Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Patient-derived tumour xenografts as models for oncology drug development

Abstract

Progress in oncology drug development has been hampered by a lack of preclinical models that reliably predict clinical activity of novel compounds in cancer patients. In an effort to address these shortcomings, there has been a recent increase in the use of patient-derived tumour xenografts (PDTX) engrafted into immune-compromised rodents such as athymic nude or NOD/SCID mice for preclinical modelling. Numerous tumour-specific PDTX models have been established and, importantly, they are biologically stable when passaged in mice in terms of global gene-expression patterns, mutational status, metastatic potential, drug responsiveness and tumour architecture. These characteristics might provide significant improvements over standard cell-line xenograft models. This Review will discuss specific PDTX disease examples illustrating an overview of the opportunities and limitations of these models in cancer drug development, and describe concepts regarding predictive biomarker development and future applications.

Key Points

  • Many preclinical animal models fail to accurately predict the clinical efficacy of novel anticancer agents, largely due to their inability to reflect the complexity and heterogeneity of human tumours

  • Patient-derived tumour xenograft models (PDTX), where surgically resected tumour samples are engrafted directly into immune-compromised mice, offer several advantages over standard cell-line xenograft models

  • PDTX tumours maintain the molecular, genetic and histological heterogeneity typical of tumours of origin through serial passaging in mice

  • The tumour histology of PDTX models provides an excellent in vivo preclinical platform to study cancer stem-cell biology and stromal–tumour interactions; novel cancer therapeutics can also be assessed

  • Well-characterized PDTX models represent an information-rich preclinical resource for analysis of drug activity, including novel–novel drug combinations, as well as predictive biomarker discovery

  • The PDTX approach to modelling of specific cancer types could potentially reduce non-informative animal studies while providing a more-relevant system to test clinically directed hypotheses

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Establishment and testing of PDTX models.
Figure 2: Comparison of genome-wide gene-expression profiles between primary patient tumours and PDTX tumours.
Figure 3: Predictive biomarker development strategy in PDTX models.

Similar content being viewed by others

References

  1. Johnson, J. I. et al. Relationships between drug activity in NCI preclinical in vitro and in vivo models and early clinical trials. Br. J. Cancer 84, 1424–1431 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Daniel, V. C. et al. A primary xenograft model of small-cell lung cancer reveals irreversible changes in gene expression imposed by culture in vitro. Cancer Res. 69, 3364–3373 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Giovanella, B. C. et al. DNA topoisomerase I--targeted chemotherapy of human colon cancer in xenografts. Science 246, 1046–1048 (1989).

    Article  CAS  PubMed  Google Scholar 

  4. Houghton, J. A., Maroda, S. J. Jr, Phillips, J. O. & Houghton, P. J. Biochemical determinants of responsiveness to 5-fluorouracil and its derivatives in xenografts of human colorectal adenocarcinomas in mice. Cancer Res. 41, 144–149 (1981).

    CAS  PubMed  Google Scholar 

  5. Houghton, J. A. & Taylor, D. M. Growth characteristics of human colorectal tumours during serial passage in immune-deprived mice. Br. J. Cancer 37, 213–223 (1978).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Jin, K. et al. Patient-derived human tumour tissue xenografts in immunodeficient mice: a systematic review. Clin. Transl. Oncol. 12, 473–480 (2010).

    Article  PubMed  Google Scholar 

  7. Morton, C. L. & Houghton, P. J. Establishment of human tumor xenografts in immunodeficient mice. Nat. Protoc. 2, 247–250 (2007).

    Article  CAS  PubMed  Google Scholar 

  8. Rubio-Viqueira, B. & Hidalgo, M. Direct in vivo xenograft tumor model for predicting chemotherapeutic drug response in cancer patients. Clin. Pharmacol. Ther. 85, 217–221 (2009).

    Article  CAS  PubMed  Google Scholar 

  9. Sausville, E. A. & Burger, A. M. Contributions of human tumor xenografts to anticancer drug development. Cancer Res. 66, 3351–3354 (2006).

    Article  CAS  PubMed  Google Scholar 

  10. Jin, K. et al. Patient-derived human tumour tissue xenografts in immunodeficient mice: a systematic review. Clin. Transl. Oncol. 12, 473–480 (2010).

    Article  PubMed  Google Scholar 

  11. Rubio-Viqueira, B. et al. An in vivo platform for translational drug development in pancreatic cancer. Clin. Cancer Res. 12, 4652–4661 (2006).

    Article  CAS  PubMed  Google Scholar 

  12. John, T. et al. The ability to form primary tumor xenografts is predictive of increased risk of disease recurrence in early-stage non-small cell lung cancer. Clin. Cancer Res. 17, 134–141 (2011).

    Article  CAS  PubMed  Google Scholar 

  13. Merk, J., Rolff, J., Becker, M., Leschber, G. & Fichtner, I. Patient-derived xenografts of non-small-cell lung cancer: a pre-clinical model to evaluate adjuvant chemotherapy? Eur. J. Cardiothorac. Surg. 36, 454–459 (2009).

    Article  PubMed  Google Scholar 

  14. Shultz, L. D. et al. Human lymphoid and myeloid cell development in NOD/LtSz-scid IL2Rγnull mice engrafted with mobilized human hemopoietic stem cells. J. Immunol. 174, 6477–6489 (2005).

    Article  CAS  PubMed  Google Scholar 

  15. Simpson-Abelson, M. R. et al. Long-term engraftment and expansion of tumor-derived memory T cells following the implantation of non-disrupted pieces of human lung tumor into NOD-scid IL2Rγnull mice. J. Immunol. 180, 7009–7018 (2008).

    Article  CAS  PubMed  Google Scholar 

  16. Pitts, T. M. et al. Development of an integrated genomic classifier for a novel agent in colorectal cancer: approach to individualized therapy in early development. Clin. Cancer Res. 16, 3193–3204 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Sanz, L. et al. Differential transplantability of human endothelial cells in colorectal cancer and renal cell carcinoma primary xenografts. Lab. Invest. 89, 91–97 (2009).

    Article  CAS  PubMed  Google Scholar 

  18. Gray, D. R. et al. Short-term human prostate primary xenografts: an in vivo model of human prostate cancer vasculature and angiogenesis. Cancer Res. 64, 1712–1721 (2004).

    Article  CAS  PubMed  Google Scholar 

  19. Smith, V., Wirth, G. J., Fiebig, H. H. & Burger, A. M. Tissue microarrays of human tumor xenografts: characterization of proteins involved in migration and angiogenesis for applications in the development of targeted anticancer agents. Cancer Genomics Proteomics 5, 263–273 (2008).

    CAS  PubMed  Google Scholar 

  20. Garrido-Laguna, I. et al. Tumor engraftment in nude mice and enrichment in stroma- related gene pathways predict poor survival and resistance to gemcitabine in patients with pancreatic cancer. Clin. Cancer Res. 17, 5793–5800 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Fichtner, I. et al. Establishment of patient-derived non-small cell lung cancer xenografts as models for the identification of predictive biomarkers. Clin. Cancer Res. 14, 6456–6468 (2008).

    Article  CAS  PubMed  Google Scholar 

  22. Jones, S. et al. Core signaling pathways in human pancreatic cancers revealed by global genomic analyses. Science 321, 1801–1806 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Linnebacher, M. et al. Cryopreservation of human colorectal carcinomas prior to xenografting. BMC Cancer 10, 362 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  24. Dangles-Marie, V. et al. Establishment of human colon cancer cell lines from fresh tumors versus xenografts: comparison of success rate and cell line features. Cancer Res. 67, 398–407 (2007).

    Article  CAS  PubMed  Google Scholar 

  25. Guenot, D. et al. Primary tumour genetic alterations and intra-tumoral heterogeneity are maintained in xenografts of human colon cancers showing chromosome instability. J. Pathol. 208, 643–652 (2006).

    Article  CAS  PubMed  Google Scholar 

  26. Fichtner, I. et al. Anticancer drug response and expression of molecular markers in early-passage xenotransplanted colon carcinomas. Eur. J. Cancer 40, 298–307 (2004).

    Article  CAS  PubMed  Google Scholar 

  27. Krumbach, R. et al. Primary resistance to cetuximab in a panel of patient-derived tumour xenograft models: activation of MET as one mechanism for drug resistance. Eur. J. Cancer 47, 1231–1243 (2011).

    Article  CAS  PubMed  Google Scholar 

  28. Bertotti, A. et al. A molecularly annotated platform of patient-derived xenografts ('xenopatients') identifies HER2 as an effective therapeutic target in cetuximab-resistant colorectal cancer. Cancer Discov. 1, 508–523 (2011).

    Article  CAS  PubMed  Google Scholar 

  29. Tentler, J. J. et al. Identification of predictive markers of response to the MEK1/2 inhibitor selumetinib (AZD6244) in K-ras-mutated colorectal cancer. Mol. Cancer Ther. 9, 3351–3362 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Arcaroli, J. J. et al. Gene array and fluorescence in situ hybridization biomarkers of activity of saracatinib (AZD0530), a Src inhibitor, in a preclinical model of colorectal cancer. Clin. Cancer Res. 16, 4165–4177 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Dalerba, P. et al. Phenotypic characterization of human colorectal cancer stem cells. Proc. Natl Acad. Sci. USA 104, 10158–10163 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Olive, K. P. et al. Inhibition of Hedgehog signaling enhances delivery of chemotherapy in a mouse model of pancreatic cancer. Science 324, 1457–1461 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Kim, M. P. et al. Generation of orthotopic and heterotopic human pancreatic cancer xenografts in immunodeficient mice. Nat. Protoc. 4, 1670–1680 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Fu, X., Guadagni, F. & Hoffman, R. M. A metastatic nude-mouse model of human pancreatic cancer constructed orthotopically with histologically intact patient specimens. Proc. Natl Acad. Sci. USA 89, 5645–5649 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Garrido-Laguna, I. et al. Integrated preclinical and clinical development of mTOR inhibitors in pancreatic cancer. Br. J. Cancer 103, 649–655 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Rubio-Viqueira, B. et al. Optimizing the development of targeted agents in pancreatic cancer: tumor fine-needle aspiration biopsy as a platform for novel prospective ex vivo drug sensitivity assays. Mol. Cancer Ther. 6, 515–523 (2007).

    Article  CAS  PubMed  Google Scholar 

  37. Jimeno, A. et al. A fine-needle aspirate-based vulnerability assay identifies polo-like kinase 1 as a mediator of gemcitabine resistance in pancreatic cancer. Mol. Cancer Ther. 9, 311–318 (2010).

    Article  CAS  PubMed  Google Scholar 

  38. Hidalgo, M. et al. A pilot clinical study of treatment guided by personalized tumorgrafts in patients with advanced cancer. Mol. Cancer Ther. 10, 1311–1316 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Villarroel, M. C. et al. Personalizing cancer treatment in the age of global genomic analyses: PALB2 gene mutations and the response to DNA damaging agents in pancreatic cancer. Mol. Cancer Ther. 10, 3–8 (2011).

    Article  CAS  PubMed  Google Scholar 

  40. Jones, S. et al. Exomic sequencing identifies PALB2 as a pancreatic cancer susceptibility gene. Science 324, 217 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Von Hoff, D. D. et al. Gemcitabine plus nab-paclitaxel is an active regimen in patients with advanced pancreatic Cancer: a phase I/II trial. J. Clin. Oncol. 29, 4548–4554 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Bailey, J. M. et al. Sonic hedgehog promotes desmoplasia in pancreatic cancer. Clin. Cancer Res. 14, 5995–6004 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Yamazaki, S. et al. Pharmacokinetic-pharmacodynamic modeling of crizotinib for anaplastic lymphoma kinase inhibition and anti-tumor efficacy in human tumor xenograft mouse models. J. Pharmacol. Exp. Ther. 340, 549–557 (2012).

    Article  CAS  PubMed  Google Scholar 

  44. Christensen, J. G. Proof of principle for crizotinib in anaplastic lymphoma kinase-positive malignancies was achieved in ALK-positive nonclinical models. Mol. Cancer Ther. 10, 2024 (2011).

    Article  CAS  PubMed  Google Scholar 

  45. Sasaki, T. et al. A novel ALK secondary mutation and EGFR signaling cause resistance to ALK kinase inhibitors. Cancer Res. 71, 6051–6060 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Ercan, D. et al. Amplification of EGFR T790M causes resistance to an irreversible EGFR inhibitor. Oncogene 29, 2346–2356 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Yoshida, T. et al. Effects of Src inhibitors on cell growth and epidermal growth factor receptor and MET signaling in gefitinib-resistant non-small cell lung cancer cells with acquired MET amplification. Cancer Sci. 101, 167–172 (2010).

    Article  CAS  PubMed  Google Scholar 

  48. Dong, X. et al. Patient-derived first generation xenografts of non-small cell lung cancers: promising tools for predicting drug responses for personalized chemotherapy. Clin. Cancer Res. 16, 1442–1451 (2010).

    Article  CAS  PubMed  Google Scholar 

  49. Nemati, F. et al. Preclinical assessment of cisplatin-based therapy versus docetaxel-based therapy on a panel of human non-small-cell lung cancer xenografts. Anticancer Drugs 20, 932–940 (2009).

    Article  CAS  PubMed  Google Scholar 

  50. Cutz, J. C. et al. Establishment in severe combined immunodeficiency mice of subrenal capsule xenografts and transplantable tumor lines from a variety of primary human lung cancers: potential models for studying tumor progression-related changes. Clin. Cancer Res. 12, 4043–4054 (2006).

    Article  CAS  PubMed  Google Scholar 

  51. Taetle, R. et al. Use of nude mouse xenografts as preclinical screens. Characterization of xenograft-derived melanoma cell lines. Cancer 60, 1836–1841 (1987).

    Article  CAS  PubMed  Google Scholar 

  52. Fiebig, H. H. et al. Gene signatures developed from patient tumor explants grown in nude mice to predict tumor response to 11 cytotoxic drugs. Cancer Genomics Proteomics 4, 197–209 (2007).

    CAS  PubMed  Google Scholar 

  53. Schatton, T. et al. Identification of cells initiating human melanomas. Nature 451, 345–349 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Nemati, F. et al. Establishment and characterization of a panel of human uveal melanoma xenografts derived from primary and/or metastatic tumors. Clin. Cancer Res. 16, 2352–2362 (2010).

    Article  CAS  PubMed  Google Scholar 

  55. Agrawal, N. et al. Exome sequencing of head and neck squamous cell carcinoma reveals inactivating mutations in NOTCH1. Science 333, 1154–1157 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Stransky, N. et al. The mutational landscape of head and neck squamous cell carcinoma. Science 333, 1157–1160 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Vermorken, J. B. et al. Platinum-based chemotherapy plus cetuximab in head and neck cancer. N. Engl. J. Med. 359, 1116–1127 (2008).

    Article  CAS  PubMed  Google Scholar 

  58. Bonner, J. A. et al. Radiotherapy plus cetuximab for squamous-cell carcinoma of the head and neck. N. Engl. J. Med. 354, 567–578 (2006).

    Article  CAS  PubMed  Google Scholar 

  59. Hennessey, P. T. et al. Promoter methylation in head and neck squamous cell carcinoma cell lines is significantly different than methylation in primary tumors and xenografts. PLoS ONE 6, e20584 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Prince, M. E. et al. Identification of a subpopulation of cells with cancer stem cell properties in head and neck squamous cell carcinoma. Proc. Natl Acad. Sci. USA 104, 973–978 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Chen, J., Milo, G. E., Shuler, C. F. & Schuller, D. E. Xenograft growth and histodifferentiation of squamous cell carcinomas of the pharynx and larynx. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endod. 81, 197–202 (1996).

    Article  CAS  PubMed  Google Scholar 

  62. Zatterstrom, U. K. et al. Growth of xenografted squamous cell carcinoma of the head and neck--possible correlation with patient survival. APMIS 100, 976–980 (1992).

    Article  CAS  PubMed  Google Scholar 

  63. Wennerberg, J., Trope, C. & Biorklund, A. Heterotransplantation of human head and neck tumours into nude mice. Acta Otolaryngol. 95, 183–190 (1983).

    Article  CAS  PubMed  Google Scholar 

  64. Langdon, S. P. et al. Preclinical phase II studies in human tumor xenografts: a European multicenter follow-up study. Ann. Oncol. 5, 415–422 (1994).

    Article  CAS  PubMed  Google Scholar 

  65. Henriksson, E. et al. p53 mutation and cyclin D1 amplification correlate with cisplatin sensitivity in xenografted human squamous cell carcinomas from head and neck. Acta Oncol. 45, 300–305 (2006).

    Article  CAS  PubMed  Google Scholar 

  66. Peltonen, J. K. et al. Specific TP53 mutations predict aggressive phenotype in head and neck squamous cell carcinoma: a retrospective archival study. Head Neck Oncol. 3, 20 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Cabelguenne, A. et al. p53 alterations predict tumor response to neoadjuvant chemotherapy in head and neck squamous cell carcinoma: a prospective series. J. Clin. Oncol. 18, 1465–1473 (2000).

    Article  CAS  PubMed  Google Scholar 

  68. Koch, W. M. et al. p53 mutation and locoregional treatment failure in head and neck squamous cell carcinoma. J. Natl Cancer Inst. 88, 1580–1586 (1996).

    Article  CAS  PubMed  Google Scholar 

  69. US National Library of Medicine. ClinicalTrials.gov[online], (2011).

  70. US National Library of Medicine. ClinicalTrials.gov[online], (2012).

  71. US National Library of Medicine. ClinicalTrials.gov[online], (2012).

  72. Carey, L. A. et al. Race, breast cancer subtypes, and survival in the Carolina Breast Cancer Study. JAMA 295, 2492–2502 (2006).

    Article  CAS  PubMed  Google Scholar 

  73. Beckhove, P. et al. Efficient engraftment of human primary breast cancer transplants in nonconditioned NOD/Scid mice. Int. J. Cancer 105, 444–453 (2003).

    Article  CAS  PubMed  Google Scholar 

  74. de Plater, L. et al. Establishment and characterisation of a new breast cancer xenograft obtained from a woman carrying a germline BRCA2 mutation. Br. J. Cancer 103, 1192–1200 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. DeRose, Y. S. et al. Tumor grafts derived from women with breast cancer authentically reflect tumor pathology, growth, metastasis and disease outcomes. Nat. Med. 17, 1514–1520 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Marangoni, E. et al. A new model of patient tumor-derived breast cancer xenografts for preclinical assays. Clin. Cancer Res. 13, 3989–3998 (2007).

    Article  CAS  PubMed  Google Scholar 

  77. Moestue, S. A. et al. Distinct choline metabolic profiles are associated with differences in gene expression for basal-like and luminal-like breast cancer xenograft models. BMC Cancer 10, 433 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Laitinen, S., Karhu, R., Sawyers, C. L., Vessella, R. L. & Visakorpi, T. Chromosomal aberrations in prostate cancer xenografts detected by comparative genomic hybridization. Genes Chromosomes Cancer 35, 66–73 (2002).

    Article  CAS  PubMed  Google Scholar 

  79. Gray, D. R. et al. Short-term human prostate primary xenografts: an in vivo model of human prostate cancer vasculature and angiogenesis. Cancer Res. 64, 1712–1721 (2004).

    Article  CAS  PubMed  Google Scholar 

  80. Grisanzio, C. et al. Orthotopic xenografts of RCC retain histological, immunophenotypic and genetic features of tumours in patients. J. Pathol. 225, 212–221 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Yoshida, T. et al. Antiandrogen bicalutamide promotes tumor growth in a novel androgen-dependent prostate cancer xenograft model derived from a bicalutamide-treated patient. Cancer Res. 65, 9611–9616 (2005).

    Article  CAS  PubMed  Google Scholar 

  82. Wang, Y. et al. Development and characterization of efficient xenograft models for benign and malignant human prostate tissue. Prostate 64, 149–159 (2005).

    Article  CAS  PubMed  Google Scholar 

  83. Coppin, C., Kollmannsberger, C., Le, L., Porzsolt, F. & Wilt, T. J. Targeted therapy for advanced renal cell cancer (RCC): a Cochrane systematic review of published randomised trials. BJU Int. 108, 1556–1563 (2011).

    Article  CAS  PubMed  Google Scholar 

  84. Beniers, A. J. et al. Establishment and characterization of five new human renal tumor xenografts. Am. J. Pathol. 140, 483–495 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Kopper, L. et al. Renal cell carcinoma--xenotransplantation into immuno-suppressed mice. Oncology 41, 19–24 (1984).

    Article  CAS  PubMed  Google Scholar 

  86. Beroukhim, R. et al. Patterns of gene expression and copy-number alterations in von-hippel lindau disease-associated and sporadic clear cell carcinoma of the kidney. Cancer Res. 69, 4674–4681 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. An, Z., Jiang, P., Wang, X., Moossa, A. R. & Hoffman, R. M. Development of a high metastatic orthotopic model of human renal cell carcinoma in nude mice: benefits of fragment implantation compared to cell-suspension injection. Clin. Exp. Metastasis 17, 265–270 (1999).

    Article  CAS  PubMed  Google Scholar 

  88. Angevin, E. et al. Human renal cell carcinoma xenografts in SCID mice: tumorigenicity correlates with a poor clinical prognosis. Lab. Invest. 79, 879–888 (1999).

    CAS  PubMed  Google Scholar 

  89. Yuen, J. S. et al. Inhibition of angiogenic and non-angiogenic targets by sorafenib in renal cell carcinoma (RCC) in a RCC xenograft model. Br. J. Cancer 104, 941–947 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Hammers, H. J. et al. Reversible epithelial to mesenchymal transition and acquired resistance to sunitinib in patients with renal cell carcinoma: evidence from a xenograft study. Mol. Cancer Ther. 9, 1525–1535 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Ellis, L. et al. Vascular disruption in combination with mTOR inhibition in renal cell carcinoma. Mol. Cancer Ther. 11, 383–392 (2012).

    Article  CAS  PubMed  Google Scholar 

  92. Keunen, O. et al. Anti-VEGF treatment reduces blood supply and increases tumor cell invasion in glioblastoma. Proc. Natl Acad. Sci. USA 108, 3749–3754 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Wang, J. et al. A reproducible brain tumour model established from human glioblastoma biopsies. BMC Cancer 9, 465 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Carol, H. et al. Initial testing of topotecan by the pediatric preclinical testing program. Pediatr. Blood Cancer 54, 707–715 (2010).

    PubMed  PubMed Central  Google Scholar 

  95. Houghton, P. J. et al. Efficacy of topoisomerase I inhibitors, topotecan and irinotecan, administered at low dose levels in protracted schedules to mice bearing xenografts of human tumors. Cancer Chemother. Pharmacol. 36, 393–403 (1995).

    Article  CAS  PubMed  Google Scholar 

  96. Vassal, G. et al. Potent therapeutic activity of irinotecan (CPT-11) and its schedule dependency in medulloblastoma xenografts in nude mice. Int. J. Cancer 73, 156–163 (1997).

    Article  CAS  PubMed  Google Scholar 

  97. Houghton, P. J. et al. The pediatric preclinical testing program: description of models and early testing results. Pediatr. Blood Cancer 49, 928–940 (2007).

    Article  PubMed  Google Scholar 

  98. Foreman, N. K., Love, S. & Thorne, R. Intracranial ependymomas: analysis of prognostic factors in a population-based series. Pediatr. Neurosurg. 24, 119–125 (1996).

    Article  CAS  PubMed  Google Scholar 

  99. Merchant, T. E. et al. Preliminary results from a phase II trial of conformal radiation therapy and evaluation of radiation-related CNS effects for pediatric patients with localized ependymoma. J. Clin. Oncol. 22, 3156–3162 (2004).

    Article  PubMed  Google Scholar 

  100. Pollack, I. F. et al. Intracranial ependymomas of childhood: long-term outcome and prognostic factors. Neurosurgery 37, 655–666 (1995).

    Article  CAS  PubMed  Google Scholar 

  101. Yu, L. et al. A clinically relevant orthotopic xenograft model of ependymoma that maintains the genomic signature of the primary tumor and preserves cancer stem cells in vivo. Neuro. Oncol. 12, 580–594 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Zembutsu, H. et al. Genome-wide cDNA microarray screening to correlate gene expression profiles with sensitivity of 85 human cancer xenografts to anticancer drugs. Cancer Res. 62, 518–527 (2002).

    CAS  PubMed  Google Scholar 

  103. Tan, A. C., Naiman, D. Q., Xu, L., Winslow, R. L. & Geman, D. Simple decision rules for classifying human cancers from gene expression profiles. Bioinformatics 21, 3896–3904 (2005).

    Article  CAS  PubMed  Google Scholar 

  104. Jimeno, A. et al. Coordinated epidermal growth factor receptor pathway gene overexpression predicts epidermal growth factor receptor inhibitor sensitivity in pancreatic cancer. Cancer Res. 68, 2841–2849 (2008).

    Article  CAS  PubMed  Google Scholar 

  105. Messersmith, W. A. et al. Efficacy and pharmacodynamic effects of bosutinib (SKI-606), a Src/Abl inhibitor, in freshly generated human pancreas cancer xenografts. Mol. Cancer Ther. 8, 1484–1493 (2009).

    Article  CAS  PubMed  Google Scholar 

  106. Rajeshkumar, N. V. et al. Antitumor effects and biomarkers of activity of AZD0530, a Src inhibitor, in pancreatic cancer. Clin. Cancer Res. 15, 4138–4146 (2009).

    Article  CAS  PubMed  Google Scholar 

  107. US National Library of Medicine. ClinicalTrials.gov[online], (2010).

  108. US National Library of Medicine. ClinicalTrials.gov[online], (2010).

  109. Singh, M. et al. Assessing therapeutic responses in Kras mutant cancers using genetically engineered mouse models. Nat. Biotechnol. 28, 585–593 (2010).

    Article  CAS  PubMed  Google Scholar 

  110. Giovanella, B. C., Stehlin, J. S., Jr, Shepard, R. C. & Williams, L. J. Jr. Correlation between response to chemotherapy of human tumors in patients and in nude mice. Cancer 52, 1146–1152 (1983).

    Article  CAS  PubMed  Google Scholar 

  111. Tentler, J. J. et al. Assessment of the in vivo antitumor effects of ENMD-2076, a novel multitargeted kinase inhibitor, against primary and cell line-derived human colorectal cancer xenograft models. Clin. Cancer Res. 16, 2989–2998 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Rajeshkumar, N. V. et al. MK-1775, a potent Wee1 inhibitor, synergizes with gemcitabine to achieve tumor regressions, selectively in p53-deficient pancreatic cancer xenografts. Clin. Cancer Res. 17, 2799–2806 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Song, D. et al. Antitumor activity and molecular effects of the novel heat shock protein 90 inhibitor, IPI-504, in pancreatic cancer. Mol. Cancer Ther. 7, 3275–3284 (2008).

    Article  CAS  PubMed  Google Scholar 

  114. Merk, J., Rolff, J., Dorn, C., Leschber, G. & Fichtner, I. Chemoresistance in non-small-cell lung cancer: can multidrug resistance markers predict the response of xenograft lung cancer models to chemotherapy? Eur. J. Cardiothorac. Surg. 40, e29–e33 (2011).

    Article  PubMed  Google Scholar 

  115. Hammer, S. et al. Comparative profiling of the novel epothilone, sagopilone, in xenografts derived from primary non-small cell lung cancer. Clin. Cancer Res. 16, 1452–1465 (2010).

    Article  CAS  PubMed  Google Scholar 

  116. Kolfschoten, G. M. et al. Development of a panel of 15 human ovarian cancer xenografts for drug screening and determination of the role of the glutathione detoxification system. Gynecol. Oncol. 76, 362–368 (2000).

    Article  CAS  PubMed  Google Scholar 

  117. Huynh, H., Soo, K. C., Chow, P. K., Panasci, L. & Tran, E. Xenografts of human hepatocellular carcinoma: a useful model for testing drugs. Clin. Cancer Res. 12, 4306–4314 (2006).

    Article  CAS  PubMed  Google Scholar 

  118. Huynh, H. et al. Brivanib alaninate, a dual inhibitor of vascular endothelial growth factor receptor and fibroblast growth factor receptor tyrosine kinases, induces growth inhibition in mouse models of human hepatocellular carcinoma. Clin. Cancer Res. 14, 6146–6153 (2008).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed equally to all aspects of the article, including researching data, discussion of content, writing, reviewing and editing the manuscript before submission.

Corresponding author

Correspondence to S. Gail Eckhardt.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tentler, J., Tan, A., Weekes, C. et al. Patient-derived tumour xenografts as models for oncology drug development. Nat Rev Clin Oncol 9, 338–350 (2012). https://doi.org/10.1038/nrclinonc.2012.61

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrclinonc.2012.61

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer