Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

Taxane benefit in breast cancer—a role for grade and chromosomal stability

Abstract

Chromosomal instability, which is a characteristic of many human cancers, contributes to intratumour heterogeneity and has been functionally implicated in resistance to taxane therapy in tumour models. However, defining the status of tumour chromosomal instability in a given tumour to test this hypothesis remains challenging. Measurements of numerical and structural chromosomal heterogeneity demonstrate that histological grade correlates with chromosomal instability in oestrogen receptor (ER)-positive breast cancer. Using data on adjuvant taxane therapy in women with breast cancer, we propose that patients with low-grade ER-positive tumours, which are thought to be chromosomally stable, might derive unexpected benefit from taxane therapy. We discuss the implications of the relationships between tumour grade, chromosomal instability and intratumour heterogeneity, the development of high-throughput methods to define tumour chromosomal instability and the potential use of chromosomal instability to tailor therapy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Pathways of chromosomal instability.

Similar content being viewed by others

References

  1. McGranahan, N., Burrell, R. A., Endesfelder, D., Novelli, M. R. & Swanton, C. Cancer chromosomal instability: therapeutic and diagnostic challenges. EMBO Rep. 13, 528–538 (2012).

    Article  CAS  Google Scholar 

  2. Burrell, R. A. et al. Replication stress links structural and numerical cancer chromosomal instability. Nature 494, 492–496 (2013).

    Article  CAS  Google Scholar 

  3. Rakha, E. A. et al. Breast cancer prognostic classification in the molecular era: the role of histological grade. Breast Cancer Res. 12, 207 (2010).

    Article  Google Scholar 

  4. Pinder, S. E. et al. The importance of the histologic grade of invasive breast carcinoma and response to chemotherapy. Cancer 83, 1529–1539 (1998).

    Article  CAS  Google Scholar 

  5. Fisher, E. R. et al. Pathobiology of preoperative chemotherapy: findings from the National Surgical Adjuvant Breast and Bowel (NSABP) protocol B-18. Cancer 95, 681–695 (2002).

    Article  Google Scholar 

  6. Swanton, C. et al. Chromosomal instability determines taxane response. Proc. Natl Acad. Sci. USA 106, 8671–8676 (2009).

    Article  CAS  Google Scholar 

  7. Harrison, M. & Swanton, C. Epothilones and new analogues of the microtubule modulators in taxane-resistant disease. Expert Opin. Invest. Drugs 17, 523–546 (2008).

    Article  CAS  Google Scholar 

  8. Weaver, B. A. & Cleveland, D. W. Decoding the links between mitosis, cancer, and chemotherapy: the mitotic checkpoint, adaptation, and cell death. Cancer Cell 8, 7–12 (2005).

    Article  CAS  Google Scholar 

  9. Cahill, D. P. et al. Mutations of mitotic checkpoint genes in human cancers. Nature 392, 300–303 (1998).

    Article  CAS  Google Scholar 

  10. Sudo, T., Nitta, M., Saya, H. & Ueno, N. T. Dependence of paclitaxel sensitivity on a functional spindle assembly checkpoint. Cancer Res. 64, 2502–2508 (2004).

    Article  CAS  Google Scholar 

  11. Anand, S., Penrhyn-Lowe, S. & Venkitaraman, A. R. AURORA-A amplification overrides the mitotic spindle assembly checkpoint, inducing resistance to Taxol. Cancer Cell 3, 51–62 (2003).

    Article  CAS  Google Scholar 

  12. Nakayama, S. et al. Prediction of paclitaxel sensitivity by CDK1 and CDK2 activity in human breast cancer cells. Breast Cancer Res. 11, R12 (2009).

    Article  Google Scholar 

  13. Inaba, S. et al. Synuclein gamma inhibits the mitotic checkpoint function and promotes chromosomal instability of breast cancer cells. Breast Cancer Res. Treat. 94, 25–35 (2005).

    Article  CAS  Google Scholar 

  14. Swanton, C., Tomlinson, I. & Downward, J. Chromosomal instability, colorectal cancer and taxane resistance. Cell Cycle 5, 818–823 (2006).

    Article  CAS  Google Scholar 

  15. Swanton, C. et al. Regulators of mitotic arrest and ceramide metabolism are determinants of sensitivity to paclitaxel and other chemotherapeutic drugs. Cancer Cell 11, 498–512 (2007).

    Article  CAS  Google Scholar 

  16. Carter, S. L., Eklund, A. C., Kohane, I. S., Harris, L. N. & Szallasi, Z. A signature of chromosomal instability inferred from gene expression profiles predicts clinical outcome in multiple human cancers. Nat. Genet. 38, 1043–1048 (2006).

    Article  CAS  Google Scholar 

  17. Juul, N. et al. Assessment of an RNA interference screen-derived mitotic and ceramide pathway metagene as a predictor of response to neoadjuvant paclitaxel for primary triple-negative breast cancer: a retrospective analysis of five clinical trials. Lancet Oncol. 11, 358–365 (2010).

    Article  CAS  Google Scholar 

  18. McClelland, S. E., Burrell, R. A. & Swanton, C. Chromosomal instability: a composite phenotype that influences sensitivity to chemotherapy. Cell Cycle 8, 3262–3266 (2009).

    Article  CAS  Google Scholar 

  19. Bouchet, B. P. et al. Paclitaxel resistance in untransformed human mammary epithelial cells is associated with an aneuploidy-prone phenotype. Br. J. Cancer 97, 1218–1224 (2007).

    Article  CAS  Google Scholar 

  20. Walther, A., Houlston, R. & Tomlinson, I. Association between chromosomal instability and prognosis in colorectal cancer: a meta-analysis. Gut 57, 941–950 (2008).

    Article  CAS  Google Scholar 

  21. Kronenwett, U. et al. Improved grading of breast adenocarcinomas based on genomic instability. Cancer Res. 64, 904–909 (2004).

    Article  CAS  Google Scholar 

  22. Habermann, J. K. et al. The gene expression signature of genomic instability in breast cancer is an independent predictor of clinical outcome. Int. J. Cancer 124, 1552–1564 (2009).

    Article  CAS  Google Scholar 

  23. Cahill, D. P., Kinzler, K. W., Vogelstein, B. & Lengauer, C. Genetic instability and darwinian selection in tumours. Trends Cell Biol. 9, M57–M60 (1999).

    Article  CAS  Google Scholar 

  24. Duesberg, P., Stindl, R. & Hehlmann, R. Explaining the high mutation rates of cancer cells to drug and multidrug resistance by chromosome reassortments that are catalyzed by aneuploidy. Proc. Natl Acad. Sci. USA 97, 14295–14300 (2000).

    Article  CAS  Google Scholar 

  25. Roschke, A. V. et al. Karyotypic complexity of the NCI-60 drug-screening panel. Cancer Res. 63, 8634–8647 (2003).

    CAS  PubMed  Google Scholar 

  26. Roschke, A. V. et al. Karyotypic “state” as a potential determinant for anticancer drug discovery. Proc. Natl Acad. Sci. USA 102, 2964–2969 (2005).

    Article  CAS  Google Scholar 

  27. Roschke, A. V. & Kirsch, I. R. Targeting cancer cells by exploiting karyotypic complexity and chromosomal instability. Cell Cycle 4, 679–682 (2005).

    Article  CAS  Google Scholar 

  28. Roschke, A. V. & Kirsch, I. R. Targeting karyotypic complexity and chromosomal instability of cancer cells. Curr. Drug Targets 11, 1341–1350 (2010).

    Article  CAS  Google Scholar 

  29. Bergers, E., van Diest, P. J. & Baak, J. P. Tumour heterogeneity of DNA cell cycle variables in breast cancer measured by flow cytometry. J. Clin. Pathol. 49, 931–937 (1996).

    Article  CAS  Google Scholar 

  30. Gerlinger, M. et al. Intratumor heterogeneity and branched evolution revealed by multiregion sequencing. N. Engl. J. Med. 366, 883–892 (2012).

    Article  CAS  Google Scholar 

  31. Lingle, W. L. et al. Centrosome amplification drives chromosomal instability in breast tumor development. Proc. Natl Acad. Sci. USA 99, 1978–1983 (2002).

    CAS  Google Scholar 

  32. Geigl, J. B., Obenauf, A. C., Schwarzbraun, T. & Speicher, M. R. Defining 'chromosomal instability'. Trends Genet. 24, 64–69 (2008).

    Article  CAS  Google Scholar 

  33. Nowak, A. K., Wilcken, N. R., Stockler, M. R., Hamilton, A. & Ghersi, D. Systematic review of taxane-containing versus non-taxane-containing regimens for adjuvant and neoadjuvant treatment of early breast cancer. Lancet Oncol. 5, 372–380 (2004).

    Article  CAS  Google Scholar 

  34. Ghersi, D., Wilcken, N. & Simes, R. J. A systematic review of taxane-containing regimens for metastatic breast cancer. Br. J. Cancer 93, 293–301 (2005).

    Article  CAS  Google Scholar 

  35. Konecny, G. E. et al. Her-2/neu gene amplification and response to paclitaxel in patients with metastatic breast cancer. J. Natl Cancer Inst. 96, 1141–1151 (2004).

    Article  CAS  Google Scholar 

  36. Hayes, D. F. et al. HER2 and response to paclitaxel in node-positive breast cancer. N. Engl. J. Med. 357, 1496–1506 (2007).

    Article  CAS  Google Scholar 

  37. Penault-Llorca, F. et al. Ki67 expression and docetaxel efficacy in patients with estrogen receptor-positive breast cancer. J. Clin. Oncol. 27, 2809–2815 (2009).

    Article  CAS  Google Scholar 

  38. Paradiso, A. et al. Biomarkers predictive for clinical efficacy of taxol-based chemotherapy in advanced breast cancer. Ann. Oncol. 16 (Suppl. 4), iv14–iv19 (2005).

    Article  Google Scholar 

  39. Van Poznak, C. et al. Assessment of molecular markers of clinical sensitivity to single-agent taxane therapy for metastatic breast cancer. J. Clin. Oncol. 20, 2319–2326 (2002).

    Article  CAS  Google Scholar 

  40. Khan, S. H. & Wahl, G. M. p53 and pRb prevent rereplication in response to microtubule inhibitors by mediating a reversible G1 arrest. Cancer Res. 58, 396–401 (1998).

    CAS  PubMed  Google Scholar 

  41. Lissoni, P. et al. Chemotherapy and angiogenesis in advanced cancer: vascular endothelial growth factor (VEGF) decline as predictor of disease control during taxol therapy in metastatic breast cancer. Int. J. Biol. Markers 15, 308–311 (2000).

    Article  CAS  Google Scholar 

  42. Grant, D. S., Williams, T. L., Zahaczewsky, M. & Dicker, A. P. Comparison of antiangiogenic activities using paclitaxel (taxol) and docetaxel (taxotere). Int. J. Cancer 104, 121–129 (2003).

    Article  CAS  Google Scholar 

  43. Kosaka, T. et al. Analysis of epidermal growth factor receptor gene mutation in patients with non-small cell lung cancer and acquired resistance to gefitinib. Clin. Cancer Res. 12, 5764–5769 (2006).

    Article  CAS  Google Scholar 

  44. Turke, A. B. et al. Preexistence and clonal selection of MET amplification in EGFR mutant NSCLC. Cancer Cell 17, 77–88 (2010).

    Article  CAS  Google Scholar 

  45. Diaz, L. A. Jr et al. The molecular evolution of acquired resistance to targeted EGFR blockade in colorectal cancers. Nature 486, 537–540 (2012).

    Article  CAS  Google Scholar 

  46. Elston, C. W. & Ellis, I. O. Pathological prognostic factors in breast cancer. I. The value of histological grade in breast cancer: experience from a large study with long-term follow-up. Histopathology 19, 403–410 (1991).

    Article  CAS  Google Scholar 

  47. Bloom, H. J. & Richardson, W. W. Histological grading and prognosis in breast cancer; a study of 1409 cases of which 359 have been followed for 15 years. Br. J. Cancer 11, 359–377 (1957).

    Article  CAS  Google Scholar 

  48. Coschi, C. H. & Dick, F. A. Chromosome instability and deregulated proliferation: an unavoidable duo. Cell. Mol. Life Sci. 69, 2009–2024 (2012).

    Article  CAS  Google Scholar 

  49. Birkbak, N. J. et al. Paradoxical relationship between chromosomal instability and survival outcome in cancer. Cancer Res. 71, 3447–3452 (2011).

    Article  CAS  Google Scholar 

  50. Owainati, A. A. et al. Tumour aneuploidy, prognostic parameters and survival in primary breast cancer. Br. J. Cancer 55, 449–454 (1987).

    Article  CAS  Google Scholar 

  51. Chassevent, A. et al. S-phase fraction and DNA ploidy in 633 T1T2 breast cancers: a standardized flow cytometric study. Clin. Cancer Res. 7, 909–17 (2001).

    CAS  PubMed  Google Scholar 

  52. Martinez-Arribas, F. et al. The S-phase fraction of the aneuploid cell subpopulation is the biologically relevant one in aneuploid breast cancers. Breast Cancer Res. Treat. 92, 77–80 (2005).

    Article  CAS  Google Scholar 

  53. Gazic, B. et al. S-phase fraction determined on fine needle aspirates is an independent prognostic factor in breast cancer—a multivariate study of 770 patients. Cytopathology 19, 294–302 (2008).

    Article  CAS  Google Scholar 

  54. O'Reilly, S. M. et al. DNA index, S-phase fraction, histological grade and prognosis in breast cancer. Br. J. Cancer 61, 671–674 (1990).

    Article  CAS  Google Scholar 

  55. Toikkanen, S., Joensuu, H. & Klemi, P. The prognostic significance of nuclear DNA content in invasive breast cancer--a study with long-term follow-up. Br. J. Cancer 60, 693–700 (1989).

    Article  CAS  Google Scholar 

  56. Kapranos, N., Kounelis, S., Karantasis, H. & Kouri, E. Numerical aberrations of chromosomes 1 and 7 by fluorescent in situ hybridization and DNA ploidy analysis in breast cancer. Breast J. 11, 448–453 (2005).

    Article  Google Scholar 

  57. Sauer, T., Beraki, K., Jebsen, P. W., Ormerod, E. & Naess, O. Ploidy analysis by in situ hybridization of interphase cell nuclei in fine-needle aspirates from breast carcinomas: correlation with cytologic grading. Diagn. Cytopathol. 17, 267–271 (1997).

    Article  CAS  Google Scholar 

  58. Persons, D. L. et al. Chromosome-specific aneusomy in carcinoma of the breast. Clin. Cancer Res. 2, 883–888 (1996).

    CAS  PubMed  Google Scholar 

  59. Tsuda, H., Takarabe, T. & Hirohashi, S. Correlation of numerical and structural status of chromosome 16 with histological type and grade of non-invasive and invasive breast carcinomas. Int. J. Cancer 84, 381–387 (1999).

    Article  CAS  Google Scholar 

  60. Szász, A. M. et al. The CIN4 chromosomal instability qPCR classifier defines tumor aneuploidy and stratifies outcome in grade 2 breast cancer. PLoS ONE 8, e56707 (2013).

    Article  Google Scholar 

  61. Roylance, R. et al. Relationship of extreme chromosomal instability with long-term survival in a retrospective analysis of primary breast cancer. Cancer Epidemiol. Biomarkers Prev. 20, 2183–2194 (2011).

    Article  Google Scholar 

  62. Dellas, A., Torhorst, J., Schultheiss, E., Mihatsch, M. J. & Moch, H. DNA sequence losses on chromosomes 11p and 18q are associated with clinical outcome in lymph node-negative ductal breast cancer. Clin. Cancer Res. 8, 1210–1216 (2002).

    CAS  PubMed  Google Scholar 

  63. Wistuba, I. I., Gelovani, J. G., Jacoby, J. J., Davis, S. E. & Herbst, R. S. Methodological and practical challenges for personalized cancer therapies. Nat. Rev. Clin. Oncol. 8, 135–141 (2011).

    Article  CAS  Google Scholar 

  64. Peto, R. et al. Comparisons between different polychemotherapy regimens for early breast cancer: meta-analyses of long-term outcome among 100,000 women in 123 randomised trials. Lancet 379, 432–444 (2012).

    Article  CAS  Google Scholar 

  65. Palmieri, C. & Jones, A. The 2011 EBCTCG polychemotherapy overview. Lancet 379, 390–392 (2012).

    Article  Google Scholar 

  66. Reis-Filho, J. S. & Pusztai, L. Gene expression profiling in breast cancer: classification, prognostication, and prediction. Lancet 378, 1812–1823 (2011).

    Article  CAS  Google Scholar 

  67. Weigelt, B., Pusztai, L., Ashworth, A. & ReisFilho, J. S. Challenges translating breast cancer gene signatures into the clinic. Nat. Rev. Clin. Oncol. 9, 58–64 (2012).

    Article  CAS  Google Scholar 

  68. Martín, M. et al. PAM50 proliferation score as a predictor of weekly paclitaxel benefit in breast cancer. Breast Cancer Res. Treat. 138, 457–466 (2013).

    Article  Google Scholar 

  69. Pfisterer, J. et al. DNA flow cytometry in node-positive breast cancer. Prognostic value and correlation with morphologic and clinical factors. Anal. Quant. Cytol. Histol. 17, 406–412 (1995).

    CAS  PubMed  Google Scholar 

  70. Ruibal, A. et al. Histological grade in breast cancer: association with clinical and biological features in a series of 229 patients. Int. J. Biol. Markers 16, 56–61 (2001).

    Article  CAS  Google Scholar 

  71. Cajulis, R. S., Kotliar, S., Haines, G. K., Frias-Hidvegi, D. & O'Gorman, M. Comparative study of interphase cytogenetics, flow cytometric analysis, and nuclear grade of fine-needle aspirates of breast carcinoma. Diagn. Cytopathol. 11, 151–158 (1994).

    Article  CAS  Google Scholar 

  72. Auer, G. U., Fallenius, A. G., Erhardt, K. Y. & Sundelin, B. S. Progression of mammary adenocarcinomas as reflected by nuclear DNA content. Cytometry 5, 420–425 (1984).

    Article  CAS  Google Scholar 

  73. Fallenius, A. G., Auer, G. U. & Carstensen, J. M. Prognostic significance of DNA measurements in 409 consecutive breast cancer patients. Cancer 62, 331–341 (1988).

    Article  CAS  Google Scholar 

  74. Fallenius, A. G., Franzén, S. A. & Auer, G. U. Predictive value of nuclear DNA content in breast cancer in relation to clinical and morphologic factors. A retrospective study of 227 consecutive cases. Cancer 62, 521–530 (1988).

    Article  CAS  Google Scholar 

  75. Speicher, M. R. & Carter, N. P. The new cytogenetics: blurring the boundaries with molecular biology. Nat. Rev. Genet. 6, 782–792 (2005).

    Article  CAS  Google Scholar 

  76. Darzynkiewicz, Z., Halicka, H. D. & Zhao, H. Analysis of cellular DNA content by flow and laser scanning cytometry. Adv. Exp. Med. Biol. 676, 137–147 (2010).

    Article  CAS  Google Scholar 

  77. Pinkel, D. & Albertson, D. G. Array comparative genomic hybridization and its applications in cancer. Nat. Genet. 37 (Suppl.), S11–S17 (2005).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge Judith Bliss (Cancer Research UK Section of Clinical Trials, The Institute of Cancer Research, Sutton, UK), David Endesfelder (Helmholtz Zentrum München, Neuherberg, Germany), Nicolai Birkbak (Centre for Biological Sequence Analysis, Technical University of Denmark, Lyngby, Denmark), Ian O. Ellis (University of Nottingham, Department of Histopathology, Nottingham City Hospital, Nottingham, UK), Andy Hanby (Leeds Institute of Molecular Medicine, St James's University Hospital, Leeds, UK), Ian Tomlinson (Wellcome Trust Centre for Human Genetics, Oxford, UK), Maik Kschischo (University of Applied Sciences, Mathematics and Techniques, Remagen, Germany), Janina Kulka (2nd Department of Pathology, Semmelweis University, Budapest, Hungary), Zoltan Szallasi (Centre for Biological Sequence Analysis, Technical University of Denmark, Lyngby, Denmark), Andrea L. Richardson (Dana–Farber Cancer Institute, Boston, USA), Andrew Rowan (Translational Cancer Therapeutics Laboratory, Cancer Research UK, London Research Institute, London, UK) and members of the TRANS–TACT consortium for helpful advice during preparation of the manuscript. The authors would also like to acknowledge Rebecca Burrell and Nicholas McGranahan for help in preparing the article figure. C. Swanton is supported by the Breast Cancer Research Foundation, Medical Research Council UK and Cancer Research UK.

Author information

Authors and Affiliations

Authors

Contributions

R. P. A'Hern and M. Jamal-Hanjani contributed equally to the preparation of the manuscript. R. P. A'Hern, M. Jamal-Hanjani, J. S. Reis-Filho and C. Swanton researched the data for the article and wrote the manuscript. All authors contributed to a discussion of the article's content and edited the manuscript before submission.

Corresponding authors

Correspondence to Roger P. A'Hern or Charles Swanton.

Supplementary information

Supplementary Box 1

Calculating the number needed to treat with taxane-based chemotherapy to save one breast cancer death (DOC 32 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

A'Hern, R., Jamal-Hanjani, M., Szász, A. et al. Taxane benefit in breast cancer—a role for grade and chromosomal stability. Nat Rev Clin Oncol 10, 357–364 (2013). https://doi.org/10.1038/nrclinonc.2013.67

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrclinonc.2013.67

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer