  Google Scholar 

  118. Singletary, E. S. Feasibility of radiofrequency ablation for primary breast cancer. Breast Cancer 10, 4–9 (2003).

    Article  PubMed  Google Scholar 

  119. Tsuda, H. Radiofrequency ablation therapy for primary breast cancer: expectations and problems as a novel breast conservation therapy. Breast Cancer 18, 1–2 (2011).

    Article  PubMed  Google Scholar 

  120. Vargas, H. I. et al. Focused microwave phased array thermotherapy for ablation of early-stage breast cancer: results of thermal dose escalation. Ann. Surg. Oncol. 11, 139–146 (2004).

    Article  PubMed  Google Scholar 

  121. Wiksell, H. et al. Feasibility study on the treatment of small breast carcinoma using percutaneous US-guided preferential radiofrequency ablation (PRFA). Breast 19, 219–225 (2010).

    Article  PubMed  Google Scholar 

  122. Yamamoto, N. et al. Pilot study of radiofrequency ablation therapy without surgical excision for T1 breast cancer: evaluation with MRI and vacuum-assisted core needle biopsy and safety management. Breast Cancer 18, 3–9 (2011).

    Article  PubMed  Google Scholar 

  123. Yamamoto, S., Maeda, N., Yoshimura, K. & Oka, M. Intraoperative detection of sentinel lymph nodes in breast cancer patients using ultrasonography-guided direct indocyanine green dye-marking by real-time virtual sonography constructed with three-dimensional computed tomography–lymphography. Breast 22, 933–937 (2013).

    Article  PubMed  Google Scholar 

  124. Yoshinaga, Y. et al. Image and pathological changes after radiofrequency ablation of invasive breast cancer: a pilot study of nonsurgical therapy of early breast cancer. World J. Surg. 37, 356–363 (2013).

    Article  PubMed  Google Scholar 

  125. Zhou, W. et al. Image and pathological changes after microwave ablation of breast cancer: a pilot study. Eur. J. Radiol. 83, 1771–1777 (2014).

    Article  PubMed  Google Scholar 

  126. Akimov, A. B. et al. Nd:YAG interstitial laser thermotherapy in the treatment of breast cancer. Lasers Surg. Med. 22, 257–267 (1998).

    Article  PubMed  CAS  Google Scholar 

  127. Bloom, K. J., Dowlat, K. & Assad, L. Pathologic changes after interstitial laser therapy of infiltrating breast carcinoma. Am. J. Surg. 182, 384–388 (2001).

    Article  PubMed  CAS  Google Scholar 

  128. Burak, W. E. Jr et al. Radiofrequency ablation of invasive breast carcinoma followed by delayed surgical excision. Cancer 98, 1369–1376 (2003).

    Article  PubMed  Google Scholar 

  129. Dooley, W. C., Vargas, H. I., Fenn, A. J., Tomaselli, M. B. & Harness, J. K. Focused microwave thermotherapy for preoperative treatment of invasive breast cancer: a review of clinical studies. Ann. Surg. Oncol. 17, 1076–1093 (2010).

    Article  PubMed  Google Scholar 

  130. Dowlatshahi, K., Francescatti, D. S. & Bloom, K. J. Laser therapy for small breast cancers. Am. J. Surg. 184, 359–363 (2002).

    Article  PubMed  Google Scholar 

  131. Earashi, M., Noguchi, M., Motoyoshi, A. & Fujii, H. Radiofrequency ablation therapy for small breast cancer followed by immediate surgical resection or delayed mammotome excision. Breast Cancer 14, 39–47 (2007).

    Article  PubMed  Google Scholar 

  132. Fornage, B. D. et al. Small (< or = 2-cm) breast cancer treated with US-guided radiofrequency ablation: feasibility study. Radiology 231, 215–224 (2004).

    Article  PubMed  Google Scholar 

  133. Garbay, J. R. et al. Radiofrequency thermal ablation of breast cancer local recurrence: a phase II clinical trial. Ann. Surg. Oncol. 15, 3222–3226 (2008).

    Article  PubMed  Google Scholar 

  134. Gardner, R. A. et al. Focused microwave phased array thermotherapy for primary breast cancer. Ann. Surg. Oncol. 9, 326–332 (2002).

    Article  PubMed  Google Scholar 

  135. Haraldsdottir, K. H. et al. Interstitial laser thermotherapy (ILT) of breast cancer. Eur. J. Surg. Oncol. 34, 739–745 (2008).

    Article  PubMed  CAS  Google Scholar 

  136. Harries, S. A. et al. Interstitial laser photocoagulation as a treatment for breast cancer. Br. J. Surg. 81, 1617–1619 (1994).

    Article  PubMed  CAS  Google Scholar 

  137. Hayashi, A. H. et al. Treatment of invasive breast carcinoma with ultrasound-guided radiofrequency ablation. Am. J. Surg. 185, 429–435 (2003).

    Article  PubMed  Google Scholar 

  138. Hung, W. K., Mak, K. L., Ying, M. & Chan, M. Radiofrequency ablation of breast cancer: a comparative study of two needle designs. Breast Cancer 18, 124–128 (2011).

    Article  PubMed  Google Scholar 

  139. Khatri, V. P. et al. A phase II trial of image-guided radiofrequency ablation of small invasive breast carcinomas: use of saline-cooled tip electrode. Ann. Surg. Oncol. 14, 1644–1652 (2007).

    Article  PubMed  Google Scholar 

  140. Manenti, G. et al. Small breast cancers: in vivo percutaneous US-guided radiofrequency ablation with dedicated cool-tip radiofrequency system. Radiology 251, 339–346 (2009).

    Article  PubMed  Google Scholar 

  141. Manenti, G. et al. Percutaneous local ablation of unifocal subclinical breast cancer: clinical experience and preliminary results of cryotherapy. Eur. Radiol. 21, 2344–2353 (2011).

    Article  PubMed  Google Scholar 

  142. Manenti, G. et al. Subclinical breast cancer: minimally invasive approaches. Our experience with percutaneous radiofrequency ablation vs. cryotherapy. Breast Care (Basel) 8, 356–360 (2013).

    Article  Google Scholar 

  143. Pfleiderer, S. O., Marx, C., Camara, O., Gajda, M. & Kaiser, W. A. Ultrasound-guided, percutaneous cryotherapy of small (< or = 15 mm) breast cancers. Invest. Radiol. 40, 472–477 (2005).

    Article  PubMed  Google Scholar 

  144. Schassburger, K. U. et al. Minimally-invasive treatment of early stage breast cancer: a feasibility study using radiofrequency ablation under local anesthesia. Breast 23, 152–158 (2014).

    Article  PubMed  Google Scholar 

  145. Waaijer, L. et al. Radiofrequency ablation of small breast tumours: evaluation of a novel bipolar cool-tip application. Eur. J. Surg. Oncol. 40, 1222–1229 (2014).

    Article  PubMed  CAS  Google Scholar 

  146. Wu, F. et al. A randomised clinical trial of high-intensity focused ultrasound ablation for the treatment of patients with localised breast cancer. Br. J. Cancer 89, 2227–2233 (2003).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  147. Schmitz, A. C., Gianfelice, D., Daniel, B. L., Mali, W. P. & van den Bosch, M. A. Image-guided focused ultrasound ablation of breast cancer: current status, challenges, and future directions. Eur. Radiol. 18, 1431–1441 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  148. Peek, M. C. et al. A systematic review of high-intensity focused ultrasound (HIFU) in the treatment of breast tumours. Br. J. Surg. 102, 873–882 (2015).

    Article  PubMed  CAS  Google Scholar 

  149. Kim, S. H. et al. The potential role of dynamic MRI in assessing the effectiveness of high-intensity focused ultrasound ablation of breast cancer. Int. J. Hyperthermia 26, 594–603 (2010).

    Article  PubMed  Google Scholar 

  150. Wu, F. et al. Extracorporeal high intensity focused ultrasound treatment for patients with breast cancer. Breast Cancer Res. Treat. 92, 51–60 (2005).

    Article  PubMed  Google Scholar 

  151. van Riet, Y. E. et al. Localization of non-palpable breast cancer using a radiolabelled titanium seed. Br. J. Surg. 97, 1240–1245 (2010).

    Article  PubMed  CAS  Google Scholar 

  152. Barentsz, M. W. et al. Intraoperative ultrasound guidance for excision of non-palpable invasive breast cancer: a hospital-based series and an overview of the literature. Breast Cancer Res. Treat. 135, 209–219 (2012).

    Article  PubMed  CAS  Google Scholar 

  153. Krekel, N. M. et al. A comparison of three methods for nonpalpable breast cancer excision. Eur. J. Surg. Oncol. 37, 109–115 (2011).

    Article  PubMed  CAS  Google Scholar 

  154. Haid, A. et al. Intra-operative sonography: a valuable aid during breast-conserving surgery for occult breast cancer. Ann. Surg. Oncol. 14, 3090–3101 (2007).

    Article  PubMed  Google Scholar 

  155. Bennett, I. C., Greenslade J. & Chiam, H. Intraoperative ultrasound-guided excision of nonpalpable breast lesions. World J. Surg. 29, 369–374 (2005).

    Article  PubMed  CAS  Google Scholar 

  156. Rahusen, F. D. et al. Ultrasound-guided lumpectomy of nonpalpable breast cancer versus wire-guided resection: a randomized clinical trial. Ann. Surg. Oncol. 9, 994–998 (2002).

    Article  PubMed  Google Scholar 

  157. Paramo, J. C., Landeros, M., McPhee, M. D. & Mesko, T. W. Intraoperative ultrasound-guided excision of nonpalpable breast lesions. Breast J. 5, 389–394 (1999).

    Article  PubMed  Google Scholar 

  158. Snider, H. C. Jr & Morrison, D. G. Intraoperative ultrasound localization of nonpalpable breast lesions. Ann. Surg. Oncol. 6, 308–314 (1999).

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors researched the data for the article, provided substantial contributions to discussions of its content, wrote the article and undertook review and/or editing of the manuscript before submission.

Corresponding author

Correspondence to Michael Douek.

Ethics declarations

Competing interests

M.A. and M.D. receive research grants from Theraclion Ltd (Malakoff, France) for the HIFU-F trial and have received equipment support for the MagSNOLL trial from Endomagnetics Ltd. All of these trials have been academically run and sponsored by King's College London. The other authors declare no competing interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahmed, M., Rubio, I., Klaase, J. et al. Surgical treatment of nonpalpable primary invasive and in situ breast cancer. Nat Rev Clin Oncol 12, 645–663 (2015). https://doi.org/10.1038/nrclinonc.2015.161

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrclinonc.2015.161

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer