Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Timeline
  • Published:

Imaging in oncology—over a century of advances

Abstract

Over the past 120 years, the discipline of oncology has evolved so that a multitude of anatomical and increasingly complex functional imaging techniques are now applicable in both clinical and research platforms. This Timeline article revisits the achievements of the pioneer techniques in cancer imaging, discusses how these techniques have changed over time, provides some examples of clinical importance, and ventures to explain how imaging will remodel the future of modern oncology.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Trends in CT doses in the UK over time.106,107
Figure 2: Evolution of clinical PET imaging.
Figure 3: Complexities of staging and response evaluation; functional imaging and quantification.

References

  1. Röntgen, W. K. A new form of radiation. Science 3, 726–729 (1896).

    Article  PubMed  Google Scholar 

  2. Thomson, J. J. Conduction of Electricity through Gasses, 1st edn (Cambridge University Press, Cambridge, 1903).

    Google Scholar 

  3. All Nobel Prizes. Nobelprize.org [online], (2012).

  4. Spiegel, P. K. The first clinical X-ray made in America--100 years. AJR Am. J. Roentgenol. 164, 241–243 (1995).

    Article  CAS  PubMed  Google Scholar 

  5. König, F. Die Bedeutung der Durchleuchtung (Röntgen) für die Diagnose der Knochenkrankheiten. Dtsch Med. Wochensch. 22, 113–114 (1896).

    Article  Google Scholar 

  6. Coolidge, W. D. A powerful Röntgen ray tube with a pure electron discharge. Phys. Rev. Lett. 2, 409–430 (1913).

    Google Scholar 

  7. Dendy, P. P. & Heaton, B. Physics for Diagnostic Radiology, 3rd edn (CRC Press, Florida 1999).

    Book  Google Scholar 

  8. Picard, J. D. History of mammography [French]. Bull. Acad. Natl Med. 182, 1613–1620 (1998).

    CAS  PubMed  Google Scholar 

  9. Shampo, M. A. & Kyle, R. A. Karl Theodore Dussik--pioneer in ultrasound. Mayo Clin. Proc. 70, 1136 (1995).

    Article  CAS  PubMed  Google Scholar 

  10. Wild, J. J. & Neal, D. Use of high-frequency ultrasonic waves for detecting changes of texture in living tissues. Lancet 1, 655–657 (1951).

    Article  CAS  PubMed  Google Scholar 

  11. Wild, J. J. & Reid, J. M. Application of echo-ranging techniques to the determination of structure of biological tissues. Science 115, 226–230 (1952).

    Article  CAS  PubMed  Google Scholar 

  12. Watts, G. John Wild: Inventor of diagnostic ultrasound in medicine. BMJ 339, b4428 (2009).

    Article  Google Scholar 

  13. Donald, I., Macvicar, J. & Brown, T. G. Investigation of abdominal masses by pulsed ultrasound. Lancet 1, 1188–1195 (1958).

    Article  CAS  PubMed  Google Scholar 

  14. Woo, J. A short history of the development of ultrasound in obstetrics and gynecology. Ob-ultrasound.net [online], (2002).

    Google Scholar 

  15. Morgan, B. Opportunities and pitfalls of cancer imaging in clinical trials. Nat. Rev. Clin. Oncol. 8, 517–527 (2011).

    Article  PubMed  Google Scholar 

  16. Ambrose, J. Computerized transverse axial scanning (tomography). 2. Clinical application. Br. J. Radiol. 46, 1023–1047 (1973).

    Article  CAS  PubMed  Google Scholar 

  17. Hounsfield, G. N. Computerized transverse axial scanning (tomography). 1. Description of system. Br. J. Radiol. 46, 1016–1022 (1973).

    Article  CAS  PubMed  Google Scholar 

  18. Cormack, A. M. Representation of a function by its line integrals, with some radiological applications. J. Appl. Phys. 34, 2722–2727 (1963).

    Article  Google Scholar 

  19. Rothkamm, K. & Lobrich, M. Evidence for a lack of DNA double-strand break repair in human cells exposed to very low x-ray doses. Proc. Natl Acad. Sci. USA 100, 5057–5062 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Kalender, W. A. Computed Tomography: Fundamentals, System Technology, Image Quality, Applications 3rd edn (Publicis, Erlangen, 2011).

    Google Scholar 

  21. Ledley, R. S., Di Chiro, G., Luessenhop, A. J. & Twigg, H. L. Computerized transaxial x-ray tomography of the human body. Science 186, 207–212 (1974).

    Article  CAS  PubMed  Google Scholar 

  22. Hahn, E. Spin echoes. Phys. Rev. 80, 580–594 (1950).

    Article  Google Scholar 

  23. Damadian, R. Tumor detection by nuclear magnetic resonance. Science 171, 1151–1153 (1971).

    Article  CAS  PubMed  Google Scholar 

  24. Lauterbur, P. C. Image formation by induced local interactions. Examples employing nuclear magnetic resonance. 1973. Clin. Orthop. Relat. Res. 244, 3–6 (1989).

    Google Scholar 

  25. Damadian, R., Goldsmith, M. & Minkoff, L. NMR in cancer: XVI. FONAR image of the live human body. Physiol. Chem. Phys. 9, 97–100, 108 (1977).

    CAS  PubMed  Google Scholar 

  26. Mansfield, P. & Maudsley, A. A. Medical imaging by NMR. Br. J. Radiol. 50, 188–194 (1977).

    Article  CAS  PubMed  Google Scholar 

  27. Dreizen, P. The Nobel prize for MRI: a wonderful discovery and a sad controversy. Lancet 363, 78 (2004).

    Article  PubMed  Google Scholar 

  28. Gallagher, T. A., Nemeth, A. J. & Hacein-Bey, L. An introduction to the Fourier transform: relationship to MRI. AJR Am. J. Roentgenol. 190, 1396–1405 (2008).

    Article  PubMed  Google Scholar 

  29. Luechinger, R. D. F., Candinas, R. & Boesiger, P. Safety considerations for magnetic resonance imaging of pacemaker and ICD patients. Herzschrittmacherther. Elektrophysiol. 15, 73–81 (2004).

    Article  Google Scholar 

  30. Phelps, M. E., Hoffman, E. J., Mullani, N. A. & Ter-Pogossian, M. M. Application of annihilation coincidence detection to transaxial reconstruction tomography. J. Nucl. Med. 16, 210–224 (1975).

    CAS  PubMed  Google Scholar 

  31. Ter-Pogossian, M. M., Phelps, M. E., Hoffman, E. J. & Mullani, N. A. A positron-emission transaxial tomograph for nuclear imaging (PETT). Radiology 114, 89–98 (1975).

    Article  CAS  PubMed  Google Scholar 

  32. Ido, T. et al. Labeled 2-deoxy-D-glucose analogs. 18F–labeled 2-deoxy-2-fluoro-D-glucose, 2-deoxy-2-fluoro-D-mannose and 14C-deoxy-2-fluoro-D-glucose. J. Labelled Comp. Radiopharm. 14, 175–183 (1978).

    Article  CAS  Google Scholar 

  33. Hoh, C. K. et al. Cancer detection with whole-body PET using 2-[18F]fluoro-2-deoxy-D-glucose. J. Comput. Assist Tomogr. 17, 582–589 (1993).

    Article  CAS  PubMed  Google Scholar 

  34. Wrenn, F. R. Jr, Good, M. L. & Handler, P. The use of positron-emitting radioisotopes for the localization of brain tumors. Science 113, 525–527 (1951).

    Article  CAS  PubMed  Google Scholar 

  35. Warburg, O. On Metabolism of Tumours (Constable, London, 1930).

    Google Scholar 

  36. Warburg, O., Posener, K. & Negelein, E. Ueber den Stoffwechsel der Tumoren. Biochem. Z. 152, 319–344 (1924).

    Google Scholar 

  37. Gatenby, R. A. & Gillies, R. J. Why do cancers have high aerobic glycolysis? Nat. Rev. Cancer 4, 891–899 (2004).

    Article  CAS  PubMed  Google Scholar 

  38. Strauss, L. G. & Conti, P. S. The applications of PET in clinical oncology. J. Nucl. Med. 32, 623–648 (1991).

    CAS  PubMed  Google Scholar 

  39. Chronik 100 Jahre Anwendungen der Röntgenstrahlen in der medizinischen Diagnostik. Roentgenmuseum.de [online], (2012).

  40. Moniz, E. & Babinski, J. Diagnostic des tumeurs cérébrales et épreuve de l'encéphalographie artérielle (Masson et Cie, Paris, 1931).

    Google Scholar 

  41. Pisano, E. D. et al. Diagnostic performance of digital versus film mammography for breast-cancer screening. N. Engl. J. Med. 353, 1773–1783 (2005).

    Article  CAS  PubMed  Google Scholar 

  42. Spencer, B. B. in Imaging in Oncology. 3rd edn (eds Husband, J. E. & Reznek, R. H.) Ch. 53 (Informa Healthcare, London, 2010).

    Google Scholar 

  43. Kolb, T. M., Lichy, J. & Newhouse, J. H. Occult cancer in women with dense breasts: detection with screening US--diagnostic yield and tumor characteristics. Radiology 207, 191–199 (1998).

    Article  CAS  PubMed  Google Scholar 

  44. Ahuja, A. T. & Evans, R. M. Practical Head and Neck Ultrasound (Cambridge University Press, Cambridge, 2000).

    Book  Google Scholar 

  45. Lensing, A. W. et al. Detection of deep-vein thrombosis by real-time B-mode ultrasonography. N. Engl. J. Med. 320, 342–345 (1989).

    Article  CAS  PubMed  Google Scholar 

  46. Kalender, W. A. X-ray computed tomography. Phys. Med. Biol. 51, R29–R43 (2006).

    Article  PubMed  Google Scholar 

  47. Cunningham, I. A. & Judy, P. F. in The Biomedical Engineering Handbook (ed. Bronzino, J. D.) Ch. 62 (CRC Press, Florida, 2000).

    Google Scholar 

  48. Kalender, W. A., Seissler, W., Klotz, E. & Vock, P. Spiral volumetric CT with single-breath-hold technique, continuous transport, and continuous scanner rotation. Radiology 176, 181–183 (1990).

    Article  CAS  PubMed  Google Scholar 

  49. Hu, H. Multi-slice helical CT: scan and reconstruction. Med. Phys. 26, 5–18 (1999).

    Article  CAS  PubMed  Google Scholar 

  50. Flohr, T. G. et al. Image reconstruction and image quality evaluation for a 64-slice CT scanner with z-flying focal spot. Med. Phys. 32, 2536–2547 (2005).

    Article  CAS  PubMed  Google Scholar 

  51. Lister, T. A. et al. Report of a committee convened to discuss the evaluation and staging of patients with Hodgkin's disease: Cotswolds meeting. J. Clin. Oncol. 7, 1630–1636 (1989).

    Article  CAS  PubMed  Google Scholar 

  52. Canellos, G. P. Residual mass in lymphoma may not be residual disease. J. Clin. Oncol. 6, 931–933 (1988).

    Article  CAS  PubMed  Google Scholar 

  53. Chamie, K. et al. Secondary malignancies among nonseminomatous germ cell tumor cancer survivors. Cancer 117, 4219–4230 (2011).

    Article  PubMed  Google Scholar 

  54. WHO. WHO Handbook for Reporting Results of Cancer Treatment. No. 48 (WHO Offset Publication, Geneva, 1979).

  55. van Herk, M. Different styles of image-guided radiotherapy. Semin. Radiat. Oncol. 17, 258–267 (2007).

    Article  PubMed  Google Scholar 

  56. Allen, E. D., Byrd, S. E., Darling, C. F., Tomita, T. & Wilczynski, M. A. The clinical and radiological evaluation of primary brain neoplasms in children, Part II: Radiological evaluation. J. Natl Med. Assoc. 85, 546–553 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Deck, M. D. et al. Computed tomography versus magnetic resonance imaging of the brain. A collaborative interinstitutional study. Clin. Imaging 13, 2–15 (1989).

    Article  CAS  PubMed  Google Scholar 

  58. de Bree, R., Castelijns, J. A., Hoekstra, O. S. & Leemans, C. R. Advances in imaging in the work-up of head and neck cancer patients. Oral Oncol. 45, 930–935 (2009).

    Article  PubMed  Google Scholar 

  59. Bell, D. J. & Pannu, H. K. Radiological assessment of gynecologic malignancies. Obstet. Gynecol. Clin. North Am. 38, 45–68, (2011).

    Article  PubMed  Google Scholar 

  60. Klessen, C., Rogalla, P. & Taupitz, M. Local staging of rectal cancer: the current role of MRI. Eur. Radiol. 17, 379–389 (2007).

    Article  PubMed  Google Scholar 

  61. Fischer, U., Kopka, L. & Grabbe, E. Breast carcinoma: effect of preoperative contrast-enhanced MR imaging on the therapeutic approach. Radiology 213, 881–888 (1999).

    Article  CAS  PubMed  Google Scholar 

  62. Leach, M. O. et al. Screening with magnetic resonance imaging and mammography of a UK population at high familial risk of breast cancer: a prospective multicentre cohort study (MARIBS). Lancet 365, 1769–1778 (2005).

    Article  CAS  PubMed  Google Scholar 

  63. Mann, R. M., Kuhl, C. K., Kinkel, K. & Boetes, C. Breast MRI: guidelines from the European Society of Breast Imaging. Eur. Radiol. 18, 1307–1318 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Kuhl, D. E. & Edwards, R. Q. Image separation radioisotope scanning. Radiology 80, 653–661 (1963).

    Article  Google Scholar 

  65. Kuhl, D. E. & Edwards, R. Q. Cylindrical and section radioisotope scanning of the liver and brain. Radiology 83, 926–936 (1964).

    Article  CAS  PubMed  Google Scholar 

  66. Kuhl, D. E. et al. The Mark IV system for radionuclide computed tomography of the brain. Radiology 121, 405–413 (1976).

    Article  CAS  PubMed  Google Scholar 

  67. Lang, T. F. et al. Description of a prototype emission-transmission computed tomography imaging system. J. Nucl. Med. 33, 1881–1887 (1992).

    CAS  PubMed  Google Scholar 

  68. Bocher, M. et al. Gamma camera-mounted anatomical X-ray tomography: technology, system characteristics and first images. Eur. J. Nucl. Med. 27, 619–627 (2000).

    Article  CAS  PubMed  Google Scholar 

  69. Mariani, G. et al. A review on the clinical uses of SPECT/CT. Eur. J. Nucl. Med. Mol. Imaging 37, 1959–1985 (2010).

    Article  PubMed  Google Scholar 

  70. Brownell, G. L. & Sweet, W. H. Localization of brain tumours with positron emitters. Nucleonics 11, 40–45 (1953).

    Google Scholar 

  71. Brownell, G. L. & Burnham, C. A. in Tomographic Imaging in Nuclear Medicine (ed. Freedman, G. S.) 154–164 (The Society of Nuclear Medicine, 1973).

    Google Scholar 

  72. Kuhl, D. E. & Edwards, R. Q. Reorganizing data from transverse section scans of the brain using digital processing. Radiology 91, 975–983 (1968).

    Article  CAS  PubMed  Google Scholar 

  73. Robertson, J. S., Marr, R. B., Rosenblum, M., Radeka, V., Yamamoto, Y. L. in Tomographic Imaging in Nuclear Medicine (ed Freedman, G. S.) 142–153 (The Society of Nuclear Medicine, New York, 1973).

    Google Scholar 

  74. Radon, J. Uber die Bestimmung von Funktionen durch ihre Integralwerte langs gewisser Manningfaltigkeiten. Ber. Verh. Sachs. Akad. Wiss. Leipzig Math. Phys. Kl. 69, 262–277 (1917).

    Google Scholar 

  75. Casey, M. E. & Nutt, A. Multicrystal, two-dimensional BGO detector system for positron emission tomography. IEEE Trans. Nucl. Sci. 33, 460–463 (1986).

    Article  Google Scholar 

  76. Buck, A. K. et al. Economic evaluation of PET and PET/CT in oncology: evidence and methodologic approaches. J. Nucl. Med. 51, 401–412 (2010).

    Article  PubMed  Google Scholar 

  77. Som, P. et al. A fluorinated glucose analog, 2-fluoro-2-deoxy-D-glucose (F-18): nontoxic tracer for rapid tumor detection. J. Nucl. Med. 21, 670–675 (1980).

    CAS  PubMed  Google Scholar 

  78. Dahlbom, M. et al. Whole-body positron emission tomography: Part, I. Methods and performance characteristics. J. Nucl. Med. 33, 1191–1199 (1992).

    CAS  PubMed  Google Scholar 

  79. Young, C. S., Young, B. L. & Smith, S. M. Staging Hodgkin's disease with 18-FDG PET. Comparison with CT and surgery. Clin. Positron Imaging 1, 161–164 (1998).

    Article  PubMed  Google Scholar 

  80. Gennari, A. et al. Role of 2-[18F]-fluorodeoxyglucose (FDG) positron emission tomography (PET) in the early assessment of response to chemotherapy in metastatic breast cancer patients. Clin. Breast Cancer 1, 156–161 (2000).

    Article  CAS  PubMed  Google Scholar 

  81. Radford, J. A. et al. The significance of residual mediastinal abnormality on the chest radiograph following treatment for Hodgkin's disease. J. Clin. Oncol. 6, 940–946 (1988).

    Article  CAS  PubMed  Google Scholar 

  82. Weihrauch, M. R. et al. Thoracic positron emission tomography using 18F-fluorodeoxyglucose for the evaluation of residual mediastinal Hodgkin disease. Blood 98, 2930–2934 (2001).

    Article  CAS  PubMed  Google Scholar 

  83. Beyer, T. et al. A combined PET/CT scanner for clinical oncology. J. Nucl. Med. 41, 1369–1379 (2000).

    CAS  PubMed  Google Scholar 

  84. Mawlawi, O. & Townsend, D. W. Multimodality imaging: an update on PET/CT technology. Eur. J. Nucl. Med. Mol. Imaging 36 (Suppl. 1), 15–29 (2009).

    Article  Google Scholar 

  85. Czernin, J., Allen-Auerbach, M. & Schelbert, H. R. Improvements in cancer staging with PET/CT: literature-based evidence as of September 2006. J. Nucl. Med. 48 (Suppl. 1), 78–88 (2007).

    Google Scholar 

  86. Facey, K., Bradbury, I., Laking, G. & Payne, E. Overview of the clinical effectiveness of positron emission tomography imaging in selected cancers. Health Technol. Assess. 11, iii–iv, xi–267 (2007).

    Article  CAS  PubMed  Google Scholar 

  87. Hanahan, D. & Weinberg, R. A. Hallmarks of cancer: the next generation. Cell 144, 646–674 (2011).

    Article  CAS  PubMed  Google Scholar 

  88. Aboagye, E. O. The future of imaging: developing the tools for monitoring response to therapy in oncology: the 2009 Sir James MacKenzie Davidson Memorial lecture. Br. J. Radiol. 83, 814–822 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Rice, S. L., Roney, C. A., Daumar, P. & Lewis, J. S. The next generation of positron emission tomography radiopharmaceuticals in oncology. Semin. Nucl. Med. 41, 265–282 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  90. Dunphy, M. P. & Lewis, J. S. Radiopharmaceuticals in preclinical and clinical development for monitoring of therapy with PET. J. Nucl. Med. 50 (Suppl. 1), 106S–121S (2009).

    Article  CAS  PubMed  Google Scholar 

  91. Pichler, B. J., Judenhofer, M. S. & Wehrl, H. F. PET/MRI hybrid imaging: devices and initial results. Eur. Radiol 18, 1077–1086 (2008).

    Article  PubMed  Google Scholar 

  92. Huang, B., Law, M. W. & Khong, P. L. Whole-body PET/CT scanning: estimation of radiation dose and cancer risk. Radiology 251, 166–174 (2009).

    Article  PubMed  Google Scholar 

  93. Koh, D. M. & Collins, D. J. Diffusion-weighted MRI in the body: applications and challenges in oncology. AJR Am. J. Roentgenol. 188, 1622–1635 (2007).

    Article  PubMed  Google Scholar 

  94. Padhani, A. R., Koh, D. M. & Collins, D. J. Whole-body diffusion-weighted MR imaging in cancer: current status and research directions. Radiology 261, 700–718 (2011).

    Article  PubMed  Google Scholar 

  95. Padhani, A. R. & Miles, K. A. Multiparametric imaging of tumor response to therapy. Radiology 256, 348–364 (2010).

    Article  PubMed  Google Scholar 

  96. Meggitt, G. Taming the Rays: a History of Radiation and Protection (Lulu.com, Raleigh, 2008).

    Google Scholar 

  97. Leborgne, R. Diagnosis of tumors of the breast by simple roentgenography; calcifications in carcinomas. Am. J. Roentgenol. Radium Ther. 65, 1–11 (1951).

    CAS  PubMed  Google Scholar 

  98. Oldendorf, W. H. Isolated flying spot detection of radiodensity discontinuities—displaying the internal structural pattern of a complex object. Ire. Trans. Biomed. Electron. BME-8, 68–72 (1961).

    Article  CAS  PubMed  Google Scholar 

  99. Beckmann, E. C. CT scanning the early days. Br. J. Radiol. 79, 5–8 (2006).

    Article  CAS  PubMed  Google Scholar 

  100. Purcell, E. M., Torrey, H. C. & Pound, R. V. Resonance absorption by nuclear magnetic moments in a solid. Phys. Rev. 69, 37–38 (1946).

    Article  CAS  Google Scholar 

  101. Lauterbur, P. Image formation by induced local interactions: examples of employing nuclear magnetic resonance. Nature 242, 190–191 (1973).

    Article  CAS  Google Scholar 

  102. Lawrence, E. O. & Edlefsen, N. E. On the production of high speed protons. Science 72, 376–377 (1930).

    Google Scholar 

  103. Sweet, W. H. The uses of nuclear disintegration in the diagnosis and treatment of brain tumor. N. Engl. J. Med. 245, 875–878 (1951).

    Article  CAS  PubMed  Google Scholar 

  104. Hoffmann, E. J., Phelps, M. E., Mullani, N. A., Higgins, C. S. & Ter-Pogossian, M. M. Design and performance characteristics of a whole-body positron transaxial tomograph. J. Nucl. Med. 17, 493–502 (1976).

    CAS  PubMed  Google Scholar 

  105. Reivich, M. et al. The [18F]fluorodeoxyglucose method for the measurement of local cerebral glucose utilization in man. Circ. Res. 44, 127–137 (1979).

    Article  CAS  PubMed  Google Scholar 

  106. Shrimpton, P. C. et al. Survey of CT Practice in the U. K. Part 2: Dosimetric Aspects. Report NRPB-R249 (HMSO, London, 1991).

    Google Scholar 

  107. Shrimpton, P. C., Hillier, M. C., Lewis, M. A. & Dunn, M. Doses from Computed Tomography (CT) Examinations in the UK-2003 Review. Report NRPB-W67 (National Radiological Protection Board, Chilton, 2005).

    Google Scholar 

  108. Pichler, B. J., Wehrl, H. F. & Judenhofer, M. S. Latest advances in molecular imaging instrumentation. J. Nucl. Med. 49 (Suppl. 2), 5S–23S (2008).

    Article  PubMed  Google Scholar 

  109. Gehan, E. A. & Schneiderman, M. A. Historical and methodological developments in clinical trials at the National Cancer Institute. Stat. Med. 9, 871–880 (1990).

    Article  CAS  PubMed  Google Scholar 

  110. Therasse, P. et al. New guidelines to evaluate the response to treatment in solid tumors. European Organization for Research and Treatment of Cancer, National Cancer Institute of the United States, National Cancer Institute of Canada. J. Natl Cancer Inst. 92, 205–216 (2000).

    Article  CAS  PubMed  Google Scholar 

  111. Eisenhauer, E. A. et al. New response evaluation criteria in solid tumours: revised RECIST guideline (version 1.1). Eur. J. Cancer 45, 228–247 (2009).

    Article  CAS  PubMed  Google Scholar 

  112. Suzuki, C. et al. Radiologic measurements of tumor response to treatment: practical approaches and limitations. Radiographics 28, 329–344 (2008).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We are grateful to Hannah Holmes, The Royal Marsden, for secretarial support. We acknowledge National Health Service funding to the National Institute for Health Research Biomedical Research Centre (London, UK).

Author information

Authors and Affiliations

Authors

Contributions

B. Sharma, A. Martin and A. Constantinidou made substantial contributions to researching the data, discussion of content, and writing, reviewing and editing of the manuscript before submission. S. Stanway contributed to researching the data and writing the article. S. R. D. Johnston contributed to discussion of content.

Corresponding author

Correspondence to Bhuey Sharma.

Ethics declarations

Competing interests

B. Sharma is an employee of Alliance Medical. The other authors declare no competing interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sharma, B., Martin, A., Stanway, S. et al. Imaging in oncology—over a century of advances. Nat Rev Clin Oncol 9, 728–737 (2012). https://doi.org/10.1038/nrclinonc.2012.195

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrclinonc.2012.195

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer