Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Latest biopsy approach for suspected metastases in patients with breast cancer

Key Points

  • Biopsies of suspected breast cancer metastases are not always performed in routine clinical practice owing to the cost and invasiveness of the procedure

  • Percutaneous image-guided biopsy is a safe, simple low-cost technique to obtain biopsy material from suspected metastases

  • Biopsies should be performed to determine oestrogen receptor, progesterone receptor or HER2 status of the lesion, particularly if the status of the primary tumour is unknown

  • Discordance between biomarker status in primary and secondary tumours can occur; however, standardized protocols might prevent discordance that results from technical errors

  • Increasing the numbers of biopsies performed throughout the disease trajectory will provide material for biobanks, aid future research, and might lead to innovative targeted therapies for breast cancer

Abstract

Biopsy of suspected metastases in patients with breast cancer is recommended in the practice guidelines of the National Comprehensive Cancer Network, but not always performed in routine oncology practice, often because of the cost and invasiveness of the procedure. Biopsies can confirm the presence of metastatic disease, reveal unsuspected benign disease or second (non-breast) malignancies and confirm expression of biomarkers, all of which can aid the optimal management of the cancer. Image-guided biopsy has increased the accuracy and safety of the procedure. Here, we aim to provide a practical algorithm for deciding when to perform biopsy of suspected breast cancer metastases, in order to optimize clinical practice. We expect that future clinical trials and standard-of-care practice will increasingly obtain tissue from metastases to assess molecular differences (DNA, RNA, protein) between the primary tumour and metastases. Advances in targeted therapy for breast cancer will be highly dependent on the availability of metastatic tissue. In this article, we provide an up-to-date review of the current issues in biopsy of suspected metastases in patients with breast cancer, including technical details of biopsy, pathology review of biopsy specimens, and interpretation of biopsy findings.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: A CT-guided biopsy of the left iliac bone.
Figure 2: An ultrasonography-guided biopsy of the liver.
Figure 3
Figure 4

Similar content being viewed by others

References

  1. National Comprehensive Cancer Network. Practice Guideline in Oncology: Breast Cancer v3 [online], (2012).

  2. Cardoso, F., Harbeck, N., Fallowfield, L., Kyriakides, S. & Senkus, E. Locally recurrent or metastatic breast cancer: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann. Oncol. 23 (Suppl. 7), vii11–vii19 (2012).

    PubMed  Google Scholar 

  3. Pusztai, L., Viale, G., Kelly, C. M. & Hudis, C. A. Estrogen and HER-2 receptor discordance between primary breast cancer and metastasis. Oncologist 15, 1164–1168 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  4. Wagner, H. N. Jr & Conti, P. S. Advances in medical imaging for cancer diagnosis and treatment. Cancer 67, 1121–1128 (1991).

    Article  PubMed  Google Scholar 

  5. Schnall, M. & Rosen, M. Primer on imaging technologies for cancer. J. Clin. Oncol. 24, 3225–3233 (2006).

    Article  CAS  PubMed  Google Scholar 

  6. Lavayssiere, R., Cabee, A. E. & Filmont, J. E. Positron emission tomography (PET) and breast cancer in clinical practice. Eur. J. Radiol. 69, 50–58 (2009).

    Article  PubMed  Google Scholar 

  7. Koh, D. M., Cook, G. J. & Husband, J. E. New horizons in oncologic imaging. N. Engl. J. Med. 348, 2487–2488 (2003).

    Article  PubMed  Google Scholar 

  8. Li, F., Engelmann, R., Doi, K. & MacMahon, H. Improved detection of small lung cancers with dual-energy subtraction chest radiography. AJR Am. J. Roentgenol. 190, 886–891 (2008).

    Article  PubMed  Google Scholar 

  9. Mayo-Smith, W. W., Boland, G. W., Noto, R. B. & Lee, M. J. State-of-the-art adrenal imaging. Radiographics 21, 995–1012 (2001).

    Article  CAS  PubMed  Google Scholar 

  10. Simmons, C. et al. Does confirmatory tumor biopsy alter the management of breast cancer patients with distant metastases? Ann. Oncol. 20, 1499–1504 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Gupta, S. & Madoff, D. C. Image-guided percutaneous needle biopsy in cancer diagnosis and staging. Tech. Vasc. Interv. Radiol. 10, 88–101 (2007).

    Article  PubMed  Google Scholar 

  12. Gupta, S. New techniques in image-guided percutaneous needle biopsy. Cardiovasc. Intervent. Radiol. 27, 91–104 (2004)

    Article  PubMed  Google Scholar 

  13. Silverman, S. G. et al. Percutaneous abdominal biopsy: cost-identification analysis. Radiology 206, 429–435 (1998).

    Article  CAS  PubMed  Google Scholar 

  14. Gupta, S. et al. Quality improvement guidelines for percutaneous needle biopsy. J. Vasc. Interv. Radiol. 21, 969–975 (2010).

    Article  PubMed  Google Scholar 

  15. Liberman, L. Centennial dissertation. Percutaneous imaging-guided core breast biopsy: state of the art at the millennium. AJR Am. J. Roentgenol. 174, 1191–1199 (2000).

    Article  CAS  PubMed  Google Scholar 

  16. Pasha, T., Gabriel, S., Therneau, T., Dickson, E. R. & Lindor, K. D. Cost-effectiveness of ultrasound-guided liver biopsy. Hepatology 27, 1220–1226 (1998).

    Article  CAS  PubMed  Google Scholar 

  17. Gani, M. S., Shafee, A. M. & Soliman, I. Y. Ultrasound guided percutaneous fine needle aspiration biopsy/automated needle core biopsy of abdominal lesions: effect on management and cost effectiveness. Ann. Afr. Med. 10, 133–138 (2011).

    Article  PubMed  Google Scholar 

  18. Dodd, G. D. 3rd et al. Sonography: the undiscovered jewel of interventional radiology. Radiographics 16, 1271–1288 (1996).

    Article  PubMed  Google Scholar 

  19. Stattaus, J. et al. MR-guided liver biopsy within a short, wide-bore 1.5 Tesla MR system. Eur. Radiol. 18, 2865–2873 (2008).

    Article  PubMed  Google Scholar 

  20. Kariniemi, J., Blanco Sequeiros, R., Ojala, R. & Tervonen, O. MRI-guided abdominal biopsy in a 0.23-T open-configuration MRI system. Eur. Radiol. 15, 1256–1262 (2005).

    Article  CAS  PubMed  Google Scholar 

  21. Yakar, D. et al. Feasibility of 3T dynamic contrast-enhanced magnetic resonance-guided biopsy in localizing local recurrence of prostate cancer after external beam radiation therapy. Invest. Radiol. 45, 121–125 (2010).

    Article  PubMed  Google Scholar 

  22. DiBonito, L., Falconieri, G., Colautti, I., Bonifacio, D. & Dudine, S. The positive peritoneal effusion. A retrospective study of cytopathologic diagnoses with autopsy confirmation. Acta Cytol. 37, 483–488 (1993).

    CAS  PubMed  Google Scholar 

  23. Runyon, B. A., Hoefs, J. C. & Morgan, T. R. Ascitic fluid analysis in malignancy-related ascites. Hepatology 8, 1104–1109 (1988).

    Article  CAS  PubMed  Google Scholar 

  24. Hilton, J. F. et al. Acquisition of metastatic tissue from patients with bone metastases from breast cancer. Breast Cancer Res. Treat. 129, 761–765 (2011).

    Article  CAS  PubMed  Google Scholar 

  25. Amir, E. et al. Tissue confirmation of disease recurrence in breast cancer patients: pooled analysis of multi-centre, multi-disciplinary prospective studies. Cancer Treat. Rev. 38, 708–714 (2012).

    Article  PubMed  Google Scholar 

  26. Bussolati, G. & Leonardo, E. Technical pitfalls potentially affecting diagnoses in immunohistochemistry. J. Clin. Pathol. 61, 1184–1192 (2008).

    Article  CAS  PubMed  Google Scholar 

  27. Moulton, J. S. & Moore, P. T. Coaxial percutaneous biopsy technique with automated biopsy devices: value in improving accuracy and negative predictive value. Radiology 186, 515–522 (1993).

    Article  CAS  PubMed  Google Scholar 

  28. Yamagami, T., Iida, S., Kato, T., Tanaka, O. & Nishimura, T. combining fine-needle aspiration and core biopsy under CT fluoroscopy guidance: a better way to treat patients with lung nodules? AJR Am. J. Roentgenol. 180, 811–815 (2003).

    Article  PubMed  Google Scholar 

  29. Tsang, P. et al. Image-directed percutaneous biopsy with large-core needles. Comparison of cytologic and histologic findings. Acta Cytol. 39, 752–758 (1995).

    Google Scholar 

  30. Yao, X. et al. Fine-needle aspiration biopsy versus core-needle biopsy in diagnosing lung cancer: a systematic review. Curr. Oncol. 19, e16–e27 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Mullink, H., Henzen-Logmans, S. C., Tadema, T. M., Mol, J. J. & Meijer, C. J. Influence of fixation and decalcification on the immunohistochemical staining of cell-specific markers in paraffin-embedded human bone biopsies. J. Histochem. Cytochem. 33, 1103–1109 (1985).

    Article  CAS  PubMed  Google Scholar 

  32. Aurilio, G. et al. Discordant hormone receptor and human epidermal growth factor receptor 2 status in bone metastases compared to primary breast cancer. Acta Oncol. http://dx.doi.org/10.3109/0284186X.2012.754990

  33. Liebens, F. et al. Breast cancer seeding associated with core needle biopsies: a systematic review. Maturitas 62, 113–123 (2009).

    Article  PubMed  Google Scholar 

  34. Amir, E. et al. Prospective study evaluating the impact of tissue confirmation of metastatic disease in patients with breast cancer. J. Clin. Oncol. 30, 587–592 (2012).

    Article  PubMed  Google Scholar 

  35. Sauter, G., Lee, J., Bartlett, J. M. S., Slamon, D. J. & Press, M. F. Guidelines for human epidermal growth factor receptor 2 testing: biologic and methodologic considerations. J. Clin. Oncol. 27, 1323–1333 (2009).

    Article  CAS  PubMed  Google Scholar 

  36. Hanley, K. Z., Birdsong, G. G., Cohen, C. & Siddiqui, M. T. Immunohistochemical detection of estrogen receptor, progesterone receptor, and human epidermal growth factor receptor 2 expression in breast carcinomas: comparison on cell block, needle-core, and tissue block preparations. Cancer Cytopathol. 117, 279–288 (2009).

    Article  Google Scholar 

  37. Perez, E. A. et al. HER2 testing by local, central, and reference laboratories in specimens from the North Central Cancer Treatment Group N9831 intergroup adjuvant trial. J. Clin. Oncol. 24, 3032–3038 (2006).

    Article  PubMed  Google Scholar 

  38. Kocjan, G. et al. BSCC Code of Practice--fine needle aspiration cytology. Cytopathology 20, 283–296 (2009).

    Article  CAS  PubMed  Google Scholar 

  39. Austin, J. H. & Cohen, M. B. Value of having a cytopathologist present during percutaneous fine-needle aspiration biopsy of lung: report of 55 cancer patients and metaanalysis of the literature. AJR Am. J. Roentgenol. 160, 175–177 (1993).

    Article  CAS  PubMed  Google Scholar 

  40. Charboneau, J. W., Reading, C. C. & Welch, T. J. CT and sonographically guided needle biopsy: current techniques and new innovations. AJR Am. J. Roentgenol. 154, 1–10 (1990).

    Article  CAS  PubMed  Google Scholar 

  41. Reading, C. C., Charboneau, J. W., James, E. M. & Hurt, M. R. Sonographically guided percutaneous biopsy of small (3 cm or less) masses. AJR Am. J. Roentgenol. 151, 189–192 (1988).

    Article  CAS  PubMed  Google Scholar 

  42. Beslic, S., Zukic, F. & Milisic, S. Percutaneous transthoracic CT guided biopsies of lung lesions; fine needle aspiration biopsy versus core biopsy. Radiol. Oncol. 46, 19–22 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  43. Hopper, K. D. et al. Blinded comparison of biopsy needles and automated devices in vitro: 2. Biopsy of medical renal disease. AJR Am. J. Roentgenol. 161, 1299–1301 (1993).

    Article  CAS  PubMed  Google Scholar 

  44. Hudock, J. A., Hanau, C. A., Christen, R. & Bibbo, M. Expression of estrogen and progesterone receptors in cytologic specimens using various fixatives. Diagn. Cytopathol. 15, 78–83 (1996).

    Article  CAS  PubMed  Google Scholar 

  45. Gong, Y., Symmans, W. F., Krishnamurthy, S., Patel, S. & Sneige, N. Optimal fixation conditions for immunocytochemical analysis of estrogen receptor in cytologic specimens of breast carcinoma. Cancer 102, 34–40 (2004).

    Article  CAS  PubMed  Google Scholar 

  46. Hanley, K. Z., Siddiqui, M. T., Lawson, D., Cohen, C. & Nassar, A. Evaluation of new monoclonal antibodies in detection of estrogen receptor, progesterone receptor, and Her2 protein expression in breast carcinoma cell block sections using conventional microscopy and quantitative image analysis. Diagn. Cytopathol. 37, 251–257 (2009).

    Article  CAS  PubMed  Google Scholar 

  47. Beatty, B. G. et al. HER-2/neu detection in fine-needle aspirates of breast cancer: fluorescence in situ hybridization and immunocytochemical analysis. Am. J. Clin. Pathol. 122, 246–255 (2004).

    Article  CAS  PubMed  Google Scholar 

  48. Yaziji, H. et al. HER-2 testing in breast cancer using parallel tissue-based methods. JAMA 291, 1972–1977 (2004).

    Article  CAS  PubMed  Google Scholar 

  49. Goldstein, N. S., Ferkowicz, M., Odish, E., Mani, A. & Hastah, F. Minimum formalin fixation time for consistent estrogen receptor immunohistochemical staining of invasive breast carcinoma. Am. J. Clin. Pathol. 120, 86–92 (2003).

    Article  PubMed  Google Scholar 

  50. Liedtke, C. et al. Prognostic impact of discordance between triple-receptor measurements in primary and recurrent breast cancer. Ann. Oncol. 20, 1953–1958 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Khoury, T. et al. Delay to formalin fixation effect on breast biomarkers. Mod. Pathol. 22, 1457–1467 (2009).

    Article  CAS  PubMed  Google Scholar 

  52. Amir, E. & Clemons, M. Should a biopsy be recommended to confirm metastatic disease in women with breast cancer? Lancet Oncol. 10, 933–935 (2009).

    Article  PubMed  Google Scholar 

  53. Lindstrom, L. S. et al. Clinically used breast cancer markers such as estrogen receptor, progesterone receptor, and human epidermal growth factor receptor 2 are unstable throughout tumor progression. J. Clin. Oncol. 30, 2601–2608 (2012).

    Article  PubMed  Google Scholar 

  54. Thompson, A. M. et al. Prospective comparison of switches in biomarker status between primary and recurrent breast cancer: the Breast Recurrence In Tissues Study (BRITS). Breast Cancer Res. 12, R92 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  55. Heitz, F. et al. Differences in the receptor status between primary and recurrent breast cancer—the frequency of and the reasons for discordance. Oncology 84, 319–325 (2013).

    Article  PubMed  Google Scholar 

  56. Ibrahim, T. et al. Hormonal receptor, human epidermal growth factor receptor-2, and Ki67 discordance between primary breast cancer and paired metastases: clinical impact. Oncology 84, 150–157 (2013).

    Article  CAS  PubMed  Google Scholar 

  57. Masood, S. & Bui, M. M. Assessment of Her-2/neu overexpression in primary breast cancers and their metastatic lesions: an immunohistochemical study. Ann. Clin. Lab. Sci. 30, 259–265 (2000).

    CAS  PubMed  Google Scholar 

  58. Aitken, S. J., Thomas, J. S., Langdon, S. P., Harrison, D. J. & Faratian, D. Quantitative analysis of changes in ER, PR and HER2 expression in primary breast cancer and paired nodal metastases. Ann. Oncol. 21, 1254–1261 (2010).

    Article  CAS  PubMed  Google Scholar 

  59. Amir, E. et al. Discordance between receptor status in primary and metastatic breast cancer: an exploratory study of bone and bone marrow biopsies. Clin. Oncol. (R. Coll. Radiol.) 20, 763–768 (2008).

    Article  CAS  Google Scholar 

  60. Aoyama, K., Kamio, T., Nishikawa, T. & Kameoka, S. A comparison of HER2/neu gene amplification and its protein overexpression between primary breast cancer and metastatic lymph nodes. Jpn J. Clin. Oncol. 40, 613–619 (2010).

    Article  PubMed  Google Scholar 

  61. Azam, M., Qureshi, A. & Mansoor, S. Comparison of estrogen receptors, progesterone receptors and HER-2/neu expression between primary and metastatic breast carcinoma. J. Pak. Med. Assoc. 59, 736–740 (2009).

    PubMed  Google Scholar 

  62. Wilking, U. et al. HER2 status in a population-derived breast cancer cohort: discordances during tumor progression. Breast Cancer Res. Treat. 125, 553–561 (2010).

    Article  CAS  PubMed  Google Scholar 

  63. Wu, J. M. et al. Heterogeneity of breast cancer metastases: comparison of therapeutic target expression and promoter methylation between primary tumors and their multifocal metastases. Clin. Cancer Res. 14, 1938–1946 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Zidan, J. et al. Comparison of HER-2 overexpression in primary breast cancer and metastatic sites and its effect on biological targeting therapy of metastatic disease. Br. J. Cancer 93, 552–556 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Slamon, D. J. et al. Use of chemotherapy plus a monoclonal antibody against HER2 for metastatic breast cancer that overexpresses HER2. N. Engl. J. Med. 344, 783–792 (2001).

    Article  CAS  PubMed  Google Scholar 

  66. Simon, R. et al. Patterns of her-2/neu amplification and overexpression in primary and metastatic breast cancer. J. Natl Cancer Inst. 93, 1141–1146 (2001).

    Article  CAS  PubMed  Google Scholar 

  67. Gancberg, D. et al. Comparison of HER-2 status between primary breast cancer and corresponding distant metastatic sites. Ann. Oncol. 13, 1036–1043 (2002).

    Article  CAS  PubMed  Google Scholar 

  68. Tanner, M., Jarvinen, P. & Isola, J. Amplification of HER-2/neu and topoisomerase IIα in primary and metastatic breast cancer. Cancer Res. 61, 5345–5348 (2001).

    CAS  PubMed  Google Scholar 

  69. Taucher, S. et al. Influence of neoadjuvant therapy with epirubicin and docetaxel on the expression of HER2/neu in patients with breast cancer. Breast Cancer Res. Treat. 82, 207–213 (2003).

    Article  CAS  PubMed  Google Scholar 

  70. Xu, R. et al. Amplification of Her-2/neu gene in Her-2/neu-overexpressing and -nonexpressing breast carcinomas and their synchronous benign, premalignant, and metastatic lesions detected by FISH in archival material. Mod. Pathol. 15, 116–124 (2002).

    Article  PubMed  Google Scholar 

  71. Carlsson, J. et al. HER2 expression in breast cancer primary tumours and corresponding metastases. Original data and literature review. Br. J. Cancer 90, 2344–2348 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Regitnig, P., Schippinger, W., Lindbauer, M., Samonigg, H. & Lax, S. F. Change of HER-2/neu status in a subset of distant metastases from breast carcinomas. J. Pathol. 203, 918–926 (2004).

    Article  CAS  PubMed  Google Scholar 

  73. Gong, Y., Booser, D. J. & Sneige, N. Comparison of HER-2 status determined by fluorescence in situ hybridization in primary and metastatic breast carcinoma. Cancer 103, 1763–1769 (2005).

    Article  CAS  PubMed  Google Scholar 

  74. Pectasides, D. et al. HER-2/neu status of primary breast cancer and corresponding metastatic sites in patients with advanced breast cancer treated with trastuzumab-based therapy. Anticancer Res. 26, 647–653 (2006).

    CAS  PubMed  Google Scholar 

  75. D'Andrea, M. R. et al. Correlation between genetic and biological aspects in primary non-metastatic breast cancers and corresponding synchronous axillary lymph node metastasis. Breast Cancer Res. Treat. 101, 279–284 (2007).

    Article  PubMed  Google Scholar 

  76. Lower, E. E., Glass, E., Blau, R. & Harman, S. HER-2/neu expression in primary and metastatic breast cancer. Breast Cancer Res. Treat. 113, 301–306 (2008).

    Article  CAS  PubMed  Google Scholar 

  77. Lower, E. E., Glass, E. L., Bradley, D. A., Blau, R. & Heffelfinger, S. Impact of metastatic estrogen receptor and progesterone receptor status on survival. Breast Cancer Res. Treat. 90, 65–70 (2005).

    Article  CAS  PubMed  Google Scholar 

  78. Barry, W. T. et al. Intratumor heterogeneity and precision of microarray-based predictors of breast cancer biology and clinical outcome. J. Clin. Oncol. 28, 2198–2206 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  79. Johnston, S. R. Clinical efforts to combine endocrine agents with targeted therapies against epidermal growth factor receptor/human epidermal growth factor receptor 2 and mammalian target of rapamycin in breast cancer. Clin. Cancer Res. 12, 1061s–1068s (2006).

    Article  CAS  PubMed  Google Scholar 

  80. Khasraw, M., Brogi, E. & Seidman, A. D. The need to examine metastatic tissue at the time of progression of breast cancer: is re-biopsy a necessity or a luxury? Curr. Oncol. Rep. 13, 17–25 (2011).

    Article  PubMed  Google Scholar 

  81. Baselga, J. et al. Everolimus in postmenopausal hormone-receptor-positive advanced breast cancer. N. Engl. J. Med. 366, 520–529 (2012).

    Article  CAS  PubMed  Google Scholar 

  82. Hammond, M. E. et al. American Society of Clinical Oncology/College Of American Pathologists guideline recommendations for immunohistochemical testing of estrogen and progesterone receptors in breast cancer. J. Clin. Oncol. 28, 2784–2795 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  83. Iwamoto, T. et al. Estrogen receptor (ER) mRNA and ER-related gene expression in breast cancers that are 1% to 10% ER-positive by immunohistochemistry. J. Clin. Oncol. 30, 729–734 (2012).

    Article  PubMed  Google Scholar 

  84. Kuukasjarvi, T. et al. Genetic heterogeneity and clonal evolution underlying development of asynchronous metastasis in human breast cancer. Cancer Res. 57, 1597–1604 (1997).

    CAS  PubMed  Google Scholar 

  85. Chang, H. J. et al. Discordant human epidermal growth factor receptor 2 and hormone receptor status in primary and metastatic breast cancer and response to trastuzumab. Jpn J. Clin. Oncol. 41, 593–599 (2011).

    Article  PubMed  Google Scholar 

  86. Gong, Y., Han, E. Y., Guo, M., Pusztai, L. & Sneige, N. Stability of estrogen receptor status in breast carcinoma: a comparison between primary and metastatic tumors with regard to disease course and intervening systemic therapy. Cancer 117, 705–713 (2011).

    Article  PubMed  Google Scholar 

  87. Idirisinghe, P. K. et al. Hormone receptor and c-ERBB2 status in distant metastatic and locally recurrent breast cancer. Pathologic correlations and clinical significance. Am. J. Clin. Pathol. 133, 416–429 (2010).

    Article  PubMed  Google Scholar 

  88. Sauter, G., Lee, J., Bartlett, J. M., Slamon, D. J. & Press, M. F. Guidelines for human epidermal growth factor receptor 2 testing: biologic and methodologic considerations. J. Clin. Oncol. 27, 1323–1333 (2009).

    Article  CAS  PubMed  Google Scholar 

  89. Shimizu, C. et al. c-erbB-2 protein overexpression and p53 immunoreaction in primary and recurrent breast cancer tissues. J. Surg. Oncol. 73, 17–20 (2000).

    Article  CAS  PubMed  Google Scholar 

  90. Thompson, A. M. et al. Prospective comparison of switches in biomarker status between primary and recurrent breast cancer: the Breast Recurrence In Tissues Study (BRITS). Breast Cancer Res. 12, R92 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  91. Tsutsui, S., Ohno, S., Murakami, S., Hachitanda, Y. & Oda, S. Prognostic value of c-erbB2 expression in breast cancer. J. Surg. Oncol. 79, 216–223 (2002).

    Article  CAS  PubMed  Google Scholar 

  92. Burstein, H. J. et al. Preoperative therapy with trastuzumab and paclitaxel followed by sequential adjuvant doxorubicin/cyclophosphamide for HER2 overexpressing stage II or III breast cancer: a pilot study. J. Clin. Oncol. 21, 46–53 (2003).

    Article  CAS  PubMed  Google Scholar 

  93. Harris, L. N. et al. Predictors of resistance to preoperative trastuzumab and vinorelbine for HER2-positive early breast cancer. Clin. Cancer Res. 13, 1198–1207 (2007).

    Article  CAS  PubMed  Google Scholar 

  94. Hurley, J. et al. Docetaxel, cisplatin, and trastuzumab as primary systemic therapy for human epidermal growth factor receptor 2-positive locally advanced breast cancer. J. Clin. Oncol. 24, 1831–1838 (2006).

    Article  CAS  PubMed  Google Scholar 

  95. Mittendorf, E. A. et al. Loss of HER2 amplification following trastuzumab-based neoadjuvant systemic therapy and survival outcomes. Clin. Cancer Res. 15, 7381–7388 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Niikura, N. et al. Loss of human epidermal growth factor receptor 2 (HER2) expression in metastatic sites of HER2-overexpressing primary breast tumors. J. Clin. Oncol. 30, 593–599 (2012).

    Article  PubMed  Google Scholar 

  97. Houssami, N., Macaskill, P., Balleine, R. L., Bilous, M. & Pegram, M. D. HER2 discordance between primary breast cancer and its paired metastasis: tumor biology or test artefact? Insights through meta-analysis. Breast Cancer Res. Treat. 129, 659–674 (2011).

    Article  CAS  PubMed  Google Scholar 

  98. Kuukasjarvi, T., Kononen, J., Helin, H., Holli, K. & Isola, J. Loss of estrogen receptor in recurrent breast cancer is associated with poor response to endocrine therapy. J. Clin. Oncol. 14, 2584–2589 (1996).

    Article  CAS  PubMed  Google Scholar 

  99. Klein, C. A. et al. Comparative genomic hybridization, loss of heterozygosity, and DNA sequence analysis of single cells. Proc. Natl Acad. Sci. USA 96, 4494–4499 (1999).

    Article  CAS  PubMed  Google Scholar 

  100. Gelao, L. et al. Tumour dormancy and clinical implications in breast cancer. Ecancermedicalscience 7, 320 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Ellis, M. J. et al. Whole-genome analysis informs breast cancer response to aromatase inhibition. Nature 486, 353–360 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Banerji, S. et al. Sequence analysis of mutations and translocations across breast cancer subtypes. Nature 486, 405–409 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Meric-Bernstam, F., Farhangfar, C., Mendelsohn, J. & Mills, G. B. Building a personalized medicine infrastructure at a major cancer center. J. Clin. Oncol. 31, 1849–1857 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  104. Oliveira, M. C., Neto, C., Ribeiro Morais, G. & Thiemann, T. Steroid receptor ligands for breast cancer targeting: an insight into their potential role as PET imaging agents. Curr. Med. Chem. 20, 222–245 (2013).

    Article  CAS  PubMed  Google Scholar 

  105. Kelloff, G. J. et al. The progress and promise of molecular imaging probes in oncologic drug development. Clin. Cancer Res. 11, 7967–7985 (2005).

    Article  CAS  PubMed  Google Scholar 

  106. De Mattos-Arruda, L. et al. Circulating tumour cells and cell-free DNA as tools for managing breast cancer. Nat. Rev. Clin. Oncol. 10, 377–389 (2013).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

N. Niikura was supported in part by the MEXT-Supported Program for the Strategic Research Foundation at Private Universities. We thank S. Deming, Scientific Publications, MD Anderson Cancer Center, for editorial assistance.

Author information

Authors and Affiliations

Authors

Contributions

N. Niikura, B. C. Odisio, F. W. Symmans and N. T. Ueno researched data for the article. All authors wrote the article, made substantial contribution to discussion of the content and reviewed/edited the manuscript before submission.

Corresponding author

Correspondence to Naoto T. Ueno.

Ethics declarations

Competing interests

N. T. Ueno receives grant funding from ApoCell Inc. The other authors declare no competing interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Niikura, N., Odisio, B., Tokuda, Y. et al. Latest biopsy approach for suspected metastases in patients with breast cancer. Nat Rev Clin Oncol 10, 711–719 (2013). https://doi.org/10.1038/nrclinonc.2013.182

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrclinonc.2013.182

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer