Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Standing the test of time: targeting thymidylate biosynthesis in cancer therapy

Key Points

  • Since the 1940s, inhibitors of thymidylate biosynthesis have remained among the most effective chemotherapies used in the treatment of cancer

  • The enzyme thymidylate synthase (TS) is a key metabolic bottleneck in the synthesis of thymidine monophosphate required for DNA replication in tumour cells and, therefore, represents an important therapeutic target

  • The molecular consequences of TS inhibition can be complex and vary depending on the type of inhibitor, the tumour type and the expression levels of enzymes involved in drug metabolism

  • Inhibitors of TS fall into two major classes, the fluoropyrimidines and antifolates; these TS-targeted therapies remain the foundation of many combination chemotherapies used in patients with difficult-to-treat cancers

  • The application of existing TS-targeted agents continues to expand, with new approvals of these drugs for the treatment of solid tumours

  • New combination therapeutic strategies have emerged and are entering clinical trials, such as those targeting dUTPase to exploit the uracil-misincorporation pathway and defective DNA repair that occurs during TS inhibition

Abstract

Over the past 60 years, chemotherapeutic agents that target thymidylate biosynthesis and the enzyme thymidylate synthase (TS) have remained among the most-successful drugs used in the treatment of cancer. Fluoropyrimidines, such as 5-fluorouracil and capecitabine, and antifolates, such as methotrexate and pemetrexed, induce a state of thymidylate deficiency and imbalances in the nucleotide pool that impair DNA replication and repair. TS-targeted agents are used to treat numerous solid and haematological malignancies, either alone or as foundational therapeutics in combination treatment regimens. We overview the pivotal discoveries that led to the rational development of thymidylate biosynthesis as a chemotherapeutic target, and highlight the crucial contribution of these advances to driving and accelerating drug development in the earliest era of cancer chemotherapy. The function of TS as well as the mechanisms and consequences of inhibition of this enzyme by structurally diverse classes of drugs with distinct mechanisms of action are also discussed. In addition, breakthroughs relating to TS-targeted therapies that transformed the clinical landscape in some of the most-difficult-to-treat cancers, such as pancreatic, colorectal and non-small-cell lung cancer, are highlighted. Finally, new therapeutic agents and novel mechanism-based strategies that promise to further exploit the vulnerabilities and target resistance mechanisms within the thymidylate biosynthesis pathway are reviewed.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Purchase on Springer Link

Instant access to full article PDF

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Historical development and breakthroughs in targeting thymidylate biosynthesis and TS in cancer chemotherapy.
Figure 2: The thymidylate biosynthesis pathway.
Figure 3: Mechanism of action of fluoropyrimidines and antifolates.
Figure 4: dUTPase protects tumour cells from mechanisms of cytotoxicity during TS inhibition.

Similar content being viewed by others

References

  1. Hudson, T. J. et al. International network of cancer genome projects. Nature 464, 993–998 (2010).

    Article  CAS  PubMed  Google Scholar 

  2. Lawrence, M. S. et al. Mutational heterogeneity in cancer and the search for new cancer-associated genes. Nature 499, 214–218 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Pleasance, E. D. et al. A comprehensive catalogue of somatic mutations from a human cancer genome. Nature 463, 191–196 (2010).

    Article  CAS  PubMed  Google Scholar 

  4. Rodon, J. et al. Molecular prescreening to select patient population in early clinical trials. Nat. Rev. Clin. Oncol. 9, 359–366 (2012).

    Article  CAS  PubMed  Google Scholar 

  5. O'Brien, S. G. et al. Imatinib compared with interferon and low-dose cytarabine for newly diagnosed chronic-phase chronic myeloid leukemia. N. Engl. J. Med. 348, 994–1004 (2003).

    Article  CAS  PubMed  Google Scholar 

  6. Farber, S. & Diamond, L. K. Temporary remissions in acute leukemia in children produced by folic acid antagonist, 4-aminopteroyl-glutamic acid. N. Engl. J. Med. 238, 787–793 (1948).

    Article  CAS  PubMed  Google Scholar 

  7. Heidelberger, C. On the rational development of a new drug: the example of the fluorinated pyrimidines. Cancer Treat. Rep. 65 (Suppl. 3), 3–9 (1981).

    CAS  PubMed  Google Scholar 

  8. Chu, E., Callender, M. A., Farrell, M. P. & Schmitz, J. C. Thymidylate synthase inhibitors as anticancer agents: from bench to bedside. Cancer Chemother. Pharmacol. 52 (Suppl. 1), S80–S89 (2003).

    Article  CAS  PubMed  Google Scholar 

  9. Rahman, L. et al. Thymidylate synthase as an oncogene: a novel role for an essential DNA synthesis enzyme. Cancer Cell 5, 341–351 (2004).

    Article  CAS  PubMed  Google Scholar 

  10. Ju, J., Pedersen-Lane, J., Maley, F. & Chu, E. Regulation of p53 expression by thymidylate synthase. Proc. Natl Acad. Sci. USA 96, 3769–3774 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Heidelberger, C. et al. Fluorinated pyrimidines, a new class of tumour-inhibitory compounds. Nature 179, 663–666 (1957).

    Article  CAS  PubMed  Google Scholar 

  12. Miller, J. A., Miller, E. C. & Finger, G. C. On the enhancement of the carcinogenicity of 4-dimethylaminoazobenzene by fluoro-substitution. Cancer Res. 13, 93–97 (1953).

    CAS  PubMed  Google Scholar 

  13. Stock, C. C. Experimental cancer chemotherapy. Adv. Cancer Res. 2, 425–492 (1954).

    Article  CAS  PubMed  Google Scholar 

  14. Rutman, R. J., Cantarow, A. & Paschkis, K. E. Studies in 2-acetylaminofluorene carcinogenesis. III. The utilization of uracil-2-C14 by preneoplastic rat liver and rat hepatoma. Cancer Res. 14, 119–123 (1954).

    CAS  PubMed  Google Scholar 

  15. Jaffe, J. J., Handschumacher, R. E. & Welch, A. D. Studies on the carcinostatic activity in mice of 6-azauracil riboside (azauridine), in comparison with that of 6-azauracil. Yale J. Biol. Med. 30, 168–175 (1957).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Sargent, D. et al. Evidence for cure by adjuvant therapy in colon cancer: observations based on individual patient data from 20,898 patients on 18 randomized trials. J. Clin. Oncol. 27, 872–877 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  17. Mori, K. et al. Expression levels of thymidine phosphorylase and dihydropyrimidine dehydrogenase in various human tumor tissues. Int. J. Oncol. 17, 33–38 (2000).

    CAS  PubMed  Google Scholar 

  18. Liu, M., Cao, D., Russell, R., Handschumacher, R. E. & Pizzorno, G. Expression, characterization, and detection of human uridine phosphorylase and identification of variant uridine phosphorolytic activity in selected human tumors. Cancer Res. 58, 5418–5424 (1998).

    CAS  PubMed  Google Scholar 

  19. Miwa, M. et al. Comparative studies on the antitumor and immunosuppressive effects of the new fluorouracil derivative N4-trimethoxybenzoyl-5′-deoxy-5-fluorocytidine and its parent drug 5′-deoxy-5-fluorouridine. Chem. Pharm. Bull. (Tokyo) 38, 998–1003 (1990).

    Article  CAS  Google Scholar 

  20. Schuller, J. et al. Preferential activation of capecitabine in tumor following oral administration to colorectal cancer patients. Cancer Chemother. Pharmacol. 45, 291–297 (2000).

    Article  CAS  PubMed  Google Scholar 

  21. Ishikawa, T. et al. Tumor selective delivery of 5-fluorouracil by capecitabine, a new oral fluoropyrimidine carbamate, in human cancer xenografts. Biochem. Pharmacol. 55, 1091–1097 (1998).

    Article  CAS  PubMed  Google Scholar 

  22. Saif, M. W. Capecitabine versus continuous-infusion 5-fluorouracil for colorectal cancer: a retrospective efficacy and safety comparison. Clin. Colorectal Cancer 5, 89–100 (2005).

    Article  PubMed  Google Scholar 

  23. Cassidy, J. et al. Efficacy of capecitabine versus 5-fluorouracil in colorectal and gastric cancers: a meta-analysis of individual data from 6,171 patients. Ann. Oncol. 22, 2604–2609 (2011).

    Article  CAS  PubMed  Google Scholar 

  24. Saif, M. W., Syrigos, K. N. & Katirtzoglou, N. A. S-1: a promising new oral fluoropyrimidine derivative. Expert Opin. Investig. Drugs 18, 335–348 (2009).

    Article  CAS  PubMed  Google Scholar 

  25. Takechi, T. et al. Antitumor activity and low intestinal toxicity of S-1, a new formulation of oral tegafur, in experimental tumor models in rats. Cancer Chemother. Pharmacol. 39, 205–211 (1997).

    Article  CAS  PubMed  Google Scholar 

  26. Kato, T. et al. Possible regulation of 5-fluorouracil-induced neuro- and oral toxicities by two biochemical modulators consisting of S-1, a new oral formulation of 5-fluorouracil. Anticancer Res. 21, 1705–1712 (2001).

    CAS  PubMed  Google Scholar 

  27. Shirasaka, T., Shimamoto, Y. & Fukushima, M. Inhibition by oxonic acid of gastrointestinal toxicity of 5-fluorouracil without loss of its antitumor activity in rats. Cancer Res. 53, 4004–4009 (1993).

    CAS  PubMed  Google Scholar 

  28. Houghton, J. A., Houghton, P. J. & Wooten, R. S. Mechanism of induction of gastrointestinal toxicity in the mouse by 5-fluorouracil, 5-fluorouridine, and 5-fluoro-2′-deoxyuridine. Cancer Res. 39, 2406–2413 (1979).

    CAS  PubMed  Google Scholar 

  29. Sakuramoto, S. et al. Adjuvant chemotherapy for gastric cancer with S-1, an oral fluoropyrimidine. N. Engl. J. Med. 357, 1810–1820 (2007).

    Article  CAS  PubMed  Google Scholar 

  30. Matt, P. et al. The European Medicines Agency review of tegafur/gimeracil/oteracil (Teysuno) for the treatment of advanced gastric cancer when given in combination with cisplatin: summary of the Scientific Assessment of the Committee for medicinal products for human use (CHMP). Oncologist 16, 1451–1457 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Yen-Revollo, J. L., Goldberg, R. M. & McLeod, H. L. Can inhibiting dihydropyrimidine dehydrogenase limit hand–foot syndrome caused by fluoropyrimidines? Clin. Cancer Res. 14, 8–13 (2008).

    Article  CAS  PubMed  Google Scholar 

  32. Chabner, B. A. & Roberts, T. G. Jr. Timeline: Chemotherapy and the war on cancer. Nat. Rev. Cancer 5, 65–72 (2005).

    Article  CAS  PubMed  Google Scholar 

  33. Goldin, A. et al. A quantitative comparison of the antileukemic effectiveness of two folic acid antagonists in mice. J. Natl Cancer Inst. 15, 1657–1664 (1955).

    CAS  PubMed  Google Scholar 

  34. Li, M. C., Hertz, R. & Bergenstal, D. M. Therapy of choriocarcinoma and related trophoblastic tumors with folic acid and purine antagonists. N. Engl. J. Med. 259, 66–74 (1958).

    Article  CAS  PubMed  Google Scholar 

  35. Freireich, E. J. The management of acute leukemia. Can. Med. Assoc. J. 96, 1605–1610 (1967).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Jaffe, N., Frei, E. 3rd, Traggis, D. & Bishop, Y. Adjuvant methotrexate and citrovorum-factor treatment of osteogenic sarcoma. N. Engl. J. Med. 291, 994–997 (1974).

    Article  CAS  PubMed  Google Scholar 

  37. Osborn, M. J., Freeman, M. & Huennekens, F. M. Inhibition of dihydrofolic reductase by aminopterin and amethopterin. Proc. Soc. Exp. Biol. Med. 97, 429–431 (1958).

    Article  CAS  PubMed  Google Scholar 

  38. Hryniuk, W. M. The mechanism of action of methotrexate in cultured L5178Y leukemia cells. Cancer Res. 35, 1085–1092 (1975).

    CAS  PubMed  Google Scholar 

  39. Moran, R. G., Mulkins, M. & Heidelberger, C. Role of thymidylate synthetase activity in development of methotrexate cytotoxicity. Proc. Natl Acad. Sci. USA 76, 5924–5928 (1979).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. McBurney, M. W. & Whitmore, G. F. Mechanism of growth inhibition by methotrexate. Cancer Res. 35, 586–590 (1975).

    CAS  PubMed  Google Scholar 

  41. Jackman, A. L. & Calvert, A. H. Folate-based thymidylate synthase inhibitors as anticancer drugs. Ann. Oncol. 6, 871–881 (1995).

    Article  CAS  PubMed  Google Scholar 

  42. Jones, T. R. et al. A potent antitumour quinazoline inhibitor of thymidylate synthetase: synthesis, biological properties and therapeutic results in mice. Eur. J. Cancer 17, 11–19 (1981).

    Article  CAS  PubMed  Google Scholar 

  43. Calvert, A. H. et al. A phase I evaluation of the quinazoline antifolate thymidylate synthase inhibitor, N10-propargyl-5,8-dideazafolic acid, CB3717. J. Clin. Oncol. 4, 1245–1252 (1986).

    Article  CAS  PubMed  Google Scholar 

  44. Jackman, A. L., Jodrell, D. I., Gibson, W. & Stephens, T. C. ICI D1694, an inhibitor of thymidylate synthase for clinical study. Adv. Exp. Med. Biol. 309A, 19–23 (1991).

    Article  CAS  PubMed  Google Scholar 

  45. Jackman, A. L., Gibson, W., Brown, M., Kimbell, R. & Boyle, F. T. The role of the reduced-folate carrier and metabolism to intracellular polyglutamates for the activity of ICI D1694. Adv. Exp. Med. Biol. 339, 265–276 (1993).

    Article  CAS  PubMed  Google Scholar 

  46. Ward, W. H., Kimbell, R. & Jackman, A. L. Kinetic characteristics of ICI D1694: a quinazoline antifolate which inhibits thymidylate synthase. Biochem. Pharmacol. 43, 2029–2031 (1992).

    Article  CAS  PubMed  Google Scholar 

  47. Cocconi, G. et al. Open, randomized, multicenter trial of raltitrexed versus fluorouracil plus high-dose leucovorin in patients with advanced colorectal cancer. Tomudex Colorectal Cancer Study Group. J. Clin. Oncol. 16, 2943–2952 (1998).

    Article  CAS  PubMed  Google Scholar 

  48. Wilson, K. S. & Malfair Taylor, S. C. Raltitrexed: optimism and reality. Expert Opin. Drug Metab. Toxicol. 5, 1447–1454 (2009).

    Article  CAS  PubMed  Google Scholar 

  49. Ransom, D. et al. Final results of Australasian Gastrointestinal Trials Group ARCTIC study: an audit of raltitrexed for patients with cardiac toxicity induced by fluoropyrimidines. Ann. Oncol. 25, 117–121 (2014).

    Article  CAS  PubMed  Google Scholar 

  50. Curtin, N. J. & Hughes, A. N. Pemetrexed disodium, a novel antifolate with multiple targets. Lancet Oncol. 2, 298–306 (2001).

    Article  CAS  PubMed  Google Scholar 

  51. Taylor, E. C. et al. A dideazatetrahydrofolate analogue lacking a chiral center at C-6, N-[4-[2-(2-amino-3, 4-dihydro-4-oxo-7H-pyrrolo[2,3-d]pyrimidin-5-yl)ethyl]benzoyl]-L-glutamic acid, is an inhibitor of thymidylate synthase. J. Med. Chem. 35, 4450–4454 (1992).

    Article  CAS  PubMed  Google Scholar 

  52. Schultz, R. M., Patel, V. F., Worzalla, J. F. & Shih, C. Role of thymidylate synthase in the antitumor activity of the multitargeted antifolate, LY231514. Anticancer Res. 19, 437–443 (1999).

    CAS  PubMed  Google Scholar 

  53. Smith, P. G., Marshman, E., Calvert, A. H., Newell, D. R. & Curtin, N. J. Prevention of thymidine and hypoxanthine rescue from MTA (LY231514) growth inhibition by dipyridamole in human lung cancer cell lines. Semin. Oncol. 26, 63–67 (1999).

    CAS  PubMed  Google Scholar 

  54. Schultz, R. M. et al. Biological activity of the multitargeted antifolate, MTA (LY231514), in human cell lines with different resistance mechanisms to antifolate drugs. Semin. Oncol. 26, 68–73 (1999).

    CAS  PubMed  Google Scholar 

  55. Britten, C. D. et al. Activity of the multitargeted antifolate LY231514 in the human tumor cloning assay. Cancer Chemother. Pharmacol. 44, 105–110 (1999).

    Article  CAS  PubMed  Google Scholar 

  56. Scagliotti, G. V. et al. Phase III study comparing cisplatin plus gemcitabine with cisplatin plus pemetrexed in chemotherapy-naive patients with advanced-stage non-small-cell lung cancer. J. Clin. Oncol. 26, 3543–3551 (2008).

    Article  CAS  PubMed  Google Scholar 

  57. Vogelzang, N. J. et al. Phase III study of pemetrexed in combination with cisplatin versus cisplatin alone in patients with malignant pleural mesothelioma. J. Clin. Oncol. 21, 2636–2644 (2003).

    Article  CAS  PubMed  Google Scholar 

  58. Rothbart, S. B., Racanelli, A. C. & Moran, R. G. Pemetrexed indirectly activates the metabolic kinase AMPK in human carcinomas. Cancer Res. 70, 10299–10309 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Zhao, R., Babani, S., Gao, F., Liu, L. & Goldman, I. D. The mechanism of transport of the multitargeted antifolate (MTA) and its cross-resistance pattern in cells with markedly impaired transport of methotrexate. Clin. Cancer Res. 6, 3687–3695 (2000).

    CAS  PubMed  Google Scholar 

  60. Zhao, R. et al. The proton-coupled folate transporter: impact on pemetrexed transport and on antifolates activities compared with the reduced folate carrier. Mol. Pharmacol. 74, 854–862 (2008).

    Article  CAS  PubMed  Google Scholar 

  61. Wang, Y., Zhao, R. & Goldman, I. D. Characterization of a folate transporter in HeLa cells with a low pH optimum and high affinity for pemetrexed distinct from the reduced folate carrier. Clin. Cancer Res. 10, 6256–6264 (2004).

    Article  CAS  PubMed  Google Scholar 

  62. Marchi, E., Mangone, M., Zullo, K. & O'Connor, O. A. Pralatrexate pharmacology and clinical development. Clin. Cancer Res. 19, 6657–6661 (2013).

    Article  CAS  PubMed  Google Scholar 

  63. Malik, S. M. et al. Folotyn (pralatrexate injection) for the treatment of patients with relapsed or refractory peripheral T-cell lymphoma: US Food and Drug Administration drug approval summary. Clin. Cancer Res. 16, 4921–4927 (2010).

    Article  CAS  PubMed  Google Scholar 

  64. US National Library of Medicine. ClinicalTrials.gov [online], (2013).

  65. US National Library of Medicine. ClinicalTrials.gov [online], (2013).

  66. Goulian, M. et al. Mechanism of thymineless death. Adv. Exp. Med. Biol. 195B, 89–95 (1986).

    Article  CAS  Google Scholar 

  67. Longley, D. B., Harkin, D. P. & Johnston, P. G. 5-fluorouracil: mechanisms of action and clinical strategies. Nat. Rev. Cancer 3, 330–338 (2003).

    Article  CAS  PubMed  Google Scholar 

  68. Caradonna, S. J. & Cheng, Y. C. The role of deoxyuridine triphosphate nucleotidohydrolase, uracil-DNA glycosylase, and DNA polymerase alpha in the metabolism of FUdR in human tumor cells. Mol. Pharmacol. 18, 513–520 (1980).

    CAS  PubMed  Google Scholar 

  69. Grafstrom, R. H., Tseng, B. Y. & Goulian, M. The incorporation of uracil into animal cell DNA in vitro. Cell 15, 131–140 (1978).

    Article  CAS  PubMed  Google Scholar 

  70. Lindahl, T. DNA glycosylases, endonucleases for apurinic/apyrimidinic sites, and base excision-repair. Prog. Nucleic Acid Res. Mol. Biol. 22, 135–192 (1979).

    Article  CAS  PubMed  Google Scholar 

  71. Brynolf, K., Eliasson, R. & Reichard, P. Formation of Okazaki fragments in polyoma DNA synthesis caused by misincorporation of uracil. Cell 13, 573–580 (1978).

    Article  CAS  PubMed  Google Scholar 

  72. Webley, S. D., Welsh, S. J., Jackman, A. L. & Aherne, G. W. The ability to accumulate deoxyuridine triphosphate and cellular response to thymidylate synthase (TS) inhibition. Br. J. Cancer 85, 446–452 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Danenberg, P. V. & Lockshin, A. Fluorinated pyrimidines as tight-binding inhibitors of thymidylate synthetase. Pharmacol. Ther. 13, 69–90 (1981).

    Article  CAS  PubMed  Google Scholar 

  74. Geoffroy, F. J., Allegra, C. J., Sinha, B. & Grem, J. L. Enhanced cytotoxicity with interleukin-1 alpha and 5-fluorouracil in HCT116 colon cancer cells. Oncol. Res. 6, 581–591 (1994).

    CAS  PubMed  Google Scholar 

  75. Pritchard, D. M., Watson, A. J., Potten, C. S., Jackman, A. L. & Hickman, J. A. Inhibition by uridine but not thymidine of p53-dependent intestinal apoptosis initiated by 5-fluorouracil: evidence for the involvement of RNA perturbation. Proc. Natl Acad. Sci. USA 94, 1795–1799 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Glazer, R. I. & Lloyd, L. S. Association of cell lethality with incorporation of 5-fluorouracil and 5-fluorouridine into nuclear RNA in human colon carcinoma cells in culture. Mol. Pharmacol. 21, 468–473 (1982).

    CAS  PubMed  Google Scholar 

  77. Herrick, D. & Kufe, D. W. Lethality associated with incorporation of 5-fluorouracil into preribosomal RNA. Mol. Pharmacol. 26, 135–140 (1984).

    CAS  PubMed  Google Scholar 

  78. Doong, S. L. & Dolnick, B. J. 5-Fluorouracil substitution alters pre-mRNA splicing in vitro. J. Biol. Chem. 263, 4467–4473 (1988).

    Article  CAS  PubMed  Google Scholar 

  79. Peters, G. J. et al. Toxicity and antitumor effect of 5-fluorouracil and its rescue by uridine. Adv. Exp. Med. Biol. 195B, 121–128 (1986).

    Article  CAS  Google Scholar 

  80. Bagrij, T., Kralovanszky, J., Gyergyay, F., Kiss, E. & Peters, G. J. Influence of uridine treatment in mice on the protection of gastrointestinal toxicity caused by 5-fluorouracil. Anticancer Res. 13, 789–793 (1993).

    CAS  PubMed  Google Scholar 

  81. Peters, G. J. et al. Thymidylate synthase inhibition after administration of fluorouracil with or without leucovorin in colon cancer patients: implications for treatment with fluorouracil. J. Clin. Oncol. 12, 2035–2042 (1994).

    Article  CAS  PubMed  Google Scholar 

  82. Houghton, J. A., Maroda, S. J. Jr, Phillips, J. O. & Houghton, P. J. Biochemical determinants of responsiveness to 5-fluorouracil and its derivatives in xenografts of human colorectal adenocarcinomas in mice. Cancer Res. 41, 144–149 (1981).

    CAS  PubMed  Google Scholar 

  83. [No authors listed] Modulation of fluorouracil by leucovorin in patients with advanced colorectal cancer: evidence in terms of response rate. Advanced Colorectal Cancer Meta-Analysis Project. J. Clin. Oncol. 10, 896–903 (1992).

  84. [No authors listed] Efficacy of intravenous continuous infusion of fluorouracil compared with bolus administration in advanced colorectal cancer. Meta-analysis Group In Cancer. J. Clin. Oncol. 16, 301–308 (1998).

  85. Sobrero, A. F., Aschele, C. & Bertino, J. R. Fluorouracil in colorectal cancer—a tale of two drugs: implications for biochemical modulation. J. Clin. Oncol. 15, 368–381 (1997).

    Article  CAS  PubMed  Google Scholar 

  86. Niyikiza, C. et al. Homocysteine and methylmalonic acid: markers to predict and avoid toxicity from pemetrexed therapy. Mol. Cancer Ther. 1, 545–552 (2002).

    CAS  PubMed  Google Scholar 

  87. Hanauske, A. R., Chen, V., Paoletti, P. & Niyikiza, C. Pemetrexed disodium: a novel antifolate clinically active against multiple solid tumors. Oncologist 6, 363–373 (2001).

    Article  CAS  PubMed  Google Scholar 

  88. Douillard, J. Y. et al. Randomized, phase III trial of panitumumab with infusional fluorouracil, leucovorin, and oxaliplatin (FOLFOX4) versus FOLFOX4 alone as first-line treatment in patients with previously untreated metastatic colorectal cancer: the PRIME study. J. Clin. Oncol. 28, 4697–4705 (2010).

    Article  CAS  PubMed  Google Scholar 

  89. Van Cutsem, E. et al. Cetuximab plus irinotecan, fluorouracil, and leucovorin as first-line treatment for metastatic colorectal cancer: updated analysis of overall survival according to tumor KRAS and BRAF mutation status. J. Clin. Oncol. 29, 2011–2019 (2011).

    Article  CAS  PubMed  Google Scholar 

  90. Yamada, Y. et al. Leucovorin, fluorouracil, and oxaliplatin plus bevacizumab versus S-1 and oxaliplatin plus bevacizumab in patients with metastatic colorectal cancer (SOFT): an open-label, non-inferiority, randomised phase 3 trial. Lancet Oncol. 14, 1278–1286 (2013).

    Article  CAS  PubMed  Google Scholar 

  91. Cassidy, J. et al. Randomized phase III study of capecitabine plus oxaliplatin compared with fluorouracil/folinic acid plus oxaliplatin as first-line therapy for metastatic colorectal cancer. J. Clin. Oncol. 26, 2006–2012 (2008).

    Article  CAS  PubMed  Google Scholar 

  92. Fuchs, C. S., Marshall, J. & Barrueco, J. Randomized, controlled trial of irinotecan plus infusional, bolus, or oral fluoropyrimidines in first-line treatment of metastatic colorectal cancer: updated results from the BICC-C study. J. Clin. Oncol. 26, 689–690 (2008).

    Article  PubMed  Google Scholar 

  93. Muro, K. et al. Irinotecan plus S-1 (IRIS) versus fluorouracil and folinic acid plus irinotecan (FOLFIRI) as second-line chemotherapy for metastatic colorectal cancer: a randomised phase 2/3 non-inferiority study (FIRIS study). Lancet Oncol. 11, 853–860 (2010).

    Article  CAS  PubMed  Google Scholar 

  94. Conroy, T. et al. FOLFIRINOX versus gemcitabine for metastatic pancreatic cancer. N. Engl. J. Med. 364, 1817–1825 (2011).

    Article  CAS  PubMed  Google Scholar 

  95. Cunningham, D. et al. Phase III randomized comparison of gemcitabine versus gemcitabine plus capecitabine in patients with advanced pancreatic cancer. J. Clin. Oncol. 27, 5513–5518 (2009).

    Article  CAS  PubMed  Google Scholar 

  96. Moore, M. J. et al. Erlotinib plus gemcitabine compared with gemcitabine alone in patients with advanced pancreatic cancer: a phase III trial of the National Cancer Institute of Canada Clinical Trials Group. J. Clin. Oncol. 25, 1960–1966 (2007).

    Article  CAS  PubMed  Google Scholar 

  97. Tweedale, G. Asbestos and its lethal legacy. Nat. Rev. Cancer 2, 311–315 (2002).

    Article  CAS  PubMed  Google Scholar 

  98. Prazakova, S., Thomas, P. S., Sandrini, A. & Yates, D. H. Asbestos and the lung in the 21st century: an update. Clin. Respir. J. 8, 1–10 (2014).

    Article  PubMed  Google Scholar 

  99. Fennell, D. A., Gaudino, G., O'Byrne, K. J., Mutti, L. & van Meerbeeck, J. Advances in the systemic therapy of malignant pleural mesothelioma. Nat. Clin. Pract. Oncol. 5, 136–147 (2008).

    Article  PubMed  Google Scholar 

  100. Bottomley, A. et al. Short-term treatment-related symptoms and quality of life: results from an international randomized phase III study of cisplatin with or without raltitrexed in patients with malignant pleural mesothelioma: an EORTC Lung-Cancer Group and National Cancer Institute, Canada, Intergroup Study. J. Clin. Oncol. 24, 1435–1442 (2006).

    Article  CAS  PubMed  Google Scholar 

  101. Hazarika, M., White, R. M., Johnson, J. R. & Pazdur, R. FDA drug approval summaries: pemetrexed (Alimta). Oncologist 9, 482–488 (2004).

    Article  CAS  PubMed  Google Scholar 

  102. Cohen, M. H., Justice, R. & Pazdur, R. Approval summary: pemetrexed in the initial treatment of advanced/metastatic non-small cell lung cancer. Oncologist 14, 930–935 (2009).

    Article  CAS  PubMed  Google Scholar 

  103. European Medicine agency. EPAR summary for the public: Alimta (pemetrexed) [online], (2011).

  104. Paz-Ares, L. G. et al. PARAMOUNT: Final overall survival results of the phase III study of maintenance pemetrexed versus placebo immediately after induction treatment with pemetrexed plus cisplatin for advanced nonsquamous non-small-cell lung cancer. J. Clin. Oncol. 31, 2895–2902 (2013).

    Article  CAS  PubMed  Google Scholar 

  105. Cohen, M. H., Cortazar, P., Justice, R. & Pazdur, R. Approval summary: pemetrexed maintenance therapy of advanced/metastatic nonsquamous, non-small cell lung cancer (NSCLC). Oncologist 15, 1352–1358 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Heidelberger, C., Parsons, D. G. & Remy, D. C. Syntheses of 5-trifluoromethyluracil and 5-trifluoromethyl-2′-deoxyuridine. J. Am. Chem. Soc. 84, 3597–3598 (1962).

    Article  CAS  Google Scholar 

  107. Fujiwara, Y., Oki, T. & Heidelberger, C. Fluorinated pyrimidines. XXXVII. Effects of 5-trifluoromethyl-2′-deoxyuridine on the synthesis of deoxyribonucleic acid of mammalian cells in culture. Mol. Pharmacol. 6, 273–280 (1970).

    CAS  PubMed  Google Scholar 

  108. Emura, T., Suzuki, N., Yamaguchi, M., Ohshimo, H. & Fukushima, M. A novel combination antimetabolite, TAS-102, exhibits antitumor activity in FU-resistant human cancer cells through a mechanism involving FTD incorporation in DNA. Int. J. Oncol. 25, 571–578 (2004).

    CAS  PubMed  Google Scholar 

  109. Reyes, P. & Heidelberger, C. Fluorinated pyrimidines. XXVI. Mammalian thymidylate synthetase: its mechanism of action and inhibition by fluorinated nucleotides. Mol. Pharmacol. 1, 14–30 (1965).

    CAS  PubMed  Google Scholar 

  110. Temmink, O. H., Comijn, E. M., Fukushima, M. & Peters, G. J. Intracellular thymidylate synthase inhibition by trifluorothymidine in FM3A cells. Nucleosides Nucleotides Nucleic Acids 23, 1491–1494 (2004).

    Article  CAS  PubMed  Google Scholar 

  111. Suzuki, N., Emura, T. & Fukushima, M. Mode of action of trifluorothymidine (TFT) against DNA replication and repair enzymes. Int. J. Oncol. 39, 263–270 (2011).

    CAS  PubMed  Google Scholar 

  112. Bijnsdorp, I. V., Peters, G. J., Temmink, O. H., Fukushima, M. & Kruyt, F. A. Differential activation of cell death and autophagy results in an increased cytotoxic potential for trifluorothymidine compared to 5-fluorouracil in colon cancer cells. Int. J. Cancer 126, 2457–2468 (2010).

    CAS  PubMed  Google Scholar 

  113. Suzuki, N., Nakagawa, F., Nukatsuka, M. & Fukushima, M. Trifluorothymidine exhibits potent antitumor activity via the induction of DNA double-strand breaks. Exp. Ther. Med. 2, 393–397 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Temmink, O. H. et al. Mechanism of trifluorothymidine potentiation of oxaliplatin-induced cytotoxicity to colorectal cancer cells. Br. J. Cancer 96, 231–240 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Temmink, O. H., Hoebe, E. K., Fukushima, M. & Peters, G. J. Irinotecan-induced cytotoxicity to colon cancer cells in vitro is stimulated by pre-incubation with trifluorothymidine. Eur. J. Cancer 43, 175–183 (2007).

    Article  CAS  PubMed  Google Scholar 

  116. Doi, T. et al. Phase I study of TAS-102 treatment in Japanese patients with advanced solid tumours. Br. J. Cancer 107, 429–434 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Yoshino, T. et al. TAS-102 monotherapy for pretreated metastatic colorectal cancer: a double-blind, randomised, placebo-controlled phase 2 trial. Lancet Oncol. 13, 993–1001 (2012).

    Article  CAS  PubMed  Google Scholar 

  118. US National Library of Medicine. ClinicalTrials.gov [online], (2013).

  119. Drake, J. C., Allegra, C. J., Moran, R. G. & Johnston, P. G. Resistance to tomudex (ZD1694): multifactorial in human breast and colon carcinoma cell lines. Biochem. Pharmacol. 51, 1349–1355 (1996).

    Article  CAS  PubMed  Google Scholar 

  120. Longley, D. B. et al. Characterization of a thymidylate synthase (TS)-inducible cell line: a model system for studying sensitivity to TS- and non-TS-targeted chemotherapies. Clin. Cancer Res. 7, 3533–3539 (2001).

    CAS  PubMed  Google Scholar 

  121. Jackman, A. L., Alison, D. L., Calvert, A. H. & Harrap, K. R. Increased thymidylate synthase in L1210 cells possessing acquired resistance to N10-propargyl-5,8-dideazafolic acid (CB3717): development, characterization, and cross-resistance studies. Cancer Res. 46, 2810–2815 (1986).

    CAS  PubMed  Google Scholar 

  122. Jackman, A. L. et al. Mechanisms of acquired resistance to the quinazoline thymidylate synthase inhibitor ZD1694 (Tomudex) in one mouse and three human cell lines. Br. J. Cancer 71, 914–924 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Johnston, P. G. et al. Thymidylate synthase gene and protein expression correlate and are associated with response to 5-fluorouracil in human colorectal and gastric tumors. Cancer Res. 55, 1407–1412 (1995).

    CAS  PubMed  Google Scholar 

  124. Lenz, H. J. et al. p53 and thymidylate synthase expression in untreated stage II colon cancer: associations with recurrence, survival, and site. Clin. Cancer Res. 4, 1227–1234 (1998).

    CAS  PubMed  Google Scholar 

  125. Grimminger, P. P. et al. TS and ERCC-1 mRNA expressions and clinical outcome in patients with metastatic colon cancer in CONFIRM-1 and -2 clinical trials. Pharmacogenomics J. 12, 404–411 (2012).

    Article  CAS  PubMed  Google Scholar 

  126. Salonga, D. et al. Colorectal tumors responding to 5-fluorouracil have low gene expression levels of dihydropyrimidine dehydrogenase, thymidylate synthase, and thymidine phosphorylase. Clin. Cancer Res. 6, 1322–1327 (2000).

    CAS  PubMed  Google Scholar 

  127. Qiu, L. X. et al. Predictive value of thymidylate synthase expression in advanced colorectal cancer patients receiving fluoropyrimidine-based chemotherapy: evidence from 24 studies. Int. J. Cancer 123, 2384–2389 (2008).

    Article  CAS  PubMed  Google Scholar 

  128. Liu, Y. et al. Expression of thymidylate synthase predicts clinical outcomes of pemetrexed-containing chemotherapy for non-small-cell lung cancer: a systemic review and meta-analysis. Cancer Chemother. Pharmacol. 72, 1125–1132 (2013).

    Article  CAS  PubMed  Google Scholar 

  129. Christoph, D. C. et al. Significance of folate receptor alpha and thymidylate synthase protein expression in patients with non-small-cell lung cancer treated with pemetrexed. J. Thorac. Oncol. 8, 19–30 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Sun, J. M., Han, J., Ahn, J. S., Park, K. & Ahn, M. J. Significance of thymidylate synthase and thyroid transcription factor 1 expression in patients with nonsquamous non-small cell lung cancer treated with pemetrexed-based chemotherapy. J. Thorac. Oncol. 6, 1392–1399 (2011).

    Article  PubMed  Google Scholar 

  131. Zucali, P. A. et al. Thymidylate synthase and excision repair cross-complementing group-1 as predictors of responsiveness in mesothelioma patients treated with pemetrexed/carboplatin. Clin. Cancer Res. 17, 2581–2590 (2011).

    Article  CAS  PubMed  Google Scholar 

  132. Righi, L. et al. Thymidylate synthase but not excision repair cross-complementation group 1 tumor expression predicts outcome in patients with malignant pleural mesothelioma treated with pemetrexed-based chemotherapy. J. Clin. Oncol. 28, 1534–1539 (2010).

    Article  CAS  PubMed  Google Scholar 

  133. Maus, M. K. et al. Histology-related associations of ERCC1, RRM1, and TS biomarkers in patients with non-small-cell lung cancer: implications for therapy. J. Thorac. Oncol. 8, 582–586 (2013).

    Article  CAS  PubMed  Google Scholar 

  134. Giovannetti, E., Peters, G. J. & Zucali, P. A. “One marker does not fit all”: additional translational and validation studies are needed to identify faithful predictors of pemetrexed activity in mesothelioma. J. Thorac. Oncol. 8, e79–e80 (2013).

    Article  PubMed  Google Scholar 

  135. Welsh, S. J. et al. Comparison of thymidylate synthase (TS) protein up-regulation after exposure to TS inhibitors in normal and tumor cell lines and tissues. Clin. Cancer Res. 6, 2538–2546 (2000).

    CAS  PubMed  Google Scholar 

  136. Chu, E. et al. Autoregulation of human thymidylate synthase messenger RNA translation by thymidylate synthase. Proc. Natl Acad. Sci. USA 88, 8977–8981 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Kitchens, M. E., Forsthoefel, A. M., Rafique, Z., Spencer, H. T. & Berger, F. G. Ligand-mediated induction of thymidylate synthase occurs by enzyme stabilization. Implications for autoregulation of translation. J. Biol. Chem. 274, 12544–12547 (1999).

    Article  CAS  PubMed  Google Scholar 

  138. Chu, E., Koeller, D. M., Johnston, P. G., Zinn, S. & Allegra, C. J. Regulation of thymidylate synthase in human colon cancer cells treated with 5-fluorouracil and interferon-gamma. Mol. Pharmacol. 43, 527–533 (1993).

    CAS  PubMed  Google Scholar 

  139. US National Library of Medicine. ClinicalTrials.gov [online], (2011).

  140. Fazzone, W., Wilson, P. M., Labonte, M. J., Lenz, H. J. & Ladner, R. D. Histone deacetylase inhibitors suppress thymidylate synthase gene expression and synergize with the fluoropyrimidines in colon cancer cells. Int. J. Cancer 125, 463–473 (2009).

    Article  CAS  PubMed  Google Scholar 

  141. Wilson, P. M. et al. A phase I/II trial of vorinostat in combination with 5-fluorouracil in patients with metastatic colorectal cancer who previously failed 5-FU-based chemotherapy. Cancer Chemother. Pharmacol. 65, 979–988 (2010).

    Article  CAS  PubMed  Google Scholar 

  142. Fakih, M. G. et al. A phase I, pharmacokinetic and pharmacodynamic study on vorinostat in combination with 5-fluorouracil, leucovorin, and oxaliplatin in patients with refractory colorectal cancer. Clin. Cancer Res. 15, 3189–3195 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Parsels, L. A. et al. Mechanism and pharmacological specificity of dUTPase-mediated protection from DNA damage and cytotoxicity in human tumor cells. Cancer Chemother. Pharmacol. 42, 357–362 (1998).

    Article  CAS  PubMed  Google Scholar 

  144. Wilson, P. M., LaBonte, M. J., Lenz, H. J., Mack, P. C. & Ladner, R. D. Inhibition of dUTPase induces synthetic lethality with thymidylate synthase-targeted therapies in non-small cell lung cancer. Mol. Cancer Ther. 11, 616–628 (2012).

    Article  CAS  PubMed  Google Scholar 

  145. Wilson, P. M. et al. Novel opportunities for thymidylate metabolism as a therapeutic target. Mol. Cancer Ther. 7, 3029–3037 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Ladner, R. D. et al. dUTP nucleotidohydrolase isoform expression in normal and neoplastic tissues: association with survival and response to 5-fluorouracil in colorectal cancer. Cancer Res. 60, 3493–3503 (2000).

    CAS  PubMed  Google Scholar 

  147. Kawahara, A. et al. Higher expression of deoxyuridine triphosphatase (dUTPase) may predict the metastasis potential of colorectal cancer. J. Clin. Pathol. 62, 364–369 (2009).

    Article  CAS  PubMed  Google Scholar 

  148. Koehler, S. E. & Ladner, R. D. Small interfering RNA-mediated suppression of dUTPase sensitizes cancer cell lines to thymidylate synthase inhibition. Mol. Pharmacol. 66, 620–626 (2004).

    CAS  PubMed  Google Scholar 

  149. Brown, S. D., Hardcastle, A. & Aherne, G. W. Deoxyuridine triphosphatase (dUTPase) expression and cellular response to TS inhibitors in Chemistry and Biology of Pteridines and Folates (eds Pfleider, W. & Rokos, H.) 271–274 (Blackwell Science, Berlin, 1997).

    Google Scholar 

  150. Canman, C. E., Lawrence, T. S., Shewach, D. S., Tang, H. Y. & Maybaum, J. Resistance to fluorodeoxyuridine-induced DNA damage and cytotoxicity correlates with an elevation of deoxyuridine triphosphatase activity and failure to accumulate deoxyuridine triphosphate. Cancer Res. 53, 5219–5224 (1993).

    CAS  PubMed  Google Scholar 

  151. Miyahara, S. et al. Discovery of a novel class of potent human deoxyuridine triphosphatase inhibitors remarkably enhancing the antitumor activity of thymidylate synthase inhibitors. J. Med. Chem. 55, 2970–2980 (2012).

    Article  CAS  PubMed  Google Scholar 

  152. Saito, K. et al. First-in-human, phase I dose-escalation study of single and multiple doses of a first-in-class enhancer of fluoropyrimidines, a dUTPase inhibitor (TAS-114) in healthy male volunteers. Cancer Chemother. Pharmacol. 73, 577–583 (2014).

    Article  CAS  PubMed  Google Scholar 

  153. US National Library of Medicine. ClinicalTrials.gov [online], (2014).

  154. US National Library of Medicine. ClinicalTrials.gov [online], (2013).

  155. Humeniuk, R. et al. Decreased levels of UMP kinase as a mechanism of fluoropyrimidine resistance. Mol. Cancer Ther. 8, 1037–1044 (2009).

    Article  CAS  PubMed  Google Scholar 

  156. Lord, C. J. & Ashworth, A. The DNA damage response and cancer therapy. Nature 481, 287–294 (2012).

    Article  CAS  PubMed  Google Scholar 

  157. Li, L., Berger, S. H. & Wyatt, M. D. Involvement of base excision repair in response to therapy targeted at thymidylate synthase. Mol. Cancer Ther. 3, 747–753 (2004).

    CAS  PubMed  Google Scholar 

  158. Kane, C. M. & Linn, S. Purification and characterization of an apurinic/apyrimidinic endonuclease from HeLa cells. J. Biol. Chem. 256, 3405–3414 (1981).

    Article  CAS  PubMed  Google Scholar 

  159. Silber, J. R. et al. The apurinic/apyrimidinic endonuclease activity of Ape1/Ref-1 contributes to human glioma cell resistance to alkylating agents and is elevated by oxidative stress. Clin. Cancer Res. 8, 3008–3018 (2002).

    CAS  PubMed  Google Scholar 

  160. Wang, D., Luo, M. & Kelley, M. R. Human apurinic endonuclease 1 (APE1) expression and prognostic significance in osteosarcoma: enhanced sensitivity of osteosarcoma to DNA damaging agents using silencing RNA APE1 expression inhibition. Mol. Cancer Ther. 3, 679–686 (2004).

    CAS  PubMed  Google Scholar 

  161. Luo, M. & Kelley, M. R. Inhibition of the human apurinic/apyrimidinic endonuclease (APE1) repair activity and sensitization of breast cancer cells to DNA alkylating agents with lucanthone. Anticancer Res. 24, 2127–2134 (2004).

    CAS  PubMed  Google Scholar 

  162. Al-Safi, R. I., Odde, S., Shabaik, Y. & Neamati, N. Small-molecule inhibitors of APE1 DNA repair function: an overview. Curr. Mol. Pharmacol. 5, 14–35 (2012).

    Article  CAS  PubMed  Google Scholar 

  163. Simeonov, A. et al. Identification and characterization of inhibitors of human apurinic/apyrimidinic endonuclease APE1. PLoS ONE 4, e5740 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  164. Rosa, S., Fortini, P., Karran, P., Bignami, M. & Dogliotti, E. Processing in vitro of an abasic site reacted with methoxyamine: a new assay for the detection of abasic sites formed in vivo. Nucleic Acids Res. 19, 5569–5574 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. McNeill, D. R., Lam, W., DeWeese, T. L., Cheng, Y. C. & Wilson, D. M. 3rd. Impairment of APE1 function enhances cellular sensitivity to clinically relevant alkylators and antimetabolites. Mol. Cancer Res. 7, 897–906 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Bulgar, A. D. et al. Removal of uracil by uracil DNA glycosylase limits pemetrexed cytotoxicity: overriding the limit with methoxyamine to inhibit base excision repair. Cell Death Dis. 3, e252 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Liu, L., Taverna, P., Whitacre, C. M., Chatterjee, S. & Gerson, S. L. Pharmacologic disruption of base excision repair sensitizes mismatch repair-deficient and -proficient colon cancer cells to methylating agents. Clin. Cancer Res. 5, 2908–2917 (1999).

    CAS  PubMed  Google Scholar 

  168. Gordon, M. S. et al. A phase 1 study of TRC102, an inhibitor of base excision repair, and pemetrexed in patients with advanced solid tumors. Invest. New Drugs 31, 714–723 (2013).

    Article  CAS  PubMed  Google Scholar 

  169. Weeks, L. D., Fu, P. & Gerson, S. L. Uracil DNA glycosylase expression determines human lung cancer cell sensitivity to pemetrexed. Mol. Cancer Ther. 12, 2248–2260 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Weeks, L. D., Fu, P. & Gerson, S. L. Uracil-DNA glycosylase expression determines human lung cancer cell sensitivity to pemetrexed. Mol. Cancer Ther. 12, 2248–2260 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Benjamin, R. C. & Gill, D. M. ADP-ribosylation in mammalian cell ghosts. Dependence of poly(ADP-ribose) synthesis on strand breakage in DNA. J. Biol. Chem. 255, 10493–10501 (1980).

    Article  CAS  PubMed  Google Scholar 

  172. Juarez-Salinas, H., Sims, J. L. & Jacobson, M. K. Poly(ADP-ribose) levels in carcinogen-treated cells. Nature 282, 740–741 (1979).

    Article  CAS  PubMed  Google Scholar 

  173. Satoh, M. S. & Lindahl, T. Role of poly(ADP-ribose) formation in DNA repair. Nature 356, 356–358 (1992).

    Article  CAS  PubMed  Google Scholar 

  174. Huehls, A. M. et al. Poly(ADP-Ribose) polymerase inhibition synergizes with 5-fluorodeoxyuridine but not 5-fluorouracil in ovarian cancer cells. Cancer Res. 71, 4944–4954 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Geng, L., Huehls, A. M., Wagner, J. M., Huntoon, C. J. & Karnitz, L. M. Checkpoint signaling, base excision repair, and PARP promote survival of colon cancer cells treated with 5-fluorodeoxyuridine but not 5-fluorouracil. PLoS ONE 6, e28862 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. US National Library of Medicine. ClinicalTrials.gov [online], (2014).

  177. US National Library of Medicine. ClinicalTrials.gov [online], (2014).

  178. US National Library of Medicine. ClinicalTrials.gov [online], (2013).

  179. US National Library of Medicine. ClinicalTrials.gov [online], (2013).

  180. US National Library of Medicine. ClinicalTrials.gov [online], (2014).

  181. US National Library of Medicine. ClinicalTrials.gov [online], (2013).

Download references

Author information

Authors and Affiliations

Authors

Contributions

P.M.W., P.V.D. and R.D.L. researched data for the manuscript, and P.M.W. wrote the article. All authors made substantial contributions to discussion of content, and reviewed and edited the manuscript before submission.

Corresponding author

Correspondence to Robert D. Ladner.

Ethics declarations

Competing interests

H.-J.L. has received clinical trial support from Taiho and Roche. The other authors declare no competing interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wilson, P., Danenberg, P., Johnston, P. et al. Standing the test of time: targeting thymidylate biosynthesis in cancer therapy. Nat Rev Clin Oncol 11, 282–298 (2014). https://doi.org/10.1038/nrclinonc.2014.51

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrclinonc.2014.51

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing