Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Future directions in the prevention of prostate cancer

Key Points

  • Chemoprevention has been increasingly explored to mitigate the global burden of prostate cancer and the overtreatment of indolent disease that has arisen in the prostate-specific antigen (PSA) screening era

  • Preclinical and epidemiological evidence suggested that selenium and α-tocopherol (vitamin E) might reduce the risk of prostate cancer

  • A large trial found vitamin E to significantly increase the risk of prostate cancer and selenium to have no effect on risk

  • The strongest evidence supports the use of 5α-reductase inhibitors for prostate cancer prevention, with recent data showing that the risk reduction with these agents is 30%

Abstract

The high global incidence of prostate cancer has led to a focus on chemoprevention strategies to reduce the public health impact of the disease. Early studies indicating that selenium and vitamin E might protect against prostate cancer encouraged large-scale studies that produced mixed clinical results. Next-generation prostate cancer prevention trials validated the impact of 5α-reductase inhibitors in hormone-responsive prostate cancer, and these results were confirmed in follow-up studies. Other interventions on the horizon, involving both dietary and pharmacological agents, hold some promise but require further investigation to validate their efficacy. In this Review, we discuss the clinical and preclinical evidence for dietary and pharmacological prevention of prostate cancer and give an overview of future opportunities for chemoprevention.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Prostate cancer progression.

Similar content being viewed by others

References

  1. Siegel, R., Naishadham, D. & Jemal, A. Cancer statistics, 2013. CA Cancer J.Clin. 63, 1130 (2013).

    Article  Google Scholar 

  2. Haas, G. P. & Sakr, W. A. Epidemiology of prostate cancer. CA Cancer J.Clin. 47, 273287 (1997).

    Article  Google Scholar 

  3. Bell, F. C. & Miller, M. L. Life tables for the United States social security area 1900–2100. The United States Social Security Administration [online], (2005).

    Google Scholar 

  4. Carter, H. B. et al. Early detection of prostate cancer: AUA guideline. J. Urol. 190, 419426 (2013).

    Article  Google Scholar 

  5. Sanda, M. G. et al. Quality of life and satisfaction with outcome among prostate-cancer survivors. N. Engl. J. Med. 358, 1250–1261 (2008).

    Article  CAS  PubMed  Google Scholar 

  6. Moyer, V. A. & U. S. Preventive Services Task Force. Screening for prostate cancer: U. S. Preventive Services Task Force recommendation statement. Ann. Intern. Med. 157, 120–134 (2012).

    Article  PubMed  Google Scholar 

  7. National Cancer Institute. NCI Dictionary of Cancer Terms. National Cancer Institute [online].

  8. Albanes, D. et al. Effects of α-tocopherol and β-carotene supplements on cancer incidence in the Alpha-Tocopherol Beta-Carotene Cancer Prevention Study. Am. J.Clin. Nutr. 62 (Suppl. 6), 1427S–1430S (1995).

    Article  CAS  PubMed  Google Scholar 

  9. Clark, L. C. et al. Effects of selenium supplementation for cancer prevention in patients with carcinoma of the skin. A randomized controlled trial. Nutritional Prevention of Cancer Study Group. JAMA 276, 1957–1963 (1996).

    Article  CAS  PubMed  Google Scholar 

  10. Lippman, S. M. et al. Designing the Selenium and Vitamin E Cancer Prevention Trial (SELECT). J. Natl Cancer Inst. 97, 94–102 (2005).

    Article  CAS  PubMed  Google Scholar 

  11. [No authors listed] The effect of vitamin E and beta carotene on the incidence of lung cancer and other cancers in male smokers. The Alpha-Tocopherol, Beta Carotene Cancer Prevention Study Group. N. Engl. J. Med. 330, 1029–1035 (1994).

  12. Klein, E. A. et al. Vitamin E and the risk of prostate cancer: the Selenium and Vitamin E Cancer Prevention Trial (SELECT). JAMA 306, 1549–1556 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Bailey, R. L. et al. Dietary supplement use in the United States, 2003–2006. J. Nutr. 141, 261–266 (2011).

    Article  CAS  PubMed  Google Scholar 

  14. Dunn, B. K., Richmond, E. S., Minasian, L. M., Ryan, A. M. & Ford, L. G. A nutrient approach to prostate cancer prevention: the Selenium and Vitamin E Cancer Prevention Trial (SELECT). Nutr. Cancer 62, 896–918 (2010).

    Article  CAS  PubMed  Google Scholar 

  15. Marshall, J. R. et al. Phase III trial of selenium to prevent prostate cancer in men with high-grade prostatic intraepithelial neoplasia: SWOG S9917. Cancer Prev. Res. (Phila.) 4, 1761–1769 (2011).

    Article  CAS  Google Scholar 

  16. Grino, P. B., Griffin, J. E. & Wilson, J. D. Testosterone at high concentrations interacts with the human androgen receptor similarly to dihydrotestosterone. Endocrinology 126, 1165–1172 (1990).

    Article  CAS  PubMed  Google Scholar 

  17. Thompson, I. M., Coltman, C. A., Brawley, O. W. & Ryan, A. Chemoprevention of prostate cancer. Semin. Urol. 13, 122–129 (1995).

    CAS  PubMed  Google Scholar 

  18. Thompson, I. M. et al. The influence of finasteride on the development of prostate cancer. N. Engl. J. Med. 349, 215–224 (2003).

    Article  CAS  PubMed  Google Scholar 

  19. Redman, M. W. et al. Finasteride does not increase the risk of high-grade prostate cancer: a bias-adjusted modeling approach. Cancer Prev. Res. (Phila.) 1, 174–181 (2008).

    Article  CAS  Google Scholar 

  20. Parsons, J. K. et al. Finasteride reduces the risk of incident clinical benign prostatic hyperplasia. Eur. Urol. 62, 234–241 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Thompson, I. M. Jr et al. Long-term survival of participants in the prostate cancer prevention trial. N. Engl. J. Med. 369, 603–610 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Andriole, G. L. et al. Effect of dutasteride on the risk of prostate cancer. N. Engl. J. Med. 362, 1192–1202 (2010).

    Article  CAS  PubMed  Google Scholar 

  23. National Cancer Institute. The Prostate Cancer Prevention Trial. National Cancer Institute [online], (2011).

  24. Goodman, P. J. et al. Transition of a clinical trial into translational research: the prostate cancer prevention trial experience. Cancer Prev. Res. (Phila.) 3, 1523–1533 (2010).

    Article  Google Scholar 

  25. Sfanos, K. S. & De Marzo, A. M. Prostate cancer and inflammation: the evidence. Histopathology 60, 199–215 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  26. De Marzo, A. M. et al. Inflammation in prostate carcinogenesis. Nat. Rev. Cancer 7, 256–269 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Johnson, C. S., Muindi, J. R., Hershberger, P. A. & Trump, D. L. The antitumor efficacy of calcitriol: preclinical studies. Anticancer Res. 26, 2543–2549 (2006).

    CAS  PubMed  Google Scholar 

  28. Luo, W. et al. Inhibition of protein kinase CK2 reduces Cyp24a1 expression and enhances 1,25-dihydroxyvitamin D(3) antitumor activity in human prostate cancer cells. Cancer Res. 73, 2289–2297 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Kaeding, J. et al. Calcitrol (1α, 25-dihydroxyvitamin D3) inhibits androgen glucuronidation in prostate cancer cells. Mol. Cancer Ther. 7, 380–390 (2008).

    Article  CAS  PubMed  Google Scholar 

  30. Lambert, J. R., Young, C. D., Persons, K. S. & Ray, R. Mechanistic and pharmacodynamic studies of a 25-hydroxyvitamin D3 derivative in prostate cancer cells. Biochem. Biophys. Res. Commun. 361, 189–195 (2007).

    Article  CAS  PubMed  Google Scholar 

  31. US National Library of Medicine. ClinicalTrials.gov [online], (2013).

  32. US National Library of Medicine. ClinicalTrials.gov [online], (2013).

  33. Nelson, W. G., De Weese, T. L. & De Marzo, A. M. The diet, prostate inflammation, and the development of prostate cancer. Cancer Metastasis Rev. 21, 3–16 (2002).

    Article  CAS  PubMed  Google Scholar 

  34. Nickel, J. C. et al. The relationship between prostate inflammation and lower urinary tract symptoms: examination of baseline data from the REDUCE trial. Eur. Urol. 54, 1379–1384 (2008).

    Article  PubMed  Google Scholar 

  35. Eastham, J. A. et al. Clinical characteristics and biopsy specimen features in African-American and white men without prostate cancer. J. Natl Cancer Inst. 90, 756–760 (1998).

    Article  CAS  PubMed  Google Scholar 

  36. Haverkamp, J., Charbonneau, B. & Ratliff, T. L. Prostate inflammation and its potential impact on prostate cancer: a current review. J. Cell. Biochem. 103, 1344–1353 (2008).

    Article  CAS  PubMed  Google Scholar 

  37. Guo, Y. Z., Pan, L., Du, C. J., Ren, D. Q. & Xie, X. M. Association between C-reactive protein and risk of cancer: a meta-analysis of prospective cohort studies. Asian Pac. J. Cancer Prev. 14, 243–248 (2013).

    Article  PubMed  Google Scholar 

  38. Martinon, F., Pétrilli, V., Mayor, A., Tardivel, A. & Tschopp, J. Gout-associated uric acid crystals activate the NALP3 inflammasome. Nature 440, 237–241 (2006).

    Article  CAS  Google Scholar 

  39. Mimeault, M. & Batra, S. K. Development of animal models underlining mechanistic connections between prostate inflammation and cancer. World J. Clin. Oncol. 4, 4–13 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  40. Kristal, A. R. et al. Diet, supplement use, and prostate cancer risk: results from the prostate cancer prevention trial. Am. J. Epidemiol. 172, 566–577 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  41. Colli, J. L. & Amling, C. L. Chemoprevention of prostate cancer: what can be recommended to patients? Curr. Urol. Rep. 10, 165–171 (2009).

    Article  PubMed  Google Scholar 

  42. Khan, N., Afaq, F. & Mukhtar, H. Cancer chemoprevention through dietary antioxidants: progress and promise. Antioxid. Redox Signal. 10, 475–510 (2008).

    Article  CAS  PubMed  Google Scholar 

  43. Chou, R. et al. Screening for prostate cancer: a review of the evidence for the U. S. Preventive Services Task Force. Ann. Intern. Med. 155, 762–771 (2011).

    Article  PubMed  Google Scholar 

  44. Thompson, I. M. Jr et al. The Prostate Cancer Prevention Trial: current status and lessons learned. Urology 57 (Suppl. 1), 230–234 (2001).

    Article  PubMed  Google Scholar 

  45. Thompson, I. M. Chemoprevention of prostate cancer: lessons learned. BJU Int. 100 (Suppl. 2), 15–17 (2007).

    Article  PubMed  Google Scholar 

  46. Sporn, M. B. & Liby, K. T. Is lycopene an effective agent for preventing prostate cancer? Cancer Prev. Res. (Phila.) 6, 384–386 (2013).

    Article  CAS  Google Scholar 

  47. Haseen, F., Cantwell, M. M., O'Sullivan, J. M. & Murray, L. J. Is there a benefit from lycopene supplementation in men with prostate cancer? A systematic review. Prostate Cancer Prostatic Dis. 12, 325–332 (2009).

    Article  CAS  PubMed  Google Scholar 

  48. Sporn, M. B. et al. Platforms and networks in triterpenoid pharmacology. Drug Dev. Res. 68, 174–182 (2007).

    Article  CAS  Google Scholar 

  49. Ozten-Kandas¸, N. & Bosland, M. C. Chemoprevention of prostate cancer: natural compounds, antiandrogens, and antioxidants—in vivo evidence. J. Carcinog. 10, 27 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. National Cancer Institute. Clinical Trials Search Results. National Cancer Institute [online], (2013).

  51. Messina, M. Insights gained from 20 years of soy research. J. Nutr. 140, 2289S–2295S (2010).

    Article  CAS  PubMed  Google Scholar 

  52. Hwang, Y. W., Kim, S. Y., Jee, S. H., Kim, Y. N. & Nam, C. M. Soy food consumption and risk of prostate cancer: a meta-analysis of observational studies. Nutr. Cancer 61, 598–606 (2009).

    Article  CAS  PubMed  Google Scholar 

  53. Ide, H. et al. Combined inhibitory effects of soy isoflavones and curcumin on the production of prostate-specific antigen. Prostate 70, 1127–1133 (2010).

    Article  CAS  PubMed  Google Scholar 

  54. Hamilton-Reeves, J. M., Rebello, S. A., Thomas, W., Kurzer, M. S. & Slaton, J. W. Effects of soy protein isolate consumption on prostate cancer biomarkers in men with HGPIN, ASAP, and low-grade prostate cancer. Nutr. Cancer 60, 7–13 (2008).

    Article  CAS  PubMed  Google Scholar 

  55. Lazarevic, B. et al. The effects of short-term genistein intervention on prostate biomarker expression in patients with localised prostate cancer before radical prostatectomy. Br. J. Nutr. 108, 2138–2147 (2012).

    Article  CAS  PubMed  Google Scholar 

  56. Fleshner, N. E. et al. Progression from high-grade prostatic intraepithelial neoplasia to cancer: a randomized trial of combination vitamin-E, soy, and selenium. J. Clin. Oncol. 29, 2386–2390 (2011).

    Article  CAS  PubMed  Google Scholar 

  57. Wang, J., Eltoum, I. E. & Lamartiniere, C. A. Genistein alters growth factor signaling in transgenic prostate model (TRAMP). Mol. Cell. Endocrinol. 219, 171–180 (2004).

    Article  CAS  PubMed  Google Scholar 

  58. Wang, J., Eltoum, I. E. & Lamartiniere, C. A. Genistein chemoprevention of prostate cancer in TRAMP mice. J. Carcinog. 6, 3 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  59. Nakamura, H. et al. Genistein increases epidermal growth factor receptor signaling and promotes tumor progression in advanced human prostate cancer. PLoS ONE 6, e20034 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Van Poppel, H. & Tombal, B. Chemoprevention of prostate cancer with nutrients and supplements. Cancer Manag. Res. 3, 91–100 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. McCormick, D. L., Johnson, W. D., Bosland, M. C., Lubet, R. A. & Steele, V. E. Chemoprevention of rat prostate carcinogenesis by soy isoflavones and by Bowman-Birk inhibitor. Nutr. Cancer 57, 184–193 (2007).

    Article  CAS  PubMed  Google Scholar 

  62. Hasima, N. & Aggarwal, B. B. Targeting proteasomal pathways by dietary curcumin for cancer prevention and treatment. Curr. Med. Chem. (in press).

  63. Anand, P., Kunnumakkara, A. B., Newman, R. A. & Aggarwal, B. B. Bioavailability of curcumin: problems and promises. Mol. Pharm. 4, 807–818 (2007).

    Article  CAS  PubMed  Google Scholar 

  64. Sundram, V., Chauhan, S. C., Ebeling, M. & Jaggi, M. Curcumin attenuates β-catenin signaling in prostate cancer cells through activation of protein kinase D1. PLoS ONE 71, e35368 (2012).

    Article  CAS  Google Scholar 

  65. Shankar, S., Ganapathy, S., Chen, Q. & Srivastava, R. K. Curcumin sensitizes TRAIL-resistant xenografts: molecular mechanisms of apoptosis, metastasis and angiogenesis. Mol. Cancer 7, 16 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Slusarz, A. et al. Common botanical compounds inhibit the hedgehog signaling pathway in prostate cancer. Cancer Res. 70, 3382–3390 (2010).

    Article  CAS  PubMed  Google Scholar 

  67. Barve, A. et al. Murine prostate cancer inhibition by dietary phytochemicals—curcumin and phenyethylisothiocyanate. Pharm. Res. 25, 2181–2189 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Killian, P. H. et al. Curcumin inhibits prostate cancer metastasis in vivo by targeting the inflammatory cytokines CXCL1 and -2. Carcinogenesis 33, 2507–2519 (2012).

    Article  CAS  PubMed  Google Scholar 

  69. Boztas, A. O. et al. Synergistic interaction of paclitaxel and curcumin with cyclodextrin polymer complexation in human cancer cells. Mol. Pharm. 10, 2676–2683 (2013).

    Article  CAS  PubMed  Google Scholar 

  70. Sharma, R. A., Steward, W. P. & Gescher, A. J. Pharmacokinetics and pharmacodynamics of curcumin. Adv. Exp. Med. Biol. 595, 453–470 (2007).

    Article  PubMed  Google Scholar 

  71. Zhongfa, L. et al. Enhancement of curcumin oral absorption and pharmacokinetics of curcuminoids and curcumin metabolites in mice. Cancer Chemother. Pharmacol. 69, 679–689 (2012).

    Article  CAS  PubMed  Google Scholar 

  72. Shaikh, J., Ankola, D. D., Beniwal, V., Singh, D. & Kumar, M. N. Nanoparticle encapsulation improves oral bioavailability of curcumin by at least 9-fold when compared to curcumin administered with piperine as absorption enhancer. Eur. J. Pharm. Sci. 37, 223–230 (2009).

    Article  CAS  PubMed  Google Scholar 

  73. Moorthi, C., Krishnan, K., Manavalan, R. & Kathiresan, K. Preparation and characterization of curcumin-piperine dual drug loaded nanoparticles. Asian Pac. J. Trop. Biomed. 2, 841–848 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Yu, H., Li, J., Shi, K. & Huang, Q. Structure of modified e-polylysine micelles and their application in improving cellular antioxidant activity of curcuminoids. Food Funct. 2, 373–380 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Yu, H. & Huang, Q. Improving the oral bioavailability of curcumin using novel organogel-based nanoemulsions. J. Agric. Food Chem. 60, 5373–5379 (2012).

    Article  CAS  PubMed  Google Scholar 

  76. Jin, L. et al. Epigallocatechin gallate promotes p53 accumulation and activity via the inhibition of MDM2-mediated p53 ubiquitination in human lung cancer cells. Oncol. Rep. 29, 1983–1990 (2013).

    Article  CAS  PubMed  Google Scholar 

  77. Davalli, P. et al. Chronic administration of green tea extract to TRAMP mice induces the collapse of golgi apparatus in prostate secretory cells and results in alterations of protein post-translational processing. Int. J. Oncol. 39, 1521–1527 (2011).

    CAS  PubMed  Google Scholar 

  78. Michaud, D. S. et al. Genetic polymorphisms of interleukin-1B (IL-1B), IL-6, IL-8, and IL-10 and risk of prostate cancer. Cancer Res. 66, 4525–4530 (2006).

    Article  CAS  PubMed  Google Scholar 

  79. McLarty, J. et al. Tea polyphenols decrease serum levels of prostate-specific antigen, hepatocyte growth factor, and vascular endothelial growth factor in prostate cancer patients and inhibit production of hepatocyte growth factor and vascular endothelial growth factor in vitro. Cancer Prev. Res. (Phila.) 2, 673–682 (2009).

    Article  CAS  Google Scholar 

  80. Hsu, A. et al. Dietary soy and tea mitigate chronic inflammation and prostate cancer via NFκB pathway in the Noble rat model. J. Nutr. Biochem. 22, 502–510 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Adhami, V. M. et al. Effective prostate cancer chemopreventive intervention with green tea polyphenols in the TRAMP model depends on the stage of the disease. Clin. Cancer Res. 15, 1947–1953 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Siddiqui, I. A. et al. Suppression of NF-κB and its regulated gene products by oral administration of green tea polyphenols in an autochthonous mouse prostate cancer model. Pharm. Res. 25, 2135–2142 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Yang, C. S. et al. Cancer prevention by tea: evidence from laboratory studies. Pharmacol. Res. 64, 113–122 (2011).

    Article  CAS  PubMed  Google Scholar 

  84. Venkateswaran, V. & Klotz, L. H. Diet and prostate cancer: mechanisms of action and implications for chemoprevention. Nat. Rev. Urol. 7, 442–453 (2010).

    Article  CAS  PubMed  Google Scholar 

  85. Brausi, M., Rizzi, F. & Bettuzzi, S. Chemoprevention of human prostate cancer by green tea catechins: two years later. A follow-up update. Eur. Urol. 54, 472–473 (2008).

    Article  PubMed  Google Scholar 

  86. Zheng, J. et al. Green tea and black tea consumption and prostate cancer risk: an exploratory meta-analysis of observational studies. Nutr. Cancer 63, 663–672 (2011).

    Article  CAS  PubMed  Google Scholar 

  87. Aljada, A. & Mousa, S. A. Metformin and neoplasia: implications and indications. Pharmacol. Ther. 133, 108–115 (2012).

    Article  CAS  PubMed  Google Scholar 

  88. Belda-Iniesta, C., Pernia, O. & Simó, R. Metformin: a new option in cancer treatment. Clin. Transl. Oncol. 13, 363–367 (2011).

    Article  CAS  PubMed  Google Scholar 

  89. Lehman, D. M., Lorenzo, C., Hernandez, J. & Wang, C. P. Statin use as a moderator of metformin effect on risk for prostate cancer among type 2 diabetic patients. Diabetes Care 35, 1002–1007 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Wright, J. L. & Stanford, J. L. Metformin use and prostate cancer in Caucasian men: results from a population-based case-control study. Cancer Causes Control 20, 1617–1622 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  91. Azoulay, L., Dell'Aniello, S., Gagnon, B., Pollak, M. & Suissa, S. Metformin and the incidence of prostate cancer in patients with type 2 diabetes. Cancer Epidemiol. Biomarkers Prev. 20, 337–344 (2011).

    Article  CAS  PubMed  Google Scholar 

  92. Cohen, P. Metformin for the prevention of androgen deprivation induced metabolic syndrome, obesity and type 2 diabetes. Med. Hypotheses 72, 227–228 (2009).

    Article  CAS  PubMed  Google Scholar 

  93. Currie, C. J., Poole, C. D. & Gale, E. A. The influence of glucose-lowering therapies on cancer risk in type 2 diabetes. Diabetologia 52, 1766–1777 (2009).

    Article  CAS  PubMed  Google Scholar 

  94. Currie, C. J. et al. Mortality after incident cancer in people with and without type 2 diabetes: impact of metformin on survival. Diabetes Care 35, 299–304 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  95. Decensi, A. et al. Metformin and cancer risk in diabetic patients: a systematic review and meta-analysis. Cancer Prev. Res. (Phila.) 3, 1451–1461 (2010).

    Article  CAS  Google Scholar 

  96. Moyad, M. A. Re: A prospective, randomized pilot study evaluating the effects of metformin and lifestyle intervention on patients with prostate cancer receiving androgen deprivation therapy. Eur. Urol. 61, 623–624 (2012).

    Article  CAS  PubMed  Google Scholar 

  97. Soranna, D. et al. Cancer risk associated with use of metformin and sulfonylurea in type 2 diabetes: a meta-analysis. Oncologist 17, 813–822 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Zhang, P., Li, H., Tan, X., Chen, L. & Wang, S. Association of metformin use with cancer incidence and mortality: a meta-analysis. Cancer Epidemiol. 37, 207–218 (2013).

    Article  CAS  PubMed  Google Scholar 

  99. Kisfalvi, K., Moro, A., Sinnett-Smith, J., Eibl, G. & Rozengurt, E. Metformin inhibits the growth of human pancreatic cancer xenografts. Pancreas 42, 781–785 (2013).

    Article  CAS  PubMed  Google Scholar 

  100. Wu, B. et al. Metformin inhibits the development and metastasis of ovarian cancer. Oncol. Rep. 28, 903–908 (2012).

    Article  CAS  PubMed  Google Scholar 

  101. Vitale-Cross, L. et al. Metformin prevents the development of oral squamous cell carcinomas from carcinogen-induced premalignant lesions. Cancer Prev. Res. (Phila.) 5, 562–573 (2012).

    Article  CAS  Google Scholar 

  102. Iliopoulos, D., Hirsch, H. A. & Struhl, K. Metformin decreases the dose of chemotherapy for prolonging tumor remission in mouse xenografts involving multiple cancer cell types. Cancer Res. 71, 3196–3201 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Chan, J. M., Feraco, A., Shuman, M. & Hernández-Díaz, S. The epidemiology of prostate cancer--with a focus on nonsteroidal anti-inflammatory drugs. Hematol. Oncol. Clin. North Am. 20, 797–809 (2006).

    Article  PubMed  Google Scholar 

  104. Kashfi, K. Anti-inflammatory agents as cancer therapeutics. Adv. Pharmacol. 57, 31–89 (2009).

    Article  CAS  PubMed  Google Scholar 

  105. Salinas, C. A. et al. Use of aspirin and other nonsteroidal antiinflammatory medications in relation to prostate cancer risk. Am. J. Epidemiol. 172, 578–590 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  106. Stock, D., Groome, P. A. & Siemens, D. R. Inflammation and prostate cancer: a future target for prevention and therapy? Urol. Clin. North Am. 35, 117–130 (2008).

    Article  PubMed  Google Scholar 

  107. Mahmud, S. M. et al. Use of non-steroidal anti-inflammatory drugs and prostate cancer risk: a population-based nested case-control study. PLoS ONE 6, e16412 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Harris, R. E. Cyclooxygenase-2 (cox-2) blockade in the chemoprevention of cancers of the colon, breast, prostate, and lung. Inflammopharmacology 17, 55–67 (2009).

    Article  CAS  PubMed  Google Scholar 

  109. Shebl, F. M. et al. Aspirin but not ibuprofen use is associated with reduced risk of prostate cancer: a PLCO study. Br. J. Cancer 107, 207–214 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Schenk, J. M. et al. Indications for and use of nonsteroidal antiinflammatory drugs and the risk of incident, symptomatic benign prostatic hyperplasia: results from the prostate cancer prevention trial. Am. J. Epidemiol. 176, 156–163 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  111. Veitonmaki, T., Tammela, T. L., Auvinen, A. & Murtola, T. J. Use of aspirin, but not other non-steroidal anti-inflammatory drugs is associated with decreased prostate cancer risk at the population level. Eur. J. Cancer 49, 938–945 (2013).

    Article  CAS  PubMed  Google Scholar 

  112. Rothwell, P. M. et al. Effect of daily aspirin on risk of cancer metastasis: a study of incident cancers during randomised controlled trials. Lancet 379, 1591–1601 (2012).

    Article  CAS  PubMed  Google Scholar 

  113. Zhang, Y. et al. A novel sulindac derivative lacking cyclooxygenase-inhibitory activities suppresses carcinogenesis in the transgenic adenocarcinoma of mouse prostate model. Cancer Prev. Res. (Phila.) 3, 885–895 (2010).

    Article  CAS  Google Scholar 

  114. Coogan, P. F., Kelly, J. P., Strom, B. L. & Rosenberg, L. Statin and NSAID use and prostate cancer risk. Pharmacoepidemiol. Drug Saf. 19, 752–755 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Zheng, X. et al. Atorvastatin and celecoxib in combination inhibits the progression of androgen-dependent LNCaP xenograft prostate tumors to androgen independence. Cancer Prev. Res. (Phila.) 3, 114–124 (2010).

    Article  CAS  Google Scholar 

  116. Athar, M., Back, J. H., Kopelovich, L., Bickers, D. R. & Kim, A. L. Multiple molecular targets of resveratrol: anti-carcinogenic mechanisms. Arch. Biochem. Biophys. 486, 95–102 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Hsieh, T. C. & Wu, J. M. Resveratrol: biological and pharmaceutical properties as anticancer molecule. Biofactors 36, 360–369 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Klempner, S. J. & Bubley, G. Complementary and alternative medicines in prostate cancer: from bench to bedside? Oncologist 17, 830–837 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Fang, Y., DeMarco, V. G. & Nicholl, M. B. Resveratrol enhances radiation sensitivity in prostate cancer by inhibiting cell proliferation and promoting cell senescence and apoptosis. Cancer Sci. 103, 1090–1098 (2012).

    Article  CAS  PubMed  Google Scholar 

  120. Fenner, A. Prostate cancer: resveratrol and apoptotic proteins enhance radiosensitivity. Nat. Rev. Urol. 9, 60 (2012).

    Article  PubMed  Google Scholar 

  121. Ganapathy, S., Chen, Q., Singh, K. P., Shankar, S. & Srivastava, R. K. Resveratrol enhances antitumor activity of TRAIL in prostate cancer xenografts through activation of FOXO transcription factor. PLoS ONE 5, e15627 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Seeni, A. et al. Suppression of prostate cancer growth by resveratrol in the transgenic rat for adenocarcinoma of prostate (TRAP) model. Asian Pac. J. Cancer Prev. 9, 7–14 (2008).

    PubMed  Google Scholar 

  123. Sheth, S. et al. Resveratrol reduces prostate cancer growth and metastasis by inhibiting the Akt/MicroRNA-21 pathway. PLoS ONE 7, e51655 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Klink, J. C. et al. Resveratrol worsens survival in SCID mice with prostate cancer xenografts in a cell-line specific manner, through paradoxical effects on oncogenic pathways. Prostate 73, 754–762 (2013).

    Article  CAS  PubMed  Google Scholar 

  125. Li, G. et al. Dietary resveratrol prevents development of high-grade prostatic intraepithelial neoplastic lesions: involvement of SIRT1/S6K axis. Cancer Prev. Res. (Phila.) 6, 27–39 (2013).

    Article  CAS  Google Scholar 

  126. Wang, T. T. et al. Differential effects of resveratrol on androgen-responsive LNCaP human prostate cancer cells in vitro and in vivo. Carcinogenesis 29, 2001–2010 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Neves, A. R., Lucio, M., Lima, J. L. & Reis, S. Resveratrol in medicinal chemistry: a critical review of its pharmacokinetics, drug-delivery, and membrane interactions. Curr. Med. Chem. 19, 1663–1681 (2012).

    Article  CAS  PubMed  Google Scholar 

  128. Cottart, C. H., Nivet-Antoine, V., Laguillier-Morizot, C. & Beaudeux J. L. Resveratrol bioavailability and toxicity in humans. Mol. Nutr. Food Res. 54, 7–16 (2010).

    Article  CAS  PubMed  Google Scholar 

  129. Narayanan, N. K., Nargi, D., Randolph, C. & Narayanan, B. A. Liposome encapsulation of curcumin and resveratrol in combination reduces prostate cancer incidence in PTEN knockout mice. Int. J. Cancer 125, 1–8 (2009).

    Article  CAS  PubMed  Google Scholar 

  130. Johnson, J. J. et al. Enhancing the bioavailability of resveratrol by combining it with piperine. Mol. Nutr. Food Res. 55, 1169–1176 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Neves, A. R., Lúcio, M., Martins, S., Lima, J. L. & Reis, S. Novel resveratrol nanodelivery systems based on lipid nanoparticles to enhance its oral bioavailability. Int. J. Nanomedicine 8, 177–187 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Santos, A. C., Veiga, F. & Ribeiro, A. J. New delivery systems to improve the bioavailability of resveratrol. Expert Opin. Drug Deliv. 8, 973–990 (2011).

    Article  CAS  PubMed  Google Scholar 

  133. Howells, L. M. et al. Phase I randomized, double-blind pilot study of micronized resveratrol (SRT501) in patients with hepatic metastases—safety, pharmacokinetics, and pharmacodynamics. Cancer Prev. Res. (Phila.) 4, 1419–1425 (2011).

    Article  CAS  Google Scholar 

  134. Brown, V. A. et al. Repeat dose study of the cancer chemopreventive agent resveratrol in healthy volunteers: safety, pharmacokinetics, and effect on the insulin-like growth factor axis. Cancer Res. 70, 9003–9011 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Popat, R. et al. A phase 2 study of SRT501 (resveratrol) with bortezomib for patients with relapsed and or refractory multiple myeloma. Brit. J. Haematol. 160, 714–717 (2013).

    Article  CAS  Google Scholar 

  136. Bird, J. M. et al. Guidelines for the diagnosis and management of multiple myeloma. Br. J. Haematol. 154, 32–75 (2011).

    Article  CAS  PubMed  Google Scholar 

  137. Korbet, S. M. & Schwartz, M. M. Multiple myeloma. J. Am. Soc. Nephrol. 17, 2533–2545 (2006).

    Article  PubMed  Google Scholar 

  138. Nguyen, M. M. et al. Randomized, double-blind, placebo-controlled trial of polyphenon E in prostate cancer patients before prostatectomy: evaluation of potential chemopreventive activities. Cancer Prev. Res. (Phila.) 5, 290–298 (2012).

    Article  CAS  Google Scholar 

  139. Colquhoun, A. J. et al. Metformin enhances the antiproliferative and apoptotic effect of bicalutamide in prostate cancer. Prostate Cancer Prostatic Dis. 15, 346–352 (2012).

    Article  CAS  PubMed  Google Scholar 

  140. Ben Sahra, I. et al. Metformin, independent of AMPK, induces mTOR inhibition and cell-cycle arrest through REDD1. Cancer Res. 71, 4366–4372 (2011).

    Article  CAS  PubMed  Google Scholar 

  141. Ben Sahra, I. et al. The antidiabetic drug metformin exerts an antitumoral effect in vitro and in vivo through a decrease of cyclin D1 level. Oncogene 27, 3576–3586 (2008).

    Article  CAS  PubMed  Google Scholar 

  142. Dhillon, P. K., Kenfield, S. A., Stampfer, M. J. & Giovannucci, E. L. Long-term aspirin use and the risk of total, high-grade, regionally advanced and lethal prostate cancer in a prospective cohort of health professionals, 1988–2006 Int. J. Cancer 128, 2444–2452 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Brizuela, L. et al. The sphingosine kinase-1 survival pathway is a molecular target for the tumor-suppressive tea and wine polyphenols in prostate cancer. FASEB J. 24, 3882–3894 (2010).

    Article  CAS  PubMed  Google Scholar 

  144. Harper, C. E. et al. Genistein and resveratrol, alone and in combination, suppress prostate cancer in SV-40 tag rats. Prostate 69, 1668–1682 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors are supported by grants from the NCI (R01CA96994, P30CA054174 and UO1CA86402).

Author information

Authors and Affiliations

Authors

Contributions

All the authors researched data for the article, made a substantial contribution to the discussion of its content, wrote the manuscript and edited it prior to submission.

Corresponding author

Correspondence to Ian M. Thompson Jr.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Thompson, I., Cabang, A. & Wargovich, M. Future directions in the prevention of prostate cancer. Nat Rev Clin Oncol 11, 49–60 (2014). https://doi.org/10.1038/nrclinonc.2013.211

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrclinonc.2013.211

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer