Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Adaptive designs for dual-agent phase I dose-escalation studies

Abstract

Anticancer agents used in combination are fundamental to successful cancer treatment, particularly in a curative setting. For dual-agent phase I trials, the goal is to identify drug doses and schedules for further clinical testing. However, current methods for establishing the recommended phase II dose for agents in combination can fail to fully explore drug interactions. With increasing numbers of anticancer drugs requiring testing, new adaptive model-based trial designs that improve on current practice have been proposed, although uptake has been minimal. We describe the methods available and discuss some of the opportunities and challenges faced in dual-agent phase I trials, as well as giving examples of trials in which adaptive designs have been implemented successfully. Improving the design and execution of phase I trials of drug combinations critically relies on collaboration between the statistical and clinical communities to facilitate the implementation of adaptive, model-based designs.

Key Points

  • Combination therapy is the mainstay of life-prolonging cancer treatments and increasingly uses both traditional cytotoxic and targeted agents

  • Standard rule-based methods for dual-agent clinical trial design have considerable limitations, including slow dose-escalation and that they only consider the outcome of the last cohort to guide escalation

  • Adaptive model-based clinical trial designs can be more accurate in recommending combinations to take forward into phase II trials and provide greater flexibility for investigators

  • Additional features of model-based designs can be extended to include measurements of chronic toxicity, efficacy, pharmacokinetics and pharmacodynamics, which can be particularly attractive in trials of targeted agents

  • Successful examples of model-based designs in practice exist and their further use is strongly encouraged

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Example of a 2D dose surface formed by drug A and drug B.
Figure 2: Mean dose–toxicity relationship for an example trial using the continual reassessment method before the trial begins (blue line), after five patients (orange line) and after 25 patients at the end of the trial (purple line).
Figure 3: Examples of dose-escalation studies using a | standard method of dose escalation, with drug A fixed at its RP2D when administered alone (RP2DA), and b | exploration of full dose surface to find possible RP2D combinations.
Figure 4: Example of a 3 + 3 + 3 escalation study.
Figure 5: Selection of three RP2D combinations based on an example trial using a known model.31
Figure 6: Illustration of a simple dose combination grid, showing all possible simple orders that satisfy the known partial ordering of dose combinations with respect to toxicity.
Figure 7: Dose grid and zones.71

Similar content being viewed by others

References

  1. Marusyk, A., Almendro, V. & Polyak, K. Intra-tumour heterogeneity: a looking glass for cancer? Nat. Rev. Cancer 12, 323–334 (2012).

    Article  CAS  PubMed  Google Scholar 

  2. Dancey, J. E. & Chen, H. X. Strategies for optimizing combinations of molecularly targeted anticancer agents. Nat. Rev. Drug Discov. 5, 649–659 (2006).

    Article  CAS  PubMed  Google Scholar 

  3. Masters, J. R. & Köberle, B. Curing metastatic cancer: lessons from testicular germ-cell tumours. Nat. Rev. Cancer 3, 517–525 (2003).

    Article  CAS  PubMed  Google Scholar 

  4. Meropol, N. J., Kris, M. G. & Winer, E. P. The American Society of Clinical Oncology's blueprint for transforming clinical and translational cancer research. J. Clin. Oncol. 30, 690–691 (2011).

    Article  Google Scholar 

  5. Park, S. R., Davis, M., Doroshow, J. H. & Kummar, S. Safety and feasibility of targeted agent combinations in solid tumours. Nat. Rev. Clin. Oncol. 10, 154–168 (2013).

    Article  CAS  PubMed  Google Scholar 

  6. Al-Lazikani, B., Banerji, U. & Workman, P. Combinatorial drug therapy for cancer in the post-genomic era. Nat. Biotechnol. 30, 679–692 (2012).

    Article  CAS  PubMed  Google Scholar 

  7. Dragalin, V. Adaptive designs: terminology and classification. Drug Inf. J. 40, 425–435 (2006).

    Article  Google Scholar 

  8. Sweeting, M. J. & Mander, A. P. Escalation strategies for combination therapy phase I trials. Pharm. Stat. 11, 258–266 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  9. Berry, D. A. Adaptive clinical trials in oncology. Nat. Rev. Clin. Oncol. 9, 199–207 (2011).

    Article  PubMed  CAS  Google Scholar 

  10. Ivy, S. P., Siu, L. L., Garrett-Mayer, E. & Rubinstein, L. Approaches to phase 1 clinical trial design focused on safety, efficiency, and selected patient populations: a report from the clinical trial design task force of the national cancer institute investigational drug steering committee. Clin. Cancer Res. 16, 1726–1736 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  11. LoRusso, P. M., Boerner, S. A. & Seymour, L. An overview of the optimal planning, design, and conduct of phase I studies of new therapeutics. Clin. Cancer Res. 16, 1710–1718 (2010).

    Article  CAS  PubMed  Google Scholar 

  12. Le Tourneau, C., Lee, J. J. & Siu, L. L. Dose escalation methods in phase I cancer clinical trials. J. Natl Cancer Inst. 101, 708–720 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Babb, J. S. & Rogatko, A. In Advances in Clinical Trial Biostatistics (ed. Gellar, N. L.) 1–40 (CRC Press, 2003).

    Google Scholar 

  14. Storer, B. E. Design and analysis of phase I clinical trials. Biometrics 45, 925–937 (1989).

    Article  CAS  PubMed  Google Scholar 

  15. Faries, D. Practical modifications of the continual reassessment method for phase I cancer clinical trials. J. Biopharm. Stat. 4, 147–164 (1994).

    Article  CAS  PubMed  Google Scholar 

  16. O'Quigley, J. & Reiner, E. A stopping rule for the continuous reassessment method. Biometrika 85, 741–748 (1998).

    Article  Google Scholar 

  17. Zohar, S. & Chevret, S. The continual reassessment method: comparison of Bayesian stopping rules for dose-ranging studies. Stat. Med. 20, 2827–2843 (2001).

    Article  CAS  PubMed  Google Scholar 

  18. Cheung, Y. K. & Chappell, R. Sequential designs for phase I clinical trials with late-onset toxicities. Biometrics 56, 1177–1182 (2000).

    Article  CAS  PubMed  Google Scholar 

  19. Thall, P. F. & Lee, S. J. Practical model-based dose-finding in phase I clinical trials: methods based on toxicity. Int. J. Gynecol. Cancer 13, 251–261 (2003).

    Article  CAS  PubMed  Google Scholar 

  20. O'Quigley, J., Pepe, M. & Fisher, L. Continual reassessment method: a practical design for phase 1 clinical trials in cancer. Biometrics 46, 33–48 (1990).

    Article  CAS  PubMed  Google Scholar 

  21. Carter, S. in The Design of Clinical Trials in Cancer Therapy (ed. Staquet, M.) 242–289 (Futura Publishing Co., 1972).

    Google Scholar 

  22. Babb, J., Rogatko, A. & Zacks, S. Cancer phase I clinical trials: efficient dose escalation with overdose control. Stat. Med. 17, 1103–1120 (1998).

    Article  CAS  PubMed  Google Scholar 

  23. O'Quigley, J. & Zohar, S. Experimental designs for phase I and phase I/II dose-finding studies. Br. J. Cancer 94, 609–613 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Kang, S.-H. & Ahn, C. W. An investigation of the traditional algorithm-based designs for phase 1 cancer clinical trials. Drug Inf. J. 36, 865–873 (2002).

    Article  Google Scholar 

  25. Iasonos, A. et al. The impact of non-drug-related toxicities on the estimation of the maximum tolerated dose in phase I trials. Clin. Cancer Res. 18, 5179–5187 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Braun, T. M. & Alonzo, T. A. Beyond the 3+3 method: expanded algorithms for dose- escalation in phase I oncology trials of two agents. Clin. Trials 8, 247–259 (2011).

    Article  PubMed  Google Scholar 

  27. Flournoy, N. in Case Studies in Bayesian Statistics (eds Gatsonis, C., Hodges, J. S., Kass, R. E. & Singpurwalla, N. D.) 324–336 (Springer-Verlag, 1993).

    Book  Google Scholar 

  28. Legedza, A. T. & Ibrahim, J. G. Heterogeneity in phase I clinical trials: prior elicitation and computation using the continual reassessment method. Stat. Med. 20, 867–882 (2001).

    Article  CAS  PubMed  Google Scholar 

  29. Speigelhalter, D. J., Abrams, K. R. & Myles, J. P. Bayesian Approaches to Clinical Trials and Health-Care Evaluation (John Wiley & Sons, 2004).

    Google Scholar 

  30. Rosenberger, W. F., Canfield, G. C., Perevozskaya, I., Haines, L. M. & Hausner, P. Development of interactive software for Bayesian optimal phase 1 clinical trial design. Drug Inf. J. 39, 89–98 (2005).

    Article  Google Scholar 

  31. Thall, P. F., Millikan, R. E., Mueller, P. & Lee, S. J. Dose-finding with two agents in phase I oncology trials. Biometrics 59, 487–496 (2003).

    Article  PubMed  Google Scholar 

  32. Thall, P. F. Bayesian models and decision algorithms for complex early phase clinical trials. Stat. Sci. 25, 227–244 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  33. Iasonos, A. & O'Quigley, J. Interplay of priors and skeletons in two-stage continual reassessment method. Stat. Med. 31, 4321–4336 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  34. Goodman, S. N., Zahurak, M. L. & Piantadosi, S. Some practical improvements in the continual reassessment method for phase I studies. Stat. Med. 14, 1149–1161 (1995).

    Article  CAS  PubMed  Google Scholar 

  35. Paoletti, X. et al. Using the continual reassessment method: lessons learned from an EORTC phase I dose finding study. Eur. J. Cancer 42, 1362–1368 (2006).

    Article  PubMed  Google Scholar 

  36. Mick, R. & Ratain, M. J. Model-guided determination of maximum tolerated dose in phase I clinical trials: evidence for increased precision. J. Natl Cancer Inst. 85, 217–223 (1993).

    Article  CAS  PubMed  Google Scholar 

  37. Piantadosi, S. & Liu, G. Improved designs for dose escalation studies using pharmacokinetic measurements. Stat. Med. 15, 1605–1618 (1996).

    Article  CAS  PubMed  Google Scholar 

  38. Neuenschwander, B., Branson, M. & Gsponer, T. Critical aspects of the Bayesian approach to phase I cancer trials. Stat. Med. 27, 2420–2439 (2008).

    Article  PubMed  Google Scholar 

  39. Braun, T. M., Thall, P. F., Nguyen, H. & de Lima, M. Simultaneously optimizing dose and schedule of a new cytotoxic agent. Clin. Trials 4, 113–124 (2007).

    Article  PubMed  Google Scholar 

  40. Normolle, D. & Lawrence, T. Designing dose-escalation trials with late-onset toxicities using the time-to-event continual reassessment method. J. Clin. Oncol. 24, 4426–4433 (2006).

    Article  CAS  PubMed  Google Scholar 

  41. Tevaarwerk, A. et al. Phase I study of continuous MKC-1 in patients with advanced or metastatic solid malignancies using the modified Time-to-Event Continual Reassessment Method (TITE-CRM) dose escalation design. Invest. New Drugs 30, 1039–1045 (2012).

    Article  CAS  PubMed  Google Scholar 

  42. Parulekar, W. R. & Eisenhauer, E. A. Phase I trial design for solid tumor studies of targeted, non-cytotoxic agents: theory and practice. J. Natl Cancer Inst. 96, 990–997 (2004).

    Article  CAS  PubMed  Google Scholar 

  43. Fox, E., Curt, G. A. & Balis, F. M. Clinical trial design for target-based therapy. Oncologist 7, 401–409 (2002).

    Article  CAS  PubMed  Google Scholar 

  44. Mandrekar, S. J., Qin, R. & Sargent, D. J. Model-based phase I designs incorporating toxicity and efficacy for single and dual agent drug combinations: methods and challenges. Stat. Med. 29, 1077–1083 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  45. Rodon, J., Perez, J. & Kurzrock, R. Combining targeted therapies: practical issues to consider at the bench and bedside. Oncologist 15, 37–50 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  46. U. S. Department of Health & Human Services, National Institutes of Health, National Cancer Institute. Common terminology criteria for adverse events (CTCAE) version 4.0 National Institutes of Health[online], (2009).

  47. Lee, S. M., Hershman, D. L., Martin, P., Leonard, J. P. & Cheung, Y. K. Toxicity burden score: a novel approach to summarize multiple toxic effects. Ann. Oncol. 23, 537–541 (2012).

    Article  CAS  PubMed  Google Scholar 

  48. Yuan, Z., Chappell, R. & Bailey, H. The continual reassessment method for multiple toxicity grades: a Bayesian quasi-likelihood approach. Biometrics 63, 173–179 (2007).

    Article  CAS  PubMed  Google Scholar 

  49. Simon, R. et al. Accelerated titration designs for phase I clinical trials in oncology. J. Natl Cancer Inst. 89, 1138–1147 (1997).

    Article  CAS  PubMed  Google Scholar 

  50. Lee, S. M., Cheng, B. & Cheung, Y. K. Continual reassessment method with multiple toxicity constraints. Biostatistics 12, 386–398 (2011).

    Article  PubMed  Google Scholar 

  51. Van Meter, E. M., Garrett-Mayer, E. & Bandyopadhyay, D. Proportional odds model for dose-finding clinical trial designs with ordinal toxicity grading. Stat. Med. 30, 2070–2080 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  52. Gasparini, M., Bailey, S. & Neuenschwander, B. Bayesian dose finding in oncology for drug combinations by copula regression. J. R. Stat. Soc. Ser. C Appl. Stat. 59, 543–544 (2010).

    Article  Google Scholar 

  53. Rosenberger, W. F. & Haines, L. M. Competing designs for phase I clinical trials: a review. Stat. Med. 21, 2757–2770 (2002).

    Article  PubMed  Google Scholar 

  54. Rogatko, A. et al. Translation of innovative designs into phase I trials. J. Clin. Oncol. 25, 4982–4986 (2007).

    Article  PubMed  Google Scholar 

  55. Onar, A., Kocak, M. & Boyett, J. M. Continual reassessment method vs. traditional empirically based design: modifications motivated by phase I trials in pediatric oncology by the Pediatric Brain Tumor Consortium. J. Biopharm. Stat. 19, 437–455 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  56. Onar-Thomas, A. & Xiong, Z. A simulation-based comparison of the traditional method, Rolling-6 design and a frequentist version of the continual reassessment method with special attention to trial duration in pediatric phase I oncology trials. Contemp. Clin. Trials 31, 259–270 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  57. Hamberg, P. & Verweij, J. Phase I drug combination trial design: walking the tightrope. J. Clin. Oncol. 27, 4441–4443 (2009).

    Article  PubMed  Google Scholar 

  58. Lee, B. L. & Fan, S. K. A two-dimensional search algorithm for dose-finding trials of two agents. J. Biopharm. Stat. 22, 802–818 (2012).

    Article  PubMed  Google Scholar 

  59. Lee, S. J. et al. Optimal modeling for phase I design of a two drug combination-results of a phase I study of cisplatin with 9-nitrocamptothecin. Invest. New Drugs 26, 541–551 (2008).

    Article  CAS  PubMed  Google Scholar 

  60. Wang, K. & Ivanova, A. Two-dimensional dose finding in discrete dose space. Biometrics 61, 217–222 (2005).

    Article  PubMed  Google Scholar 

  61. Kramar, A., Lebecq, A. & Candalh, E. Continual reassessment methods in phase I trials of the combination of two drugs in oncology. Stat. Med. 18, 1849–1864 (1999).

    Article  CAS  PubMed  Google Scholar 

  62. Yin, G. & Yuan, Y. A latent contingency table approach to dose finding for combinations of two agents. Biometrics 65, 866–875 (2009).

    Article  PubMed  Google Scholar 

  63. Yin, G. & Yuan, Y. Bayesian dose finding in oncology for drug combinations by copula regression. J. R. Stat. Soc. Ser. C Appl. Stat. 58, 211–224 (2009).

    Article  Google Scholar 

  64. Su, Z. A two-stage algorithm for designing phase I cancer clinical trials for two new molecular entities. Contemp. Clin. Trials 31, 105–107 (2010).

    Article  CAS  PubMed  Google Scholar 

  65. Yuan, Y. & Yin, G. Bayesian phase I/II adaptively randomized oncology trials with combined drugs. Ann. Appl. Stat. 5, 924–942 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  66. MD Anderson Cancer Center and Tessella. ToxFinder v1.1.0. Two-agent toxicity-based dose finder[online], (2005).

  67. Bailey, S., Neuenschwander, B., Laird, G. & Branson, M. A Bayesian case study in oncology phase I combination dose-finding using logistic regression with covariates. J. Biopharm. Stat. 19, 469–484 (2009).

    Article  PubMed  Google Scholar 

  68. Conaway, M. R., Dunbar, S. & Peddada, S. D. Designs for single- or multiple-agent phase I trials. Biometrics 60, 661–669 (2004).

    Article  PubMed  Google Scholar 

  69. Wages, N. A., Conaway, M. R. & O'Quigley, J. Continual reassessment method for partial ordering. Biometrics 67, 1555–1563 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  70. Wages, N. A., Conaway, M. R. & O'Quigley, J. Dose-finding design for multi-drug combinations. Clin. Trials 8, 380–389 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  71. Huang, X., Biswas, S., Oki, Y., Issa, J. P. & Berry, D. A. A parallel phase I/II clinical trial design for combination therapies. Biometrics 63, 429–436 (2007).

    Article  CAS  PubMed  Google Scholar 

  72. Biswas, S., Liu, D. D., Lee, J. J. & Berry, D. A. Bayesian clinical trials at the University of Texas, M. D. Anderson Cancer Center. Clinical Trials 6, 205–216 (2009).

    Article  PubMed  Google Scholar 

  73. Mandrekar, S. J., Cui, Y. & Sargent, D. J. An adaptive phase I design for identifying a biologically optimal dose for dual agent drug combinations. Stat. Med. 26, 2317–2330 (2007).

    Article  PubMed  Google Scholar 

  74. Zhang, W., Sargent, D. J. & Mandrekar, S. An adaptive dose-finding design incorporating both toxicity and efficacy. Stat. Med. 25, 2365–2383 (2006).

    Article  PubMed  Google Scholar 

  75. Whitehead, J., Thygesen, H. & Whitehead, A. Bayesian procedures for phase I/II clinical trials investigating the safety and efficacy of drug combinations. Stat. Med. 30, 1952–1970 (2011).

    Article  PubMed  Google Scholar 

  76. Whitehead, J. et al. A novel phase I/IIa design for early phase oncology studies and its application in the evaluation of MK-0752 in pancreatic cancer. Stat. Med. 31, 1931–1943 (2012).

    Article  PubMed  Google Scholar 

  77. Houede, N., Thall, P. F., Nguyen, H., Paoletti, X. & Kramar, A. Utility-based optimization of combination therapy using ordinal toxicity and efficacy in phase I/II trials. Biometrics 66, 532–540 (2010).

    Article  PubMed  Google Scholar 

  78. Nguyen, H. U2OET. https://biostatistics.mdanderson.org/SoftwareDownload/SingleSoftware.aspx?Software_Id=77 (2009).

  79. Dragalin, V., Fedorov, V. & Wu, Y. Adaptive designs for selecting drug combinations based on efficacy–toxicity response. J. Stat. Plan. Inference 138, 352–373 (2008).

    Article  Google Scholar 

  80. Braun, T. M. & Wang, S. A hierarchical Bayesian design for phase I trials of novel combinations of cancer therapeutic agents. Biometrics 66, 805–812 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  81. Gasparini, M. General classes of multiple binary regression models in dose finding problems for combination therapies. J. R. Stat. Soc. Ser. C Appl. Stat. 62, 115–133 (2013).

    Article  Google Scholar 

  82. Yuan, Y. & Yin, G. Bayesian hybrid dose-finding design in phase I oncology clinical trials. Stat. Med. 30, 2098–2108 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  83. U. S. Food and Drug Administration. Guidance for industry: codevelopment of two or more unmarketed investigational drugs for use in combination [online], (2010).

  84. Division of Quantitative Sciences - Department of Biostatistics, The University of Texas MD Anderson Cancer Center. Software Download Site[online],.

  85. Berry, S. M., Carlin, B. P., Lee, J. J. & Muller, P. Bayesian Adaptive Methods for Clinical Trials (CRC Press, Boca Raton, 2010).

    Book  Google Scholar 

  86. Berry, S. M., Carlin, B. P., Lee, J. J. & Muller, P. Online supplementary information for Bayesian Adaptive Methods for Clinical Trials (Chapman Hall/CRC Press, 2010) http://www.biostat.umn.edu/~brad/data3.html.

    Book  Google Scholar 

  87. U. S. Food and Drug Administration. Guidance for industry: adaptive design clinical trials for drugs and biologics [online], (2010).

  88. European Medicines Agency Committee for Medicinal Products for Human Use. Reflection paper on methodological issues in confirmatory clinical trials planned with an adaptive design [online], (2007).

  89. Chevret, S. Bayesian adaptive clinical trials: a dream for statisticians only? Stat. Med. 31, 1002–1013 (2012).

    Article  PubMed  Google Scholar 

  90. Gaydos, B. et al. Adaptive dose-response studies. Drug Inf. J. 40, 451–461 (2006).

    Article  Google Scholar 

  91. Gaydos, B. et al. Perspective on adaptive designs: 4 years Europeans Medicines Agency reflection paper, 1 year draft US FDA guidance–where are we now? Clin. Invest. 2, 235–240 (2012).

    Article  Google Scholar 

  92. Patlak, M., Balogh, E. & Nass, S. J. Facilitating Collaborations to Develop Combination Investigational Cancer Therapies: Workshop Summary 11–36 (The National Academies Press, 2012).

    Book  Google Scholar 

  93. Gönen, M. Bayesian clinical trials: no more excuses. Clin. Trials 6, 203–204 (2009).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the referees for their helpful comments and contribution to the manuscript. J. A. Harrington and G. M. Wheeler are both PhD students whose research is funded by Cancer Research UK and the Medical Research Council UK, respectively. G. M. Wheeler, A. P. Mander and M. J. Sweeting are supported by the Medical Research Council (Grant number G0800860).

Author information

Authors and Affiliations

Authors

Contributions

J. A. Harrington and G. M. Wheeler contributed equally to the research of the data for the article, discussion of the article content, writing of the manuscript and review of the manuscript before submission. The remaining authors contributed to the discussion of the article content and edited the manuscript before submission.

Corresponding author

Correspondence to Jennifer A. Harrington.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Harrington, J., Wheeler, G., Sweeting, M. et al. Adaptive designs for dual-agent phase I dose-escalation studies. Nat Rev Clin Oncol 10, 277–288 (2013). https://doi.org/10.1038/nrclinonc.2013.35

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrclinonc.2013.35

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing