Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Treating ALK-positive lung cancer—early successes and future challenges

Abstract

Rearrangements of the anaplastic lymphoma kinase (ALK) gene occur infrequently in non-small-cell lung cancer (NSCLC), but provide an important paradigm for oncogene-directed therapy in this disease. Crizotinib, an orally bioavailable inhibitor of ALK, provides significant benefit for patients with ALK-positive (ALK+) NSCLC in association with characteristic, mostly mild, toxic effects, and this drug has been approved by the FDA for clinical use in this molecularly defined subgroup of lung cancer. Many new ALK inhibitors are being developed and understanding the challenges of determining and addressing the adverse effects that are likely to be ALK specific, while maximizing the time of benefit on targeted agents, and understanding the mechanisms that underlie drug resistance will be critical in the future for informing the optimal therapy of ALK+ NSCLC.

Key Points

  • Crizotinib shows significant benefit in terms of both radiographic response and progression-free survival in ALK-positive (ALK+) non-small-cell lung cancer (NSCLC)

  • Crizotinib is generally well tolerated and associated with common mild adverse effects such as gastrointestinal disturbance, visual changes, and low testosterone, as well as rare serious adverse effects such as transaminitis

  • Crizotinib resistance occurs through multiple different mechanisms including mutations and copy number gain that preserve ALK dominance, and the emergence of other oncogenic drivers that may weaken ALK dominance

  • In addition to a change in the biology of the cancer, cases of isolated central nervous system (CNS) progression on crizotinib could reflect inadequate CNS drug penetration

  • Newer ALK inhibitors, HSP90 inhibitors and pemetrexed have shown preclinical or clinical activity in ALK+ NSCLC and are being investigated further in patients with crizotinib resistant and crizotinib-naive ALK+ disease

  • The potential of these new agents to show activity in patients with CNS disease or crizotinib resistance will be critical to determine their roles in the management of ALK+ NSCLC

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: ALK activation mechanisms.
Figure 2: Resistance mutation spectra in EGFR-mutant, ALK-positive and BCR–ABL-positive cancers.
Figure 3: Mechanisms of resistance to crizotinib in ALK-positive NSCLC.

Similar content being viewed by others

References

  1. Le Beau, M. M. et al. The t(2;5)(p23;q35): a recurring chromosomal abnormality in Ki1positive anaplastic large cell lymphoma. Leukemia 3, 866–870 (1989).

    CAS  PubMed  Google Scholar 

  2. Morris, S. W. et al. Fusion of a kinase gene, ALK, to a nucleolar protein gene, NPM, in non-Hodgkin's lymphoma. Science 263, 1281–1284 (1994).

    Article  CAS  PubMed  Google Scholar 

  3. Soda, M. et al. Identification of the transforming EML4-ALK fusion gene in non-small-cell lung cancer. Nature 448, 561–566 (2007).

    Article  CAS  PubMed  Google Scholar 

  4. Kwak, E. L. et al. Anaplastic lymphoma kinase inhibition in non-small-cell lung cancer. N. Engl. J. Med. 363, 1693–1703 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Crinò, L. et al. Initial phase II results with crizotinib in advanced ALK-positive non-small cell lung cancer (NSCLC): PROFILE 1005 [abstract]. J. Clin. Oncol. 29 (Suppl.), a7514 (2011).

    Article  Google Scholar 

  6. Iwahara, T. et al. Molecular characterization of ALK, a receptor tyrosine kinase expressed specifically in the nervous system. Oncogene 14, 439–449 (1997).

    Article  CAS  PubMed  Google Scholar 

  7. Morris, S. W. et al. ALK, the chromosome 2 gene locus altered by the t(2;5) in non-Hodgkin's lymphoma, encodes a novel neural receptor tyrosine kinase that is highly related to leukocyte tyrosine kinase (LTK). Oncogene 14, 2175–2188 (1997).

    Article  CAS  PubMed  Google Scholar 

  8. Vernersson, E. et al. Characterization of the expression of the ALK receptor tyrosine kinase in mice. Gene Expr. Patterns 6, 448–461 (2006).

    Article  CAS  PubMed  Google Scholar 

  9. Lorén, C. E. et al. Identification and characterization of DAlk: a novel Drosophila melanogaster RTK which drives ERK activation in vivo. Genes Cells 6, 531–544 (2001).

    Article  PubMed  PubMed Central  Google Scholar 

  10. Lorén, C. E. et al. A crucial role for the anaplastic lymphoma kinase receptor tyrosine kinase in gut development in Drosophila melanogaster. EMBO Rep 4, 781–786 (2003).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Lee, H. H., Norris, A., Weiss, J. B. & Frasch, M. Jelly belly protein activates the receptor tyrosine kinase Alk to specify visceral muscle pioneers. Nature 425, 507–512 (2003).

    Article  CAS  PubMed  Google Scholar 

  12. Englund, C. et al. Jeb signals through the Alk receptor tyrosine kinase to drive visceral muscle fusion. Nature 425, 512–516 (2003).

    Article  CAS  PubMed  Google Scholar 

  13. Bazigou, E. et al. Anterograde Jelly belly and Alk receptor tyrosine kinase signaling mediates retinal axon targeting in Drosophila. Cell 128, 961–975 (2007).

    Article  CAS  PubMed  Google Scholar 

  14. Souttou, B., Carvalho, N. B., Raulais, D. & Vigny, M. Activation of anaplastic lymphoma kinase receptor tyrosine kinase induces neuronal differentiation through the mitogen-activated protein kinase pathway. J. Biol. Chem. 276, 9526–9531 (2001).

    Article  CAS  PubMed  Google Scholar 

  15. Mossé, Y. P. et al. Identification of ALK as a major familial neuroblastoma predisposition gene. Nature 455, 930–935 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Janoueix-Lerosey, I. et al. Somatic and germline activating mutations of the ALK kinase receptor in neuroblastoma. Nature 455, 967–970 (2008).

    Article  CAS  PubMed  Google Scholar 

  17. Chen, Y. et al. Oncogenic mutations of ALK kinase in neuroblastoma. Nature 455, 971–974 (2008).

    Article  CAS  PubMed  Google Scholar 

  18. George, R. E. et al. Activating mutations in ALK provide a therapeutic target in neuroblastoma. Nature 455, 975–978 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Murugan, A. K. & Xing, M. Anaplastic thyroid cancers harbor novel oncogenic mutations of the ALK gene. Cancer Res. 71, 4403–4411 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Webb, T. R. et al. Anaplastic lymphoma kinase: role in cancer pathogenesis and small-molecule inhibitor development for therapy. Expert Rev. Anticancer Ther. 9, 331–356 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Rikova, K. et al. Global survey of phosphotyrosine signaling identifies oncogenic kinases in lung cancer. Cell 131, 1190–1203 (2007).

    Article  CAS  PubMed  Google Scholar 

  22. Takeuchi, K. et al. KIF5B-ALK, a novel fusion oncokinase identified by an immunohistochemistry-based diagnostic system for ALK-positive lung cancer. Clin. Cancer Res. 15, 3143–3149 (2009).

    Article  CAS  PubMed  Google Scholar 

  23. Gascoyne, R. D. et al. ALK-positive diffuse large B-cell lymphoma is associated with clathrin-ALK rearrangements: report of 6 cases. Blood 102, 2568–2573 (2003).

    Article  CAS  PubMed  Google Scholar 

  24. Ma, Z. et al. Fusion of ALK to the Ran-binding protein 2 (RANBP2) gene in inflammatory myofibroblastic tumor. Genes Chromosomes Cancer 37, 98–105 (2003).

    Article  CAS  PubMed  Google Scholar 

  25. Camidge, D. R. et al. Optimizing the detection of lung cancer patients harboring anaplastic lymphoma kinase (ALK) gene rearrangements potentially suitable for ALK inhibitor treatment. Clin. Cancer Res. 16, 5581–5590 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Weickhardt, A. J. & Camidge, D. R. The therapeutic potential of anaplastic lymphoma kinase inhibitors in lung cancer: rationale and clinical evidence. Clin. Invest. 1, 1119–1126 (2011).

    Article  CAS  Google Scholar 

  27. Atherly, A. J. & Camidge, D. R. The cost effectiveness of screening lung cancer patients for targeted drug sensitivity markers. Br. J. Cancer http://dx.doi.org/10.1038/bjc.2012.60.

  28. Inamura, K. et al. EML4-ALK fusion is linked to histological characteristics in a subset of lung cancers. J. Thorac. Oncol. 3, 13–17 (2008).

    Article  PubMed  Google Scholar 

  29. Shaw, A. T. et al. Clinical features and outcome of patients with nonsmallcell lung cancer who harbor EML4-ALK. J. Clin. Oncol. 27, 4247–4253 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Rodig, S. J. et al. Unique clinicopathologic features characterize ALK-rearranged lung adenocarcinoma in the western population. Clin. Cancer Res. 15, 5216–5223 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Subramanian, J. & Govindan, R. Lung cancer in 'Never-smokers': a unique entity. Oncology (Williston Park) 24, 29–35 (2010).

    Google Scholar 

  32. Zhang, X. et al. Fusion of EML4 and ALK is associated with development of lung adenocarcinomas lacking EGFR and KRAS mutations and is correlated with ALK expression. Mol. Cancer 9, 188 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Varella-Garcia, M. et al. ALK gene rearrangements in unselected Caucasians with non-small cell lung carcinoma (NSCLC) [abstract]. J. Clin. Oncol. a10533 (2010).

  34. Yang, P. et al. Worse disease-free survival in never-smokers with ALK+ lung adenocarcinoma. J. Thorac. Oncol. 7, 90–97 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  35. Solomon, B. & Shaw, A. T. Are anaplastic lymphoma kinase gene rearrangements in non-small cell lung cancer prognostic, predictive, or both? J. Thorac. Oncol. 7, 5–7 (2012).

    Article  CAS  PubMed  Google Scholar 

  36. Shaw, A. T. et al. Effect of crizotinib on overall survival in patients with advanced nonsmallcell lung cancer harbouring ALK gene rearrangement: a retrospective analysis. Lancet Oncol. 12, 1004–1012 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Lee, J. K. et al. Comparative analyses of overall survival in patients with anaplastic lymphoma kinase-positive and matched wild-type advanced nonsmall cell lung cancer. Cancer http://dx.doi.org/10.1002/cncr.26668.

  38. Wu, S. G. et al. EML4-ALK translocation predicts better outcome in lung adenocarcinoma patients with wild-type EGFR. J. Thorac. Oncol. 7, 98–104 (2012).

    Article  CAS  PubMed  Google Scholar 

  39. Camidge, D. R. et al. Anaplastic lymphoma kinase gene rearrangements in non-small cell lung cancer are associated with prolonged progression-free survival on pemetrexed. J. Thorac. Oncol. 6, 774–780 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  40. Lee, J. O. et al. Anaplastic lymphoma kinase translocation: a predictive biomarker of pemetrexed in patients with non-small cell lung cancer. J. Thorac. Oncol. 6, 1474–1480 (2011).

    Article  PubMed  Google Scholar 

  41. US National Library of Medicine. ClinicalTrials.gov [online], (2012).

  42. US National Library of Medicine. ClinicalTrials.gov [online], (2012).

  43. Doebele, R. C. et al. Oncogene status predicts patterns of metastatic spread in treatment-naive nonsmall cell lung cancer. Cancer http://dx.doi.org/10.1002/cncr.27409.

  44. Cui, J. J. et al. Structure based drug design of crizotinib (PF02341066), a potent and selective dual inhibitor of mesenchymal-epithelial transition factor (c-MET) kinase and anaplastic lymphoma kinase (ALK). J. Med. Chem. 54, 6342–6363 (2011).

    Article  CAS  PubMed  Google Scholar 

  45. Gambacorti-Passerini, C., Messa, C. & Pogliani, E. M. Crizotinib in anaplastic large-cell lymphoma. N. Engl. J. Med. 364, 775–776 (2011).

    Article  PubMed  Google Scholar 

  46. Butrynski, J. E. et al. Crizotinib in ALK-rearranged inflammatory myofibroblastic tumor. N. Engl. J. Med. 363, 1727–1733 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Ou, S. H. et al. Activity of crizotinib (PF02341066), a dual mesenchymal-epithelial transition (MET) and anaplastic lymphoma kinase (ALK) inhibitor, in a non-small cell lung cancer patient with de novo MET amplification. J. Thorac. Oncol. 6, 942–946 (2011).

    Article  PubMed  Google Scholar 

  48. Lennerz, J. K. et al. MET amplification identifies a small and aggressive subgroup of esophagogastric adenocarcinoma with evidence of responsiveness to crizotinib. J. Clin. Oncol. 29, 4803–4810 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Camidge, D. R. et al. Progression-free survival (PFS) from a phase I study of crizotinib (PF02341066) in patients with ALK-positive non-small cell lung cancer (NSCLC) [abstract]. J. Clin. Oncol. 29 (Suppl.), a2501 (2011).

    Article  Google Scholar 

  50. Spigel, D. R. et al. Final efficacy results from OAM4558g, a randomized phase II study evaluating MetMAb or placebo in combination with erlotinib in advanced NSCLC [abstract]. J. Clin. Oncol. 29 (Suppl.), a7505 (2011).

    Article  Google Scholar 

  51. Matsumoto, D. C. et al. Effect on retinal function as a mechanism for vision disorders with crizotinib (PF02341066) [abstract]. Proc. 102nd Ann. Meeting Am. Assoc. Cancer Res. a4385 (2011).

  52. Weickhardt, A. J. et al. Rapid onset hypogonadism secondary to crizotinib use in men with metastatic non-small cell lung cancer. Cancer 2012 (In press).

  53. Ou, S. H., Azada, M., Dy, J. & Stiber, J. A. Asymptomatic profound sinus bradycardia (heart rate ≤45) in non-small cell lung cancer patients treated with crizotinib. J. Thorac. Oncol. 6, 2135–2137 (2011).

    Article  PubMed  Google Scholar 

  54. Tan, W. et al. Pharmacokinetics (PK) of PF02341066, a dual ALK/MET inhibitor after multiple oral doses to advanced cancer patients [abstract]. J. Clin. Oncol. 28 (Suppl. 15), a2596 (2010).

    Article  Google Scholar 

  55. Costa, D. B. et al. CSF concentration of the anaplastic lymphoma kinase inhibitor crizotinib. J. Clin. Oncol. 29, e443–e445 (2011).

    Article  PubMed  Google Scholar 

  56. Choi, Y. L. et al. EML4-ALK mutations in lung cancer that confer resistance to ALK inhibitors. N. Engl. J. Med. 363, 1734–1739 (2010).

    Article  CAS  PubMed  Google Scholar 

  57. Pao, W. et al. Acquired resistance of lung adenocarcinomas to gefitinib or erlotinib is associated with a second mutation in the EGFR kinase domain. PLoS Med. 2, e73 (2005).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Gorre, M. E. et al. Clinical resistance to STI571 cancer therapy caused by BCR-ABL gene mutation or amplification. Science 293, 876–880 (2001).

    Article  CAS  PubMed  Google Scholar 

  59. Sasaki, T. et al. A novel ALK secondary mutation and EGFR signaling cause resistance to ALK kinase inhibitors. Cancer Res. 71, 6051–6060 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Doebele, R. C. et al. Mechanisms of resistance to crizotinib in patients with ALK gene rearranged non-small cell lung cancer. Clin. Cancer Res. 18, 1472–1482 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Katayama, R. et al. Mechanisms of acquired crizotinib resistance in ALK-rearranged lung cancers. Sci. Transl. Med. 4, 120ra17 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  62. Zhang, S. et al. Crizotinib-resistant mutants of EML4-ALK identified through an accelerated mutagenesis screen. Chem. Biol. Drug Des. 78, 999–1005 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Heuckmann, J. M. et al. ALK mutations conferring differential resistance to structurally diverse ALK inhibitors. Clin. Cancer Res. 17, 7394–7401 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Sasaki, T. et al. The neuroblastoma-associated F1174L ALK mutation causes resistance to an ALK kinase inhibitor in ALK-translocated cancers. Cancer Res. 70, 10038–10043 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Sequist, L. V. et al. Genotypic and histological evolution of lung cancers acquiring resistance to EGFR inhibitors. Sci. Transl. Med. 3, 75ra26 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  66. Balak, M. N. et al. Novel D761Y and common secondary T790M mutations in epidermal growth factor receptor-mutant lung adenocarcinomas with acquired resistance to kinase inhibitors. Clin. Cancer Res. 12, 6494–6501 (2006).

    Article  CAS  PubMed  Google Scholar 

  67. Costa, D. B. et al. Effects of erlotinib in EGFR mutated non-small cell lung cancers with resistance to gefitinib. Clin. Cancer Res. 14, 7060–7067 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. von Bubnoff, N., Schneller, F., Peschel, C. & Duyster, J. BCR-ABL gene mutations in relation to clinical resistance of Philadelphia-chromosome-positive leukaemia to STI571: a prospective study. Lancet 359, 487–491 (2002).

    Article  CAS  PubMed  Google Scholar 

  69. Yun, C. H. et al. The T790M mutation in EGFR kinase causes drug resistance by increasing the affinity for ATP. Proc. Natl Acad. Sci. USA 105, 2070–2075 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Chmielecki, J. et al. Optimization of dosing for EGFR-mutant non-small cell lung cancer with evolutionary cancer modeling. Sci. Transl. Med. 3, 90ra59 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Becker, A. et al. Retreatment with erlotinib: regain of TKI sensitivity following a drug holiday for patients with NSCLC who initially responded to EGFR-TKI treatment. Eur. J. Cancer 47, 2603–2606 (2011).

    Article  CAS  PubMed  Google Scholar 

  72. Parker, W. T. et al. Sensitive detection of BCR-ABL1 mutations in patients with chronic myeloid leukemia after imatinib resistance is predictive of outcome during subsequent therapy. J. Clin. Oncol. 29, 4250–4259 (2011).

    Article  CAS  PubMed  Google Scholar 

  73. Katayama, R. et al. Therapeutic strategies to overcome crizotinib resistance in non-small cell lung cancers harboring the fusion oncogene EML4-ALK. Proc. Natl Acad. Sci. USA 108, 7535–7540 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Kris, M. G. et al. Identification of driver mutations in tumor specimens from 1,000 patients with lung adenocarcinoma: The NCI's Lung Cancer Mutation Consortium (LCMC) [abstract]. J. Clin. Oncol. 29 (Suppl.), CRA7506 (2011).

    Article  Google Scholar 

  75. Koivunen, J. P. et al. EML4-ALK fusion gene and efficacy of an ALK kinase inhibitor in lung cancer. Clin. Cancer Res. 14, 4275–4283 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Singh, A. et al. A gene expression signature associated with “K-Ras addiction” reveals regulators of EMT and tumor cell survival. Cancer Cell 15, 489–500 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Popat, S. et al. Lung adenocarcinoma with concurrent exon 19 EGFR mutation and ALK rearrangement responding to erlotinib. J. Thorac. Oncol. 6, 1962–1963 (2011).

    Article  PubMed  Google Scholar 

  78. Makhnevych, T. & Houry, W. A. The role of Hsp90 in protein complex assembly. Biochim. Biophys. Acta 1823, 674–682 (2012).

    Article  CAS  PubMed  Google Scholar 

  79. Bonvini, P., Gastaldi, T., Falini, B. & Rosolen, A. Nucleophosmin-anaplastic lymphoma kinase (NPM-ALK), a novel Hsp90-client tyrosine kinase: down-regulation of NPM-ALK expression and tyrosine phosphorylation in ALK(+) CD30(+) lymphoma cells by the Hsp90 antagonist 17-allylamino, 17-demethoxygeldanamycin. Cancer Res. 62, 1559–1566 (2002).

    CAS  PubMed  Google Scholar 

  80. Normant, E. et al. The Hsp90 inhibitor IPI504 rapidly lowers EML4-ALK levels and induces tumor regression in ALK-driven NSCLC models. Oncogene 30, 2581–2586 (2011).

    Article  CAS  PubMed  Google Scholar 

  81. Sequist, L. V. et al. Activity of IPI504, a novel heat-shock protein 90 inhibitor, in patients with molecularly defined nonsmallcell lung cancer. J. Clin. Oncol. 28, 4953–4960 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Wong, K. et al. An open-label phase II study of the Hsp90 inhibitor ganetespib (STA9090) as monotherapy in patients with advanced non-small cell lung cancer (NSCLC) [abstract]. J. Clin. Oncol. 29 (Suppl.), a7500 (2011).

    Article  Google Scholar 

  83. Chen, Z. et al. Inhibition of ALK, PI3K/MEK, and HSP90 in murine lung adenocarcinoma induced by EML4-ALK fusion oncogene. Cancer Res. 70, 9827–9836 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Knowlton, C. A., Brady, L. W. & Heintzelman, R. C. Radiotherapy in the treatment of gastrointestinal stromal tumors. Rare Tumors 3, e35 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  85. Raut, C. P. et al. Surgical management of advanced gastrointestinal stromal tumors after treatment with targeted systemic therapy using kinase inhibitors. J. Clin. Oncol. 24, 2325–2331 (2006).

    Article  CAS  PubMed  Google Scholar 

  86. Al-Batran, S. E. et al. Focal progression in patients with gastrointestinal stromal tumors after initial response to imatinib mesylate: a three-center-based study of 38 patients. Gastric Cancer 10, 145–152 (2007).

    Article  CAS  PubMed  Google Scholar 

  87. Stoica, G. E. et al. Identification of anaplastic lymphoma kinase as a receptor for the growth factor pleiotrophin. J. Biol. Chem. 276, 16772–16779 (2001).

    Article  CAS  PubMed  Google Scholar 

  88. Stoica, G. E. et al. Midkine binds to anaplastic lymphoma kinase (ALK) and acts as a growth factor for different cell types. J. Biol. Chem. 277, 35990–35998 (2002).

    Article  CAS  PubMed  Google Scholar 

  89. McDermott, U. et al. Genomic alterations of anaplastic lymphoma kinase may sensitize tumors to anaplastic lymphoma kinase inhibitors. Cancer Res. 68, 3389–3395 (2008).

    Article  CAS  PubMed  Google Scholar 

  90. Apperley, J. F. Part I: mechanisms of resistance to imatinib in chronic myeloid leukaemia. Lancet Oncol. 8, 1018–1029 (2007).

    Article  CAS  PubMed  Google Scholar 

  91. FDA. Highlights of prescribing information—Crizotinib [online], (2011).

  92. Sugawara, E. et al. Identification of anaplastic lymphoma kinase fusions in renal cancer: large-scale immunohistochemical screening by the intercalated antibody-enhanced polymer method. Cancer http://dx.doi.org/10.1002/cncr.27391.

  93. van Gaal, J. C. et al. Anaplastic lymphoma kinase aberrations in rhabdomyosarcoma: clinical and prognostic implications. J. Clin. Oncol. 30, 308–315 (2012).

    Article  CAS  PubMed  Google Scholar 

  94. Bridge, J. A. et al. Fusion of the ALK gene to the clathrin heavy chain gene, CLTC, in inflammatory myofibroblastic tumor. Am. J. Pathol. 159, 411–415 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Colleoni, G. W. et al. ATIC-ALK: A novel variant ALK gene fusion in anaplastic large cell lymphoma resulting from the recurrent cryptic chromosomal inversion, inv(2)(p23q35). Am J. Pathol. 156, 781–789 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Camidge, D. R. et al. Correlations between the percentage of tumor cells showing an ALK gene rearrangement, ALK signal copy number and response to crizotinib therapy in ALK FISH positive nonsmall cell lung cancer. Cancer http://dx.doi.org/10.1002/cncr.27411.

  97. Camidge, D. R., Hirsch, F. R., Varella-Garcia, M. & Franklin, W. A. Finding ALK-positive lung cancer: what are we really looking for? J. Thorac. Oncol. 6, 411–413 (2011).

    Article  PubMed  Google Scholar 

  98. Shaw, A. T., Solomon, B. & Kenudson, M. M. Crizotinib and testing for ALK. J. Natl Compr. Canc. Netw. 9, 1335–1341 (2011).

    Article  CAS  PubMed  Google Scholar 

  99. Horn, L. & Pao, W. EML4-ALK: honing in on a new target in non-small-cell lung cancer. J. Clin. Oncol. 27, 4232–4235 (2009).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Both authors researched the data for this article, made a substantial contribution to the discussion of content, wrote, edited, and revised the manuscript prior to submission.

Corresponding author

Correspondence to D. Ross Camidge.

Ethics declarations

Competing interests

D. R. Camidge acts as a consultant for Ariad, Chugai, Eli Lilly, Novartis and Pfizer. R. C. Doebele receives honoraria from Abbott Laboratories, receives research support from Eli Lilly, and receives honoraria and research support from Pfizer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Camidge, D., Doebele, R. Treating ALK-positive lung cancer—early successes and future challenges. Nat Rev Clin Oncol 9, 268–277 (2012). https://doi.org/10.1038/nrclinonc.2012.43

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrclinonc.2012.43

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing