Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Surgery for NSCLC in the era of personalized medicine

Abstract

The discovery in 2004 of activating mutations in the EGFR gene opened the era of personalized medicine in thoracic oncology. Treatment with drugs that target EGFR typically results in dramatic tumour response compared with conventional chemotherapy in patients with non-small-cell lung cancer. Subsequently, newer driver oncogenes such as ALK, ROS1 and RET have been discovered. Nevertheless, surgery has become safer and less invasive in the past 10–15 years. In the era of personalized medicine, thoracic surgeons have to think about their evolving roles. In this article, we discuss four topics relevant to this issue. Firstly, the value of surgical specimens as opposed to biopsy specimens for further understanding tumour biology is discussed. Secondly, extended indication of surgery in the era of targeted therapy is considered. Thirdly, in clinical trials that examine neoadjuvant therapy in patients selected by appropriate biomarkers, the important role of surgeons is highlighted. Finally, the possibility of personalizing the surgical procedure itself according to lung cancer subtypes defined by biomarkers is reviewed.

Key Points

  • Non-small-cell lung cancer (NSCLC)—especially adenocarcinoma—can be subdivided according to the presence of mutated driver oncogenes (for example, EGFR and ALK), which are crucial to efficient treatment selection

  • Surgery for NSCLC has become considerably safer and less invasive since the advent of optical, stapling and energy devices and progress in perioperative management

  • Surgical specimens are valuable for studying the genetics of this cancer type, which was shown to have more genetic alterations and to be more heterogeneous than previously thought

  • Surgery can be an efficient measure of treating patients with acquired resistance to targeted therapy

  • Surgery combined with drug therapy given either postoperatively or preoperatively for patients selected by distinct biomarkers is an attractive approach that is being tested

  • Personalization using biomarkers of surgical procedures remains an important subject for future research

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Various classes of tumour heterogeneity in adenocarcinoma of the lung.
Figure 2: Phylogenetic relationships of the tumour regions as deduced from deep-sequencing analysis of renal cell carcinoma in two patients treated with everolimus.
Figure 3: Role of surgery in managing resistance in the treatment of lung cancer.

Similar content being viewed by others

References

  1. Travis, W. D. et al. International Association for the Study of Lung Cancer/American Thoracic Society/European Respiratory Society: international multidisciplinary classification of lung adenocarcinoma. J. Thorac. Oncol. 6, 244–285 (2011).

    Article  Google Scholar 

  2. Pao, W. & Girard, N. New driver mutations in non-small-cell lung cancer. Lancet Oncol. 12, 175–180 (2011).

    Article  CAS  Google Scholar 

  3. Maemondo, M. et al. Gefitinib or chemotherapy for non-small-cell lung cancer with mutated EGFR. N. Engl. J. Med. 362, 2380–2388 (2010).

    Article  CAS  Google Scholar 

  4. Mitsudomi, T. et al. Gefitinib versus cisplatin plus docetaxel in patients with non-small-cell lung cancer harbouring mutations of the epidermal growth factor receptor (WJTOG3405): an open label, randomised phase 3 trial. Lancet Oncol. 11, 121–128 (2010).

    Article  CAS  Google Scholar 

  5. Zhou, C. et al. Erlotinib versus chemotherapy as first-line treatment for patients with advanced EGFR mutation-positive non-small cell lung cancer (OPTIMAL, CTONG-0802): a multicentre, open-label, randomized, phase 3 study. Lancet Oncol. 12, 735–742 (2011).

    Article  CAS  Google Scholar 

  6. Rosell, R. et al. Erlotinib versus standard chemotherapy as first-line treatment for European patients with advanced EGFR mutation-positive non-small-cell lung cancer (EURTAC): a multicentre, open-label, randomised phase 3 trial. Lancet Oncol. 13, 239–246 (2012).

    Article  CAS  Google Scholar 

  7. Yang, J. C.-H. et al. LUX-Lung 3: A randomized, open-label, phase III study of afatinib versus pemetrexed and cisplatin as first-line treatment for patients with advanced adenocarcinoma of the lung harboring EGFR-activating mutations [abstract]. J. Clin. Oncol. 30 (Suppl.), aLBA7500 (2012).

    Article  Google Scholar 

  8. Schiller, J. H. et al. Comparison of four chemotherapy regimens for advanced non-small-cell lung cancer. N. Engl. J. Med. 346, 92–98 (2002).

    Article  CAS  Google Scholar 

  9. Shaw, A. T. et al. Phase III study of crizotinib versus pemetrexed or docetaxel chemotherapy in patients with advanced ALK-positive non-small cell lung cancer (NSCLC) (PROFILE 1007) [abstract]. Ann. Oncol. 23 (Suppl. 9), ixe21 (2012).

    Google Scholar 

  10. Sawabata, N. et al. Japanese lung cancer registry study of 11,663 surgical cases in 2004: demographic and prognosis changes over decade. J. Thorac. Oncol. 6, 1229–1235 (2011).

    Article  Google Scholar 

  11. Kuwano, H., Amano, J. & Yokomise, H. Thoracic and cardiovascular surgery in Japan during 2010: annual report by The Japanese Association for Thoracic Surgery. Gen. Thorac. Cardiovasc. Surg. 60, 680–708 (2012).

    Article  Google Scholar 

  12. Yan, T. D., Black, D., Bannon, P. G. & McCaughan, B. C. Systematic review and meta-analysis of randomized and nonrandomized trials on safety and efficacy of video-assisted thoracic surgery lobectomy for early-stage non-small-cell lung cancer. J. Clin. Oncol. 27, 2553–2562 (2009).

    Article  Google Scholar 

  13. Park, B. J., Zhang, H., Rusch, V. W. & Amar, D. Video-assisted thoracic surgery does not reduce the incidence of postoperative atrial fibrillation after pulmonary lobectomy. J. Thorac. Cardiovasc. Surg. 133, 775–779 (2007).

    Article  Google Scholar 

  14. Martin-Ucar, A. E. et al. The beneficial effects of specialist thoracic surgery on the resection rate for non-small-cell lung cancer. Lung Cancer 46, 227–232 (2004).

    Article  Google Scholar 

  15. Rivera, M. P. & Mehta, A. C. Initial diagnosis of lung cancer: ACCP evidence-based clinical practice guidelines (2nd edition). Chest 132 (Suppl.), 131–148 (2007).

    Article  Google Scholar 

  16. Gerlinger, M. et al. Intratumor heterogeneity and branched evolution revealed by multiregion sequencing. N. Engl. J. Med. 366, 883–892 (2012).

    Article  CAS  Google Scholar 

  17. Tomiyama, N. et al. CT-guided needle biopsy of lung lesions: a survey of severe complication based on 9783 biopsies in Japan. Eur. J. Radiol. 59, 60–64 (2006).

    Article  Google Scholar 

  18. Imielinski, M. et al. Mapping the hallmarks of lung adenocarcinoma with massively parallel sequencing. Cell 150, 1107–1120 (2012).

    Article  CAS  Google Scholar 

  19. The Cancer Genome Atlas Research Network. Comprehensive genomic characterization of squamous cell lung cancers. Nature 489, 519–525 (2012).

  20. Kim, W. Y. & Kaelin, W. G. Role of VHL gene mutation in human cancer. J. Clin. Oncol. 22, 4991–5004 (2004).

    Article  CAS  Google Scholar 

  21. Schmid, K. et al. EGFR/KRAS/BRAF mutations in primary lung adenocarcinomas and corresponding locoregional lymph node metastases. Clin. Cancer Res. 15, 4554–4560 (2009).

    Article  CAS  Google Scholar 

  22. Park, S. et al. Discordance of molecular biomarkers associated with epidermal growth factor receptor pathway between primary tumors and lymph node metastasis in non-small cell lung cancer. J. Thorac. Oncol. 4, 809–815 (2009).

    Article  Google Scholar 

  23. Chang, Y. L., Wu, C. T., Shih, J. Y. & Lee, Y. C. Comparison of p53 and epidermal growth factor receptor gene status between primary tumors and lymph node metastases in non-small cell lung cancers. Ann. Surg. Oncol. 18, 543–550 (2011).

    Article  Google Scholar 

  24. Chen, Z. Y. et al. EGFR mutation heterogeneity and the mixed response to EGFR tyrosine kinase inhibitors of lung adenocarcinomas. Oncologist 17, 978–985 (2012).

    Article  CAS  Google Scholar 

  25. Nakano, H. et al. Heterogeneity of epidermal growth factor receptor mutations within a mixed adenocarcinoma lung nodule. Lung Cancer 60, 136–140 (2008).

    Article  Google Scholar 

  26. Sakurada, A., Lara-Guerra, H., Liu, N., Shepherd, F. A. & Tsao, M. S. Tissue heterogeneity of EGFR mutation in lung adenocarcinoma. J. Thorac. Oncol. 3, 527–529 (2008).

    Article  Google Scholar 

  27. Taniguchi, K., Okami, J., Kodama, K., Higashiyama, M. & Kato, K. Intratumor heterogeneity of epidermal growth factor receptor mutations in lung cancer and its correlation to the response to gefitinib. Cancer Sci. 99, 929–935 (2008).

    Article  CAS  Google Scholar 

  28. Yatabe, Y., Matsuo, K. & Mitsudomi, T. Heterogeneous distribution of EGFR mutations is extremely rare in lung adenocarcinoma. J. Clin. Oncol. 29, 2972–2977 (2011).

    Article  CAS  Google Scholar 

  29. Soh, J. et al. Oncogene mutations, copy number gains and mutant allele specific imbalance (MASI) frequently occur together in tumor cells. PLoS ONE 4, e7464 (2009).

    Article  Google Scholar 

  30. Yatabe, Y., Takahashi, T. & Mitsudomi, T. Epidermal growth factor receptor gene amplification is acquired in association with tumor progression of EGFR-mutated lung cancer. Cancer Res. 68, 2106–2111 (2008).

    Article  CAS  Google Scholar 

  31. Mitsudomi, T. & Yatabe, Y. Mutations of the epidermal growth factor receptor gene and related genes as determinants of epidermal growth factor receptor tyrosine kinase inhibitors sensitivity in lung cancer. Cancer Sci. 98, 1817–1824 (2007).

    Article  CAS  Google Scholar 

  32. Kosaka, T. et al. Analysis of epidermal growth factor receptor gene mutation in patients with non-small cell lung cancer and acquired resistance to gefitinib. Clin. Cancer Res. 12, 5764–5769 (2006).

    Article  CAS  Google Scholar 

  33. Sequist, L. V. et al. Genotypic and histological evolution of lung cancers acquiring resistance to EGFR inhibitors. Sci. Transl. Med. 3, 75ra26 (2011).

    Article  Google Scholar 

  34. Maheswaran, S. et al. Detection of mutations in EGFR in circulating lung-cancer cells. N. Engl. J. Med. 359, 366–377 (2008).

    Article  CAS  Google Scholar 

  35. Bivona, T. G. et al. FAS and NF-kappaB signalling modulate dependence of lung cancers on mutant EGFR. Nature 471, 523–526 (2011).

    Article  CAS  Google Scholar 

  36. Ng, K. P. et al. A common BIM deletion polymorphism mediates intrinsic resistance and inferior responses to tyrosine kinase inhibitors in cancer. Nat. Med. 18, 521–528 (2012).

    Article  CAS  Google Scholar 

  37. Faber, A. C. et al. BIM expression in treatment-naive cancers predicts responsiveness to kinase inhibitors. Cancer Discov. 1, 352–365 (2011).

    Article  CAS  Google Scholar 

  38. Cheung, H. W. et al. Amplification of CRKL induces transformation and epidermal growth factor receptor inhibitor resistance in human non-small cell lung cancers. Cancer Discov. 1, 608–625 (2011).

    Article  CAS  Google Scholar 

  39. Kobayashi, S. et al. EGFR mutation and resistance of non-small-cell lung cancer to gefitinib. N. Engl. J. Med. 352, 786–792 (2005).

    Article  CAS  Google Scholar 

  40. Pao, W. et al. Acquired resistance of lung adenocarcinomas to gefitinib or erlotinib is associated with a second mutation in the EGFR kinase domain. PLoS Med. 2, e73 (2005).

    Article  Google Scholar 

  41. Bean, J. et al. MET amplification occurs with or without T790M mutations in EGFR mutant lung tumors with acquired resistance to gefitinib or erlotinib. Proc. Natl Acad. Sci. USA 104, 20932–20937 (2007).

    Article  CAS  Google Scholar 

  42. Engelman, J. A. et al. MET amplification leads to gefitinib resistance in lung cancer by activating ERBB3 signaling. Science 316, 1039–1043 (2007).

    Article  CAS  Google Scholar 

  43. Suda, K., Mizuuchi, H., Maehara, Y. & Mitsudomi, T. Acquired resistance mechanisms to tyrosine kinase inhibitors in lung cancer with activating epidermal growth factor receptor mutation-diversity, ductility, and destiny. Cancer Metastasis Rev. 31, 807–814 (2012).

    Article  CAS  Google Scholar 

  44. Suda, K. et al. Reciprocal and complementary role of MET amplification and EGFR T790M mutation in acquired resistance to kinase inhibitors in lung cancer. Clin. Cancer Res. 16, 5489–5498 (2010).

    Article  CAS  Google Scholar 

  45. Scagliotti, G. V. et al. Phase III study comparing cisplatin plus gemcitabine with cisplatin plus pemetrexed in chemotherapy-naive patients with advanced-stage non-small-cell lung cancer. J. Clin. Oncol. 26, 3543–3551 (2008).

    Article  CAS  Google Scholar 

  46. Yamamoto, N. et al. Phase III study comparing second- and third-generation regimens with concurrent thoracic radiotherapy in patients with unresectable stage III non-small-cell lung cancer: West Japan Thoracic Oncology Group WJTOG0105. J. Clin. Oncol. 28, 3739–3745 (2010).

    Article  Google Scholar 

  47. Ohe, Y. et al. Randomized phase III study of cisplatin plus irinotecan versus carboplatin plus paclitaxel, cisplatin plus gemcitabine, and cisplatin plus vinorelbine for advanced non-small-cell lung cancer: Four-Arm Cooperative Study in Japan. Ann. Oncol. 18, 317–323 (2007).

    Article  CAS  Google Scholar 

  48. Peacock, C. D. & Watkins, D. N. Cancer stem cells and the ontogeny of lung cancer. J. Clin. Oncol. 26, 2883–2889 (2008).

    Article  CAS  Google Scholar 

  49. Jones, R. J., Matsui, W. H. & Smith, B. D. Cancer stem cells: are we missing the target? J. Natl Cancer Inst. 96, 583–585 (2004).

    Article  Google Scholar 

  50. Flanigan, R. C. et al. Cytoreductive nephrectomy in patients with metastatic renal cancer: a combined analysis. J. Urol. 171, 1071–1076 (2004).

    Article  Google Scholar 

  51. Yu, H. A. et al. Local therapy with continued EGFR tyrosine kinase inhibitor therapy as a treatment strategy in EGFR-mutant advanced lung cancers that have developed acquired resistance to EGFR tyrosine kinase inhibitors. J. Thorac. Oncol. 8, 346–351 (2013).

    Article  CAS  Google Scholar 

  52. Oxnard, G. R. et al. Acquired resistance to EGFR tyrosine kinase inhibitors in EGFR-mutant lung cancer: distinct natural history of patients with tumors harboring the T790M mutation. Clin. Cancer Res. 17, 1616–1622 (2011).

    Article  CAS  Google Scholar 

  53. Tomizawa, K. et al. Prognostic and predictive implications of HER2/ERBB2/neu gene mutations in lung cancers. Lung Cancer 74, 139–144 (2011).

    Article  Google Scholar 

  54. Takebe, N., Harris, P. J., Warren, R. Q. & Ivy, S. P. Targeting cancer stem cells by inhibiting Wnt, Notch, and Hedgehog pathways. Nat. Rev. Clin. Oncol. 8, 97–106 (2011).

    Article  CAS  Google Scholar 

  55. Weichselbaum, R. R. & Hellman, S. Oligometastases revisited. Nat. Rev. Clin. Oncol. 8, 378–382 (2011).

    Article  CAS  Google Scholar 

  56. Hellman, S. & Weichselbaum, R. R. Oligometastases. J. Clin. Oncol. 13, 8–10 (1995).

    Article  CAS  Google Scholar 

  57. Pastorino, U. et al. Long-term results of lung metastasectomy: prognostic analyses based on 5206 cases. The International Registry of Lung Metastases. J. Thorac. Cardiovasc. Surg. 113, 37–49 (1997).

    Article  CAS  Google Scholar 

  58. Hornbech, K., Ravn, J. & Steinbrüchel, D. A. Current status of pulmonary metastasectomy. Eur. J. Cardiothorac. Surg. 39, 955–962 (2011).

    Article  Google Scholar 

  59. Yano, T. et al. Prognostic impact of local treatment against postoperative oligometastases in non-small cell lung cancer. J. Surg. Oncol. 102, 852–855 (2010).

    Article  Google Scholar 

  60. Lussier, Y. A. et al. MicroRNA expression characterizes oligometastasis(es). PLoS ONE 6, e28650 (2011).

    Article  CAS  Google Scholar 

  61. Goldstraw, P. et al. Non-small-cell lung cancer. Lancet 378, 1727–1740 (2011).

    Article  Google Scholar 

  62. Pignon, J. P. et al. Lung adjuvant cisplatin evaluation: a pooled analysis by the LACE Collaborative Group. J. Clin. Oncol. 26, 3552–3559 (2008).

    Article  Google Scholar 

  63. Postel-Vinay, S. et al. The potential of exploiting DNA-repair defects for optimizing lung cancer treatment. Nat. Rev. Clin. Oncol. 9, 144–155 (2012).

    Article  CAS  Google Scholar 

  64. Dematteo, R. P. et al. Adjuvant imatinib mesylate after resection of localised, primary gastrointestinal stromal tumour: a randomised, double-blind, placebo-controlled trial. Lancet 373, 1097–1104 (2009).

    Article  CAS  Google Scholar 

  65. Goss, G. D. et al. A phase III randomized, double-blind, placebo-controlled trial of the epidermal growth factor receptor inhibitor gefitinb in completely resected stage IB-IIIA non-small cell lung cancer (NSCLC): NCIC CTG BR.19 [abstract]. J. Clin. Oncol. 28 (Suppl. 18), LBA7005 (2010).

    Article  Google Scholar 

  66. Kelly, K. et al. Phase III trial of maintenance gefitinib or placebo after concurrent chemoradiotherapy and docetaxel consolidation in inoperable stage III non-small-cell lung cancer: SWOG S0023. J. Clin. Oncol. 26, 2450–2456 (2008).

    Article  CAS  Google Scholar 

  67. D'Angelo, S. P. et al. Distinct clinical course of EGFR-mutant resected lung cancers: results of testing of 1118 surgical specimens and effects of adjuvant gefitinib and erlotinib. J. Thorac. Oncol. 7, 1815–1822 (2012).

    Article  CAS  Google Scholar 

  68. Janjigian, Y. Y. et al. Impact on disease-free survival of adjuvant erlotinib or gefitinib in patients with resected lung adenocarcinomas that harbor EGFR mutations. J. Thorac. Oncol. 6, 569–575 (2011).

    Article  Google Scholar 

  69. US National Library of Medicine. ClinicalTrials.gov[online], (2013).

  70. Tada, H. et al. Vinorelbine plus cisplatin versus gefitinib in resected non-small cell lung cancer haboring activating EGFR mutation (WJOG6410L) [abstract]. J. Clin. Oncol. 30 (Suppl.), TPS7110 (2012).

    Google Scholar 

  71. Altorki, N. et al. Phase II proof-of-concept study of pazopanib monotherapy in treatment-naive patients with stage I/II resectable non-small-cell lung cancer. J. Clin. Oncol. 28, 3131–3137 (2010).

    Article  CAS  Google Scholar 

  72. Takizawa, T. et al. Lymph node metastasis in small peripheral adenocarcinoma of the lung. J. Thorac. Cardiovasc. Surg. 116, 276–280 (1998).

    Article  CAS  Google Scholar 

  73. Asamura, H. et al. Lymph node involvement, recurrence, and prognosis in resected small, peripheral, non-small-cell lung carcinomas: are these carcinomas candidates for video-assisted lobectomy? J. Thorac. Cardiovasc. Surg. 111, 1125–1134 (1996).

    Article  CAS  Google Scholar 

  74. Ginsberg, R. J. & Rubinstein, L. V. Randomized trial of lobectomy versus limited resection for T1 N0 non-small cell lung cancer. Lung Cancer Study Group. Ann. Thorac. Surg. 60, 615–622 (1995).

    Article  CAS  Google Scholar 

  75. Suzuki, K. et al. A prospective radiological study of thin-section computed tomography to predict pathological noninvasiveness in peripheral clinical IA lung cancer (Japan Clinical Oncology Group 0201). J. Thorac. Oncol. 6, 751–756 (2011).

    Article  Google Scholar 

  76. Japan Clinical Oncology Group. JOCG [online], (2013).

  77. Larsen, J. E. & Minna, J. D. Molecular biology of lung cancer: clinical implications. Clin. Chest Med. 32, 703–740 (2011).

    Article  Google Scholar 

  78. Takeuchi, K. et al. RET, ROS1 and ALK fusions in lung cancer. Nat. Med. 18, 378–381 (2012).

    Article  CAS  Google Scholar 

  79. Toyooka, S., Kiura, K. & Mitsudomi, T. EGFR mutation and response of lung cancer to gefitinib. N. Engl. J. Med. 352, 2136; author reply 2136 (2005).

    Article  CAS  Google Scholar 

  80. Cappuzzo, F., Bemis, L. & Varella-Garcia, M. HER2 mutation and response to trastuzumab therapy in non-small-cell lung cancer. N. Engl. J. Med. 354, 2619–2621 (2006).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Helena A. Yu and co-authors for sharing their manuscript before publication, and Masahiro Tsuboi and Pasi Janne for their helpful comments.

Author information

Authors and Affiliations

Authors

Contributions

T. Mitsudomi researched the data for the article, and all authors made a substantial contribution to discussion of the content. T. Mitsudomi and K. Suda wrote the article, and all authors reviewed and edited the manuscript prior to submission.

Corresponding author

Correspondence to Tetsuya Mitsudomi.

Ethics declarations

Competing interests

T. Mitsudomi receives honoraria from AstraZeneca, Boehringer-Ingelheim, Chugai, Roche and Pfizer. His department receives research funding from AstraZeneca, Boehringer-Ingelheim, Chugai, and Pfizer. The other authors declare no competing interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mitsudomi, T., Suda, K. & Yatabe, Y. Surgery for NSCLC in the era of personalized medicine. Nat Rev Clin Oncol 10, 235–244 (2013). https://doi.org/10.1038/nrclinonc.2013.22

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrclinonc.2013.22

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer