Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Molecular targets on the horizon for kidney and urothelial cancer

Key Points

  • Whole-genome sequencing is helping to facilitate the discovery of biomarkers of drug sensitivity in both renal cell carcinoma (RCC) and urothelial tumours

  • Urothelial carcinomas contain mutations in multiple genes that are potentially druggable, although clinical data supporting the use of agents targeting these mutations in this disease is still in its infancy

  • Some data linking molecular alterations and clinical outcome is emerging in RCC; overall survival in RCC has improved and patients are being treated for increasingly longer periods of time

  • Genomic and epigenomic mining in RCC has uncovered novel genes and pathways involved in tumorigenesis, genomic regulation, tumour classification and mechanisms of resistance in the various forms of RCC

Abstract

As whole-genome sequencing technology rapidly advances, the insights gained from deciphering cancer genomes are shifting the paradigm in the diagnosis and treatment of cancer with the promise of individualized treatment for each patient. Information gained in this way is extensive for certain cancers, but fairly limited in renal cell carcinomas and urothelial carcinoma. Mutations in multiple, potentially druggable genes have been identified in urothelial carcinomas; however, the association between molecular alterations and clinical outcome has not yet been robustly demonstrated. Data in this area are emerging in renal cell carcinoma, leading to the development of targeted agents that have improved overall survival. Unfortunately, these treatments rarely yield complete responses, are not curative, and development of resistance ensues. This Review will focus on the biology of non-hormonally driven urological cancers. We discuss how approaches using whole-genome sequencing can facilitate the discovery of biomarkers of drug sensitivity in both renal cell carcinomas and urothelial carcinomas. For renal cell carcinomas, we will describe how genomic and epigenomic mining has uncovered novel genes and pathways involved in tumorigenesis, tumour classification and mechanisms of resistance in the various subsets of this disease and the potential for exploiting these discoveries in the clinic.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Signalling pathways involved in cell growth, angiogenesis and metastasis in RCC.
Figure 2: Therapeutic targets in urothelial tumours.

Similar content being viewed by others

References

  1. Siegel, R., Naishadham, D. & Jemal, A. Cancer statistics, 2013. CA Cancer J. Clin. 63, 11–30 (2013).

    Article  PubMed  Google Scholar 

  2. Shah, S. P. et al. The clonal and mutational evolution spectrum of primary triple-negative breast cancers. Nature 486, 395–399 (2012).

    Article  CAS  PubMed  Google Scholar 

  3. Ding, L. et al. Clonal evolution in relapsed acute myeloid leukaemia revealed by whole-genome sequencing. Nature 481, 506–510 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Lehmann, J. et al. Adjuvant cisplatin plus methotrexate versus methotrexate, vinblastine, epirubicin, and cisplatin in locally advanced bladder cancer: results of a randomized, multicenter, phase III trial (AUO-AB 05/95). J. Clin. Oncol. 23, 4963–4974 (2005).

    Article  CAS  PubMed  Google Scholar 

  5. Parekh, D. J., Bochner, B. H. & Dalbagni, G. Superficial and muscle-invasive bladder cancer: principles of management for outcomes assessments. J. Clin. Oncol. 24, 5519–5527 (2006).

    Article  PubMed  Google Scholar 

  6. McConkey, D. J. et al. Molecular genetics of bladder cancer: emerging mechanisms of tumor initiation and progression. Urol. Oncol. 28, 429–440 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Rothman, N. et al. A multi-stage genome-wide association study of bladder cancer identifies multiple susceptibility loci. Nat. Genet. 42, 978–984 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Sidransky, D. et al. Clonal origin bladder cancer. N. Engl. J. Med. 326, 737–740 (1992).

    Article  CAS  PubMed  Google Scholar 

  9. Loehrer, P. J. et al. A randomized comparison of cisplatin alone or in combination with methotrexate, vinblastine, and doxorubicin in patients with metastatic urothelial carcinoma: a cooperative group study. J. Clin. Oncol. 10, 1066–1073 (1992).

    Article  PubMed  Google Scholar 

  10. Bajorin, D. F. et al. Long-term survival in metastatic transitional-cell carcinoma and prognostic factors predicting outcome of therapy. J. Clin. Oncol. 17, 3173–3181 (1999).

    Article  CAS  PubMed  Google Scholar 

  11. Bellmunt, J. et al. Prognostic factors in patients with advanced transitional cell carcinoma of the urothelial tract experiencing treatment failure with platinum-containing regimens. J. Clin. Oncol. 28, 1850–1855 (2010).

    Article  PubMed  Google Scholar 

  12. Kamat, A. M. et al. ICUD-EAU International Consultation on Bladder Cancer 2012: screening, diagnosis, and molecular markers. Eur. Urol. 63, 4–15 (2013).

    Article  PubMed  Google Scholar 

  13. Latif, F. et al. Identification of the von Hippel-Lindau disease tumor suppressor gene. Science 260, 1317–1320 (1993).

    Article  CAS  PubMed  Google Scholar 

  14. Maher, E. R., Neumann, H. P. & Richard, S. von Hippel-Lindau disease: a clinical and scientific review. Eur. J. Hum. Genet. 19, 617–623 (2011).

    Article  CAS  Google Scholar 

  15. Beroukhim, R. et al. Patterns of gene expression and copy-number alterations in von-Hippel Lindau disease-associated and sporadic clear cell carcinoma of the kidney. Cancer Res. 69, 4674–4681 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Yao, M. et al. VHL tumor suppressor gene alterations associated with good prognosis in sporadic clear-cell renal carcinoma. J. Natl Cancer Inst. 94, 1569–1575 (2002).

    Article  CAS  PubMed  Google Scholar 

  17. Choueiri, T. K. et al. von Hippel-Lindau gene status and response to vascular endothelial growth factor targeted therapy for metastatic clear cell renal cell carcinoma. J. Urol. 180, 860–865 (2008).

    Article  CAS  PubMed  Google Scholar 

  18. Zimmer, M. et al. Small-molecule inhibitors of HIF-2a translation link its 5'UTR iron-responsive element to oxygen sensing. Mol. Cell 32, 838–848 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Alimov, A., Sundelin, B., Wang, N., Larsson, C. & Bergerheim, U. Loss of 14q31-q32.2 in renal cell carcinoma is associated with high malignancy grade and poor survival. Int. J. Oncol. 25, 179–185 (2004).

    CAS  PubMed  Google Scholar 

  20. Shen, C. et al. Genetic and functional studies implicate HIF1α as a 14q kidney cancer suppressor gene. Cancer Discov. 1, 222–235 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Maxwell, P. H. et al. The tumour suppressor protein VHL targets hypoxia-inducible factors for oxygen-dependent proteolysis. Nature 399, 271–275 (1999).

    Article  CAS  PubMed  Google Scholar 

  22. Gordan, J. D. et al. HIF-alpha effects on c-Myc distinguish two subtypes of sporadic VHL-deficient clear cell renal carcinoma. Cancer Cell 14, 435–446 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Mandriota, S. J. et al. HIF activation identifies early lesions in VHL kidneys: evidence for site-specific tumor suppressor function in the nephron. Cancer Cell 1, 459–468 (2002).

    Article  CAS  PubMed  Google Scholar 

  24. Yan, Q., Bartz, S., Mao, M., Li, L. & Kaelin, W. G. Jr . The hypoxia-inducible factor 2alpha N-terminal and C-terminal transactivation domains cooperate to promote renal tumorigenesis in vivo. Mol. Cell. Biol. 27, 2092–2102 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Zimmer, M., Doucette, D., Siddiqui, N. & Iliopoulos, O. Inhibition of hypoxia-inducible factor is sufficient for growth suppression of VHL−/− tumors. Mol. Cancer Res. 2, 89–95 (2004).

    CAS  PubMed  Google Scholar 

  26. Maranchie, J. K. et al. The contribution of VHL substrate binding and HIF1-alpha to the phenotype of VHL loss in renal cell carcinoma. Cancer Cell 1, 247–255 (2002).

    Article  CAS  PubMed  Google Scholar 

  27. Covello, K. L. et al. HIF-2α regulates Oct-4: effects of hypoxia on stem cell function, embryonic development, and tumor growth. Genes Dev. 20, 557–570 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Keith, B., Johnson, R. S. & Simon, M. C. HIF1α and HIF2α: sibling rivalry in hypoxic tumour growth and progression. Nat. Rev. Cancer 12, 9–22 (2012).

    Article  CAS  Google Scholar 

  29. Fu, L., Wang, G., Shevchuk, M. M., Nanus, D. M. & Gudas, L. J. Activation of HIF2α in kidney proximal tubule cells causes abnormal glycogen deposition but not tumorigenesis. Cancer Res. 73, 2916–2925 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Kondo, K., Kim, W. Y., Lechpammer, M. & Kaelin, W. G. Jr . Inhibition of HIF2α is sufficient to suppress pVHL-defective tumor growth. PLoS Biol. 1, E83 (2003).

    Article  PubMed  PubMed Central  Google Scholar 

  31. Kondo, K., Klco, J., Nakamura, E., Lechpammer, M. & Kaelin, W. G. Jr . Inhibition of HIF is necessary for tumor suppression by the von Hippel-Lindau protein. Cancer Cell 1, 237–246 (2002).

    Article  CAS  PubMed  Google Scholar 

  32. Raval, R. R. et al. Contrasting properties of hypoxia-inducible factor 1 (HIF-1) and HIF-2 in von Hippel-Lindau-associated renal cell carcinoma. Mol. Cell Biol. 25, 5675–5686 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Chan, D. A. et al. Targeting GLUT1 and the Warburg effect in renal cell carcinoma by chemical synthetic lethality. Sci. Transl. Med. 3, 94ra70 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Maru, S. et al. Inhibition of mTORC2 but not mTORC1 up-regulates E-cadherin expression and inhibits cell motility by blocking HIF-2α expression in human renal cell carcinoma. J. Urol. 189, 1921–1929 (2013).

    Article  CAS  PubMed  Google Scholar 

  35. Varela, I. et al. Exome sequencing identifies frequent mutation of the SWI/SNF complex gene PBRM1 in renal carcinoma. Nature 469, 539–542 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Dalgliesh, G. L. et al. Systematic sequencing of renal carcinoma reveals inactivation of histone modifying genes. Nature 463, 360–363 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Kapur, P. et al. Effects on survival of BAP1 and PBRM1 mutations in sporadic clear-cell renal-cell carcinoma: a retrospective analysis with independent validation. Lancet Oncol. 14, 159–167 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Peña-Llopis, S. et al. BAP1 loss defines a new class of renal cell carcinoma. Nat. Genet. 44, 751–759 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Reisman, D., Glaros, S. & Thompson, E. A. The SWI/SNF complex and cancer. Oncogene 28, 1653–1668 (2009).

    Article  CAS  PubMed  Google Scholar 

  40. Weissman, B. & Knudsen, K. E. Hijacking the chromatin remodeling machinery: impact of SWI/SNF perturbations in cancer. Cancer Res. 69, 8223–8230 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  41. Cancer Genome Atlas Research Network. Comprehensive molecular characterization of clear cell renal cell carcinoma. Nature 499, 43–49 (2013).

  42. Lichner, Z. et al. The chromatin remodeling gene ARID1A is a new prognostic marker in clear cell renal cell carcinoma. Am. J. Pathol. 182, 1163–1170 (2013).

    Article  CAS  PubMed  Google Scholar 

  43. Jones, S. et al. Frequent mutations of chromatin remodeling gene ARID1A in ovarian clear cell carcinoma. Science 330, 228–231 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Guo, G. et al. Frequent mutations of genes encoding ubiquitin-mediated proteolysis pathway components in clear cell renal cell carcinoma. Nat. Genet. 44, 17–19 (2011).

    Article  CAS  PubMed  Google Scholar 

  45. Misaghi, S. et al. Association of C-terminal ubiquitin hydrolase BRCA1-associated protein 1 with cell cycle regulator host cell factor 1. Mol. Cell Biol. 29, 2181–2192 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Scheuermann, J. C. et al. Histone H2A deubiquitinase activity of the polycomb repressive complex PR-DUB. Nature 465, 243–247 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Niu, X. et al. The von Hippel-Lindau tumor suppressor protein regulates gene expression and tumor growth through histone demethylase JARID1C. Oncogene 31, 776–786 (2012).

    Article  CAS  PubMed  Google Scholar 

  48. Gerlinger, M. et al. Intratumor heterogeneity and branched evolution revealed by multiregion sequencing. N. Engl. J. Med. 366, 883–892 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Lopez-Beltran, A. et al. Pathology of renal cell carcinoma: an update. Anal. Quant. Cytol. Histol. 35, 61–76 (2013).

    Google Scholar 

  50. Delahunt, B. et al. Morphologic typing of papillary renal cell carcinoma: comparison of growth kinetics and patient survival in 66 cases. Hum. Pathol. 32, 590–595 (2001).

    Article  CAS  PubMed  Google Scholar 

  51. Waldert, M. et al. Comparison of type I and II papillary renal cell carcinoma (RCC) and clear cell RCC. BJU Int. 102, 1381–1384 (2008).

    PubMed  Google Scholar 

  52. Bellon, S. F. et al. c-Met inhibitors with novel binding mode show activity against several hereditary papillary renal cell carcinoma-related mutations. J. Biol. Chem. 283, 2675–2683 (2008).

    Article  CAS  PubMed  Google Scholar 

  53. Looyenga, B. D. et al. Chromosomal amplification of leucine-rich repeat kinase-2 (LRRK2) is required for oncogenic MET signaling in papillary renal and thyroid carcinomas. Proc. Natl Acad. Sci. USA 108, 1439–1444 (2011).

    Article  Google Scholar 

  54. Sanders, M. E., Mick, R., Tomaszewski, J. E. & Barr, F. G. Unique patterns of allelic imbalance distinguish type 1 from type 2 sporadic papillary renal cell carcinoma. Am. J. Pathol. 161, 997–1005 (2002).

    Article  PubMed  PubMed Central  Google Scholar 

  55. Refae, M. A., Wong, N., Patenaude, F., Bégin, L. R. & Foulkes, W. D. Hereditary leiomyomatosis and renal cell cancer: an unusual and aggressive form of hereditary renal carcinoma. Nat. Clin. Pract. Oncol. 4, 256–261 (2007).

    Article  CAS  PubMed  Google Scholar 

  56. Toro, J. R. et al. BHD mutations, clinical and molecular genetic investigations of Birt-Hogg-Dubé syndrome: a new series of 50 families and a review of published reports. J. Med. Genet. 45, 321–331 (2008).

    Article  CAS  Google Scholar 

  57. Gardie, B. et al. Novel FH mutations in families with hereditary leiomyomatosis and renal cell cancer (HLRCC) and patients with isolated type 2 papillary renal cell carcinoma. J. Med. Genet. 48, 226–234 (2011).

    Article  CAS  PubMed  Google Scholar 

  58. Furge, K. A. et al. Detection of DNA copy number changes and oncogenic signaling abnormalities from gene expression data reveals MYC activation in high-grade papillary renal cell carcinoma. Cancer Res. 67, 3171–3176 (2007).

    Article  CAS  PubMed  Google Scholar 

  59. Prowse, A. H. et al. Somatic inactivation of the VHL gene in Von Hippel-Lindau disease tumors. Am. J. Hum. Genet. 60, 765–771 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Hori, Y. et al. Oxidative stress and DNA hypermethylation status in renal cell carcinoma arising in patients on dialysis. J. Pathol. 212, 218–226 (2007).

    Article  CAS  PubMed  Google Scholar 

  61. Morrissey, C. et al. Epigenetic inactivation of the RASSF1A 3p21.3 tumor suppressor gene in both clear cell and papillary renal cell carcinoma. Cancer Res. 61, 7277–7281 (2001).

    CAS  PubMed  Google Scholar 

  62. Costa, V. L. et al. Quantitative promoter methylation analysis of multiple cancer-related genes in renal cell tumors. BMC Cancer 7, 133 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Awakura, Y., Nakamura, E., Ito, N., Kamoto, T. & Ogawa, O. Methylation-associated silencing of TU3A in human cancers. Int. J. Oncol. 33, 893–899 (2008).

    CAS  PubMed  Google Scholar 

  64. Kvasha, S. et al. Hypermethylation of the 5'CpG island of the FHIT gene in clear cell renal carcinomas. Cancer Lett. 265, 250–257 (2008).

    Article  CAS  PubMed  Google Scholar 

  65. Hirata, H. et al. Wnt antagonist DKK1 acts as a tumor suppressor gene that induces apoptosis and inhibits proliferation in human renal cell carcinoma. Int. J. Cancer 128, 1793–1803 (2011).

    Article  CAS  PubMed  Google Scholar 

  66. Rogenhofer, S. et al. Global histone H3 lysine 27 (H3K27) methylation levels and their prognostic relevance in renal cell carcinoma. BJU Int. 109, 459–465 (2012).

    Article  CAS  PubMed  Google Scholar 

  67. Escudier, B., Szczylik, C., Porta, C. & Gore, M. Treatment selection in metastatic renal cell carcinoma: expert consensus. Nat. Rev. Clin. Oncol. 9, 327–337 (2012).

    Article  CAS  PubMed  Google Scholar 

  68. Kelly, R. J., Billemont, B. & Rixe, O. Renal toxicity of targeted therapies. Target. Oncol. 4, 121–133 (2009).

    Article  PubMed  Google Scholar 

  69. Karaman, M. W. et al. A quantitative analysis of kinase inhibitor selectivity. Nat. Biotechnol. 26, 127–132 (2008).

    Article  CAS  PubMed  Google Scholar 

  70. Hu-Lowe, D. D. et al. Nonclinical antiangiogenesis and antitumor activities of axitinib (AG-013736), an oral, potent, and selective inhibitor of vascular endothelial growth factor receptor tyrosine kinases 1, 2, 3. Clin. Cancer Res. 14, 7272–7283 (2008).

    Article  CAS  PubMed  Google Scholar 

  71. Heng, D. Y. et al. Primary anti-vascular endothelial growth factor (VEGF)-refractory metastatic renal cell carcinoma: clinical characteristics, risk factors, and subsequent therapy. Ann. Oncol. 23, 1549–1555 (2012).

    Article  CAS  PubMed  Google Scholar 

  72. Casanovas, O., Hicklin, D. J., Bergers, G. & Hanahan, D. Drug resistance by evasion of antiangiogenic targeting of VEGF signaling in late-stage pancreatic islet tumors. Cancer Cell 8, 299–309 (2005).

    Article  CAS  PubMed  Google Scholar 

  73. Linehan, W. M., Srinivasan, R. & Schmidt, L. S. The genetic basis of kidney cancer: a metabolic disease. Nat. Rev. Urol. 7, 277–285 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Rapisarda, A. & Melillo, G. Overcoming disappointing results with antiangiogenic therapy by targeting hypoxia. Nat. Rev. Clin. Oncol. 9, 378–390 (2012).

    Article  CAS  PubMed  Google Scholar 

  75. Pàez-Ribes, M. et al. Antiangiogenic therapy elicits malignant progression of tumors to increased local invasion and distant metastasis. Cancer Cell 15, 220–231 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Huang, D. et al. Interleukin-8 mediates resistance to antiangiogenic agent sunitinib in renal cell carcinoma. Cancer Res. 70, 1063–1071 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Welti, J. C. et al. Fibroblast growth factor 2 regulates endothelial cell sensitivity to sunitinib. Oncogene 30, 1183–1193 (2011).

    Article  CAS  PubMed  Google Scholar 

  78. US National Library of Medicine. ClinicalTrials.gov [online], (2013).

  79. Xu, C. F. et al. Pazopanib efficacy in renal cell carcinoma: evidence for predictive genetic markers in angiogenesis-related and exposure-related genes. J. Clin. Oncol. 29, 2557–2564 (2011).

    Article  CAS  PubMed  Google Scholar 

  80. Choueiri, T. K. et al. Phase II and biomarker study of the dual MET/VEGFR2 inhibitor foretinib in patients with papillary renal cell carcinoma. J. Clin. Oncol. 31, 181–186 (2013).

    Article  CAS  PubMed  Google Scholar 

  81. Choueiri, T. K. et al. Activity of cabozantinib (XL184) in patients (pts) with metastatic, refractory renal cell carcinoma (RCC) [abstract]. J. Clin. Oncol. 30 (Suppl. 5), a364 (2012).

    Article  Google Scholar 

  82. Carbone, C. et al. Anti-VEGF treatment-resistant pancreatic cancers secrete proinflammatory factors that contribute to malignant progression by inducing an EMT cell phenotype. Clin. Cancer Res. 17, 5822–5832 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Sievert, K. et al. Economic aspects of bladder cancer: what are the benefits and costs? World J. Urol. 27, 295–300 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Gakis, G. et al. ICUD-EAU International Consultation on Bladder Cancer 2012: Radical cystectomy and bladder preservation for muscle-invasive urothelial carcinoma of the bladder. Eur. Urol. 63, 45–57 (2013).

    Article  PubMed  Google Scholar 

  85. Burger, M. et al. ICUD-EAU International Consultation on Bladder Cancer 2012: non-muscle-invasive urothelial carcinoma of the bladder. Eur. Urol. 63, 36–44 (2013).

    Article  PubMed  Google Scholar 

  86. Sternberg, C. N. et al. ICUD-EAU International Consultation on Bladder Cancer 2012: Chemotherapy for urothelial carcinoma-neoadjuvant and adjuvant settings. Eur. Urol. 63, 58–66 (2013).

    Article  PubMed  Google Scholar 

  87. Bellmunt, J. & Petrylak, D. P. New therapeutic challenges in advanced bladder cancer. Semin. Oncol. 39, 598–607 (2012).

    Article  CAS  PubMed  Google Scholar 

  88. Sanchez-Carbayo, M. & Cordon-Cardo, C. Applications of array technology: identification of molecular targets in bladder cancer. Br. J. Cancer 89, 2172–2177 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Sjodahl, G. et al. A molecular taxonomy for urothelial carcinoma. Clin. Cancer Res. 18, 3377–3386 (2012).

    Article  CAS  PubMed  Google Scholar 

  90. Sjodahl, G. et al. A systematic study of gene mutations in urothelial carcinoma; inactivating mutations in TSC2 and PIK3R1. PLoS ONE 6, e18583 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Lindgren, D. et al. Integrated genomic and gene expression profiling identifies two major genomic circuits in urothelial carcinoma. PLoS ONE 7, e38863 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Lindgren, D. et al. Combined gene expression and genomic profiling define two intrinsic molecular subtypes of urothelial carcinoma and gene signatures for molecular grading and outcome. Cancer Res. 70, 3463–3472 (2010).

    Article  CAS  PubMed  Google Scholar 

  93. Milowsky, M. I. et al. Phase II study of everolimus in metastatic urothelial cancer. BJU Int. 112, 462–470 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Iyer, G. et al. Genome sequencing identifies a basis for everolimus sensitivity. Science 338, 221 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Iyer, G. et al. Prevalence and co-occurrence of actionable genomic alterations in high-grade bladder cancer. J. Clin. Oncol. http://dx.doi.org/10.1200/JCO.2012.46.5740.

  96. Wang, Z. & Sun, Y. Targeting p53 for novel anticancer therapy. Transl. Oncol. 3, 1–12 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  97. Gui, Y. et al. Frequent mutations of chromatin remodeling genes in transitional cell carcinoma of the bladder. Nat. Genet. 43, 875–878 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. National Cancer Institute. The Cancer Genome Atlas [online], (2012).

  99. Bellmunt, J., Hussain, M. & Dinney, C. P. Novel approaches with targeted therapies in bladder cancer. Therapy of bladder cancer by blockade of the epidermal growth factor receptor family. Crit. Rev. Oncol. Hematol. 46 (Suppl.), S85–S104 (2003).

    Article  PubMed  Google Scholar 

  100. Nutt, J. E., Lazarowicz, H. P., Mellon, J. K. & Lunec, J. Gefitinib ('Iressa', ZD1839) inhibits the growth response of bladder tumour cell lines to epidermal growth factor and induces TIMP2. Br. J. Cancer 90, 1679–1685 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Ruck, A. & Paulie, S. EGF, TGF alpha, AR and HB-EGF are autocrine growth factors for human bladder carcinoma cell lines. Anticancer Res. 18, 1447–1452 (1998).

    CAS  PubMed  Google Scholar 

  102. Perrotte, P. et al. Anti-epidermal growth factor receptor antibody C225 inhibits angiogenesis in human transitional cell carcinoma growing orthotopically in nude mice. Clin. Cancer Res. 5, 257–265 (1999).

    CAS  PubMed  Google Scholar 

  103. Bambury, R. M. & Rosenberg, J. E. Advanced urothelial carcinoma: overcoming treatment resistance through novel treatment approaches. Front. Pharmacol. 4, 3 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Petrylak, D. P. et al. Results of the Southwest Oncology Group phase II evaluation (study S0031) of ZD1839 for advanced transitional cell carcinoma of the urothelium. BJU Int. 105, 317–321 (2010).

    Article  CAS  PubMed  Google Scholar 

  105. Pruthi, R. S. et al. A phase II trial of neoadjuvant erlotinib in patients with muscle-invasive bladder cancer undergoing radical cystectomy: clinical and pathological results. BJU Int. 106, 349–354 (2010).

    Article  CAS  PubMed  Google Scholar 

  106. Pirker, R. et al. Cetuximab plus chemotherapy in patients with advanced non-small-cell lung cancer (FLEX): an open-label randomised phase III trial. Lancet 373, 1525–1531 (2009).

    Article  CAS  PubMed  Google Scholar 

  107. Philips, G. K. et al. A phase II trial of cisplatin (C), gemcitabine (G) and gefitinib for advanced urothelial tract carcinoma: results of Cancer and Leukemia Group B (CALGB) 90102. Ann. Oncol. 20, 1074–1079 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Grivas, P. et al. Randomized phase II trial of gemcitabine/cisplatin (GC) with or without cetuximab (CET) in patients (pts) with advanced urothelial carcinoma (UC) [abstract]. J. Clin. Oncol. 30 (Suppl.), a4506 (2012).

    Google Scholar 

  109. Inoue, K. et al. Paclitaxel enhances the effects of the anti-epidermal growth factor receptor monoclonal antibody ImClone C225 in mice with metastatic human bladder transitional cell carcinoma. Clin. Cancer Res. 6, 4874–4884 (2000).

    CAS  PubMed  Google Scholar 

  110. Wong, Y. N. et al. Phase II trial of cetuximab with or without paclitaxel in patients with advanced urothelial tract carcinoma. J. Clin. Oncol. 30, 3545–3551 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Black, P. C. et al. Sensitivity to epidermal growth factor receptor inhibitor requires E-cadherin expression in urothelial carcinoma cells. Clin. Cancer Res. 14, 1478–1486 (2008).

    Article  CAS  PubMed  Google Scholar 

  112. McConkey, D. J. et al. HDAC inhibitors reverse epithelial-to-mesenchymal transition (EMT) and restore sensitivity to EGFR inhibitors in urothelial carcinoma cells [abstract]. ASCO Genitourinary Cancers Symp. a267 (2009).

  113. Laé, M. et al. Assessing HER2 gene amplification as a potential target for therapy in invasive urothelial bladder cancer with a standardized methodology: results in patients. Ann. Oncol. 21, 815–819 (2010).

    Article  PubMed  Google Scholar 

  114. Fleischmann, A., Rotzer, D., Seiler, R., Studer, U. E. & Thalmann, G. N. HER2 amplification is significantly more frequent in lymph node metastases from urothelial bladder cancer than in the primary tumours. Eur. Urol. 60, 350–357 (2011).

    Article  CAS  PubMed  Google Scholar 

  115. Galsky, M. D. et al. Target-specific, histology-independent, randomized discontinuation study of lapatinib in patients with HER2-amplified solid tumors. Invest. New Drugs 30, 695–701 (2012).

    Article  CAS  PubMed  Google Scholar 

  116. Hussain, M. H. et al. Trastuzumab, paclitaxel, carboplatin, and gemcitabine in advanced human epidermal growth factor receptor-2/neu-positive urothelial carcinoma: results of a multicenter phase II National Cancer Institute trial. J. Clin. Oncol. 25, 2218–2224 (2007).

    Article  CAS  PubMed  Google Scholar 

  117. Beuzeboc, P. et al. Trastuzumab (T) combined with standard chemotherapy in HER+ metastatic bladder cancer (BC) patients: interim safety results of a prospective randomized phase II study [abstract]. J. Clin. Oncol. 25 (Suppl.), a15565 (2007).

    Google Scholar 

  118. US National Library of Medicine. ClinicalTrials.gov [online], (2013).

  119. Wülfing, C. et al. A single-arm, multicenter, open-label phase 2 study of lapatinib as the second-line treatment of patients with locally advanced or metastatic transitional cell carcinoma. Cancer 115, 2881–2890 (2009).

    Article  CAS  PubMed  Google Scholar 

  120. US National Library of Medicine. ClinicalTrials.gov [online], (2012).

  121. Iyer, G. & Milowsky, M. I. Fibroblast growth factor receptor-3 in urothelial tumorigenesis. Urol. Oncol. 31, 303–311, (2013).

    Article  CAS  PubMed  Google Scholar 

  122. Lamont, F. R. et al. Small molecule FGF receptor inhibitors block FGFR-dependent urothelial carcinoma growth in vitro and in vivo. Br. J. Cancer 104, 75–82 (2011).

    Article  CAS  PubMed  Google Scholar 

  123. Billerey, C. et al. Frequent FGFR3 mutations in papillary non-invasive bladder (pTa) tumors. Am. J. Pathol. 158, 1955–1959 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. van Rhijn, B. W. et al. The FGFR3 mutation is related to favorable pT1 bladder cancer. J. Urol. 187, 310–314 (2012).

    Article  CAS  PubMed  Google Scholar 

  125. van Oers, J. M. et al. FGFR3 mutations indicate better survival in invasive upper urinary tract and bladder tumours. Eur. Urol. 55, 650–657 (2009).

    Article  CAS  PubMed  Google Scholar 

  126. Rebouissou, S. et al. CDKN2A homozygous deletion is associated with muscle invasion in FGFR3-mutated urothelial bladder carcinoma. J. Pathol. 227, 315–324 (2012).

    Article  CAS  PubMed  Google Scholar 

  127. van Rhijn, B. W. et al. FGFR3 and p53 characterize alternative genetic pathways in the pathogenesis of urothelial cell carcinoma. Cancer Res. 64, 1911–1914 (2004).

    Article  CAS  PubMed  Google Scholar 

  128. Milowsky, M. et al. Final results of a multicenter, open-label phase II trial of dovitinib (TKI258) in patients with advanced urothelial carcinoma with either mutated or nonmutated FGFR3 [abstract]. J. Clin. Oncol. 31 (Suppl. 6), a255 (2013).

    Article  Google Scholar 

  129. US National Library of Medicine. ClinicalTrials.gov [online], (2013).

  130. Williams, S. V., Hurst, C. D. & Knowles, M. A. Oncogenic FGFR3 gene fusions in bladder cancer. Hum. Mol. Genet. 22, 795–803 (2013).

    Article  CAS  PubMed  Google Scholar 

  131. Courtney, K. D., Corcoran, R. B. & Engelman, J. A. The PI3K pathway as drug target in human cancer. J. Clin. Oncol. 28, 1075–1083 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Platt, F. M. et al. Spectrum of phosphatidylinositol 3-kinase pathway gene alterations in bladder cancer. Clin. Cancer Res. 15, 6008–6017 (2009).

    Article  CAS  PubMed  Google Scholar 

  133. López-Knowles, E. et al. PIK3CA mutations are an early genetic alteration associated with FGFR3 mutations in superficial papillary bladder tumors. Cancer Res. 66, 7401–7404 (2006).

    Article  PubMed  Google Scholar 

  134. Ching, C. B. & Hansel, D. E. Expanding therapeutic targets in bladder cancer: the PI3K/Akt/mTOR pathway. Lab. Invest. 90, 1406–1414 (2010).

    Article  CAS  PubMed  Google Scholar 

  135. Kompier, L. C. et al. FGFR3, HRAS, KRAS, NRAS and PIK3CA mutations in bladder cancer and their potential as biomarkers for surveillance and therapy. PLoS ONE 5, e13821 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Knowles, M. A., Platt, F. M., Ross, R. L. & Hurst, C. D. Phosphatidylinositol 3-kinase (PI3K) pathway activation in bladder cancer. Cancer Metastasis Rev. 28, 305–316 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. US National Library of Medicine. ClinicalTrials.gov [online], (2013).

  138. Bendell, J. C. et al. Phase I, dose-escalation study of BKM120, an oral pan-class I PI3K inhibitor, in patients with advanced solid tumors. J. Clin. Oncol. 30, 282–290 (2012).

    Article  CAS  PubMed  Google Scholar 

  139. Munster, P. et al. PI3K kinase inhibitor GSK2126458 (GSK458): clinical activity in select patient (PT) populations defined by predictive markers (study P3K112826) [abstract]. Ann. Oncol. 23 (Suppl. 9), a4420 (2012).

    Google Scholar 

  140. Gomez-Pinillos, A. & Ferrari, A. C. mTOR signaling pathway and mTOR inhibitors in cancer therapy. Hematol. Oncol. Clin. North Am. 26, 483–505 (2012).

    Article  PubMed  Google Scholar 

  141. Seront, E. et al. Phase II study of everolimus in patients with locally advanced or metastatic transitional cell carcinoma of the urothelial tract: clinical activity, molecular response, and biomarkers. Ann. Oncol. 23, 2663–2670 (2012).

    Article  CAS  PubMed  Google Scholar 

  142. Milowsky, M. I. et al. Final results of a phase II study of everolimus (RAD001) in metastatic transitional cell carcinoma (TCC) of the urothelium [abstract]. J. Clin. Oncol. 29 (Suppl.), a4606 (2011).

    Article  Google Scholar 

  143. Guo, Y. et al. TSC1 involvement in bladder cancer: diverse effects and therapeutic implications. J. Pathol. 230, 17–27 (2013).

    Article  CAS  PubMed  Google Scholar 

  144. US National Library of Medicine. ClinicalTrials.gov [online], (2013).

  145. US National Library of Medicine. ClinicalTrials.gov [online], (2012).

  146. US National Library of Medicine. ClinicalTrials.gov [online], (2013).

  147. US National Library of Medicine. ClinicalTrials.gov [online], (2013).

  148. Kopparapu, P. K. et al. Expression of VEGF and its receptors VEGFR1/VEGFR2 is associated with invasiveness of bladder cancer. Anticancer Res. 33, 2381–2390 (2013).

    CAS  PubMed  Google Scholar 

  149. Inoue, K. et al. Interleukin 8 expression regulates tumorigenicity and metastasis in human bladder cancer. Cancer Res. 60, 2290–2299 (2000).

    CAS  PubMed  Google Scholar 

  150. Allen, L. E. & Maher, P. A. Expression of basic fibroblast growth factor and its receptor in an invasive bladder carcinoma cell line. J. Cell Physiol. 155, 368–375 (1993).

    Article  CAS  PubMed  Google Scholar 

  151. Afonso, J., Santos, L. L., Amaro, T., Lobo, F. & Longatto-Filho, A. The aggressiveness of urothelial carcinoma depends to a large extent on lymphovascular invasion--the prognostic contribution of related molecular markers. Histopathology 55, 514–524 (2009).

    Article  PubMed  Google Scholar 

  152. Dreicer, R. et al. Phase 2 trial of sorafenib in patients with advanced urothelial cancer: a trial of the Eastern Cooperative Oncology Group. Cancer 115, 4090–4095 (2009).

    Article  CAS  PubMed  Google Scholar 

  153. Sridhar, S. S. et al. A phase II trial of sorafenib in first-line metastatic urothelial cancer: a study of the PMH Phase II Consortium. Invest. New Drugs 29, 1045–1049 (2011).

    Article  CAS  PubMed  Google Scholar 

  154. Sonpavde, G. et al. Sunitinib malate is active against human urothelial carcinoma and enhances the activity of cisplatin in a preclinical model. Urol. Oncol. 27, 391–399 (2009).

    Article  CAS  PubMed  Google Scholar 

  155. Gallagher, D. J. et al. Phase II study of sunitinib in patients with metastatic urothelial cancer. J. Clin. Oncol. 28, 1373–1379 (2010).

    Article  CAS  PubMed  Google Scholar 

  156. Bellmunt, J. et al. Phase II study of sunitinib as first-line treatment of urothelial cancer patients ineligible to receive cisplatin-based chemotherapy: baseline interleukin-8 and tumor contrast enhancement as potential predictive factors of activity. Ann. Oncol. 22, 2646–2653 (2011).

    Article  CAS  PubMed  Google Scholar 

  157. Galsky, M. D. et al. Gemcitabine, cisplatin, and sunitinib for metastatic urothelial carcinoma and as preoperative therapy for muscle-invasive bladder cancer. Clin. Genitourin. Cancer 11, 175–181 (2013).

    Article  PubMed  Google Scholar 

  158. Grivas, P. et al. Randomized phase II trial of maintenance sunitinib versus placebo following response to chemotherapy (CT) for patients (pts) with advanced urothelial carcinoma (UC) [abstract]. J. Clin. Oncol. 30 (Suppl.), a265 (2012).

    Article  Google Scholar 

  159. Necchi, A. et al. Pazopanib in advanced and platinum-resistant urothelial cancer: an open-label, single group, phase 2 trial. Lancet Oncol. 13, 810–816 (2012).

    Article  CAS  PubMed  Google Scholar 

  160. US National Library of Medicine. ClinicalTrials.gov [online], (2013).

  161. US National Library of Medicine. ClinicalTrials.gov [online], (2013).

  162. Choueiri, T. K. et al. Double-blind, randomized trial of docetaxel plus vandetanib versus docetaxel plus placebo in platinum-pretreated metastatic urothelial cancer. J. Clin. Oncol. 30, 507–512 (2012).

    Article  CAS  PubMed  Google Scholar 

  163. Hahn, N. M. et al. Phase II trial of cisplatin, gemcitabine, and bevacizumab as first-line therapy for metastatic urothelial carcinoma: Hoosier Oncology Group GU 04–75. J. Clin. Oncol. 29, 1525–1530 (2011).

    Article  CAS  PubMed  Google Scholar 

  164. US National Library of Medicine. ClinicalTrials.gov [online], (2013).

  165. Balar, A. V. et al. Phase II study of gemcitabine, carboplatin, and bevacizumab in patients with advanced unresectable or metastatic urothelial cancer. J. Clin. Oncol. 31, 724–730 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. US National Library of Medicine. ClinicalTrials.gov [online], (2013).

  167. US National Library of Medicine. ClinicalTrials.gov [online], (2013).

  168. US National Library of Medicine. ClinicalTrials.gov [online], (2012).

  169. Richardson, P. G. et al. Inhibition of heat shock protein 90 (HSP90) as a therapeutic strategy for the treatment of myeloma and other cancers. Br. J. Haematol. 152, 367–379 (2011).

    Article  CAS  PubMed  Google Scholar 

  170. Kamada, M. et al. Hsp27 knockdown using nucleotide-based therapies inhibit tumor growth and enhance chemotherapy in human bladder cancer cells. Mol. Cancer Ther. 6, 299–308 (2007).

    Article  CAS  PubMed  Google Scholar 

  171. Kanagasabai, R. et al. Hsp27 protects adenocarcinoma cells from UV-induced apoptosis by Akt and p21-dependent pathways of survival. Mol. Cancer Res. 8, 1399–1412 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Concannon, C. G., Gorman, A. M. & Samali, A. On the role of Hsp27 in regulating apoptosis. Apoptosis 8, 61–70 (2003).

    Article  CAS  PubMed  Google Scholar 

  173. Bruey, J. M. et al. Hsp27 negatively regulates cell death by interacting with cytochrome c. Nat. Cell Biol. 2, 645–652 (2000).

    Article  CAS  PubMed  Google Scholar 

  174. Hayashi, N. et al. Hsp27 silencing coordinately inhibits proliferation and promotes Fas-induced apoptosis by regulating the PEA-15 molecular switch. Cell Death Differ. 19, 990–1002 (2012).

    Article  CAS  PubMed  Google Scholar 

  175. Garg, M. et al. Heat-shock protein 70–72 (HSP70–2) expression in bladder urothelial carcinoma is associated with tumour progression and promotes migration and invasion. Eur. J. Cancer 46, 207–215 (2010).

    Article  CAS  PubMed  Google Scholar 

  176. US National Library of Medicine. ClinicalTrials.gov [online], (2013).

  177. US National Library of Medicine. ClinicalTrials.gov [online], (2013).

  178. Sonpavde, G. & Choueiri, T. K. Biomarkers: the next therapeutic hurdle in metastatic renal cell carcinoma. Br. J. Cancer 107, 1009–1016 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Patel, P. H. et al. Hypoxia-inducible factor (HIF) 1a and 2a levels in cell lines and human tumor predicts response to sunitinib in renal cell carcinoma (RCC) [abstract]. J. Clin. Oncol. 26 (Suppl. 15), a5008 (2008).

    Article  Google Scholar 

  180. McDermott, D. F. et al. The high-dose aldesleukin (HD IL-2) 'SELECT' trial in patients with metastatic renal cell carcinoma [abstract]. J. Clin. Oncol. 28 (Suppl.), a4514 (2010).

    Article  Google Scholar 

  181. Rini, B. I. et al. Antitumor activity and biomarker analysis of sunitinib in patients with bevacizumab-refractory metastatic renal cell carcinoma. J. Clin. Oncol. 26, 3743–3748 (2008).

    Article  CAS  PubMed  Google Scholar 

  182. Hutson, T. E. et al. Biomarker analysis and final efficacy and safety results of a phase II renal cell carcinoma trial with pazopanib (GW786034), a multi-kinase angiogenesis inhibitor [abstract]. J. Clin. Oncol. 26 (Suppl.), a5046 (2008).

    Article  Google Scholar 

  183. Tran, H. T. et al. Prognostic or predictive plasma cytokines and angiogenic factors for patients treated with pazopanib for metastatic renal-cell cancer: a retrospective analysis of phase 2 and phase 3 trials. Lancet Oncol. 13, 827–837 (2012).

    Article  CAS  PubMed  Google Scholar 

  184. Zurita, A. J. et al. A cytokine and angiogenic factor (CAF) analysis in plasma for selection of sorafenib therapy in patients with metastatic renal cell carcinoma. Ann. Oncol. 23, 46–52 (2012).

    Article  CAS  PubMed  Google Scholar 

  185. Kim, J. J. et al. Association of VEGF and VEGFR2 single nucleotide polymorphisms with hypertension and clinical outcome in metastatic clear cell renal cell carcinoma patients treated with sunitinib. Cancer 118, 1946–1954 (2012).

    Article  CAS  PubMed  Google Scholar 

  186. Rini, B. I. et al. Diastolic blood pressure as a biomarker of axitinib efficacy in solid tumors. Clin. Cancer Res. 17, 3841–3849 (2011).

    Article  CAS  PubMed  Google Scholar 

  187. Wulfing, C. et al. A single-arm, multicenter, open-label phase 2 study of lapatinib as the second-line treatment of patients with locally advanced or metastatic transitional cell carcinoma. Cancer 115, 2881–2890 (2009).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All the authors researched data for the article, made a substantial contribution to the discussion of the content, wrote the article and reviewed and edited it prior to submission.

Corresponding author

Correspondence to Joaquim Bellmunt.

Ethics declarations

Competing interests

J. Bellmunt is a consultant for Novartis, OncoGenex and Pfizer. J. E. Rosenberg is a consultant for Boehringer-Ingelheim, Bristol-Myers Squibb, Dendreon, and OncoGenex. B. Teh and G. Tortora declare no competing interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bellmunt, J., Teh, B., Tortora, G. et al. Molecular targets on the horizon for kidney and urothelial cancer. Nat Rev Clin Oncol 10, 557–570 (2013). https://doi.org/10.1038/nrclinonc.2013.155

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrclinonc.2013.155

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer