Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspectives
  • Published:

Overcoming implementation challenges of personalized cancer therapy

Abstract

Personalized cancer therapy is based on the precept that detailed molecular characterization of the patient's tumour and its microenvironment will enable tailored therapies to improve outcomes and decrease toxicity. The goal of personalized therapy is to target aberrations that drive tumour growth and survival, by administering the right drug combination for the right person. This is becoming increasingly achievable with advances in high-throughput technologies to characterize tumours and the expanding repertoire of molecularly targeted therapies. However, there are numerous challenges that need to be surpassed before delivering on the promise of personalized cancer therapy. These include tumour heterogeneity and molecular evolution, costs and potential morbidity of biopsies, lack of effective drugs against most genomic aberrations, technical limitations of molecular tests, and reimbursement and regulatory hurdles. Critically, the 'hype' surrounding personalized cancer therapy must be tempered with realistic expectations, which, today, encompass increased survival times for only a portion of patients.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Tumour heterogeneity.
Figure 2: Approaches to tumour heterogeneity and molecular evolution.

Similar content being viewed by others

References

  1. Konigsberg, R. et al. Clinical and economic aspects of KRAS mutational status as predictor for epidermal growth factor receptor inhibitor therapy in metastatic colorectal cancer patients. Oncology 81, 359–364 (2011).

    Article  PubMed  Google Scholar 

  2. Blank, P. R., Moch, H., Szucs, T. D. & Schwenkglenks, M. KRAS and BRAF mutation analysis in metastatic colorectal cancer: a cost-effectiveness analysis from a Swiss perspective. Clin. Cancer Res. 17, 6338–6346 (2011).

    Article  CAS  PubMed  Google Scholar 

  3. Karapetis, C. S. et al. K-ras mutations and benefit from cetuximab in advanced colorectal cancer. N. Engl. J. Med. 359, 1757–1765 (2008).

    Article  CAS  PubMed  Google Scholar 

  4. Davies, H. et al. Mutations of the BRAF gene in human cancer. Nature 417, 949–954 (2002).

    Article  CAS  PubMed  Google Scholar 

  5. Chapman, P. B. et al. Improved survival with vemurafenib in melanoma with BRAF V600E mutation. N. Engl. J. Med. 364, 2507–2516 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Perou, C. M. et al. Molecular portraits of human breast tumours. Nature 406, 747–752 (2000).

    CAS  PubMed  Google Scholar 

  7. Sørlie, T. et al. Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. Proc. Natl Acad. Sci. USA 98, 10869–10874 (2001).

    Article  PubMed  PubMed Central  Google Scholar 

  8. Al-Hajj, M., Wicha, M. S., Benito-Hernandez, A., Morrison, S. J. & Clarke, M. F. Prospective identification of tumorigenic breast cancer cells. Proc. Natl Acad. Sci. USA 100, 3983–3988, (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Wicha, M. S., Liu, S. & Dontu, G. Cancer stem cells: an old idea--a paradigm shift. Cancer Res. 66, 1883–1890 (2006).

    Article  CAS  PubMed  Google Scholar 

  10. Fialkow, P. J. Clonal origin of human tumors. Annu. Rev. Med. 30, 135–143 (1979).

    Article  CAS  PubMed  Google Scholar 

  11. Wang, X. et al. Evidence for common clonal origin of multifocal lung cancers. J. Natl Cancer Inst. 101, 560–570 (2009).

    Article  CAS  PubMed  Google Scholar 

  12. Rabkin, C. S. et al. Monoclonal origin of multicentric Kaposi's sarcoma lesions. N. Engl. J. Med. 336, 988–993 (1997).

    Article  CAS  PubMed  Google Scholar 

  13. Yachida, S. et al. Distant metastasis occurs late during the genetic evolution of pancreatic cancer. Nature 467, 1114–1117 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Shah, S. P. et al. The clonal and mutational evolution spectrum of primary triple-negative breast cancers. Nature 486, 395–399 (2012).

    Article  CAS  PubMed  Google Scholar 

  15. Navin, N. et al. Tumour evolution inferred by single-cell sequencing. Nature 472, 90–94 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Gonzalez-Angulo, A. M. et al. PI3K pathway mutations and PTEN levels in primary and metastatic breast cancer. Mol. Cancer Ther. 10, 1093–1101 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Dupont Jensen, J. et al. PIK3CA mutations may be discordant between primary and corresponding metastatic disease in breast cancer. Clin. Cancer Res. 17, 667–677 (2011).

    Article  CAS  PubMed  Google Scholar 

  18. Gerlinger, M. et al. Intratumor heterogeneity and branched evolution revealed by multiregion sequencing. N. Engl. J. Med. 366, 883–892 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Liedtke, C. et al. Prognostic impact of discordance between triple-receptor measurements in primary and recurrent breast cancer. Ann. Oncol. 20, 1953–1958 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Niikura, N. et al. Loss of human epidermal growth factor receptor 2 (HER2) expression in metastatic sites of HER2-overexpressing primary breast tumors. J. Clin. Oncol. 30, 593–599 (2012).

    Article  PubMed  Google Scholar 

  21. Muranen, T. et al. Inhibition of PI3K/mTOR leads to adaptive resistance in matrix-attached cancer cells. Cancer Cell 21, 227–239 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Chandarlapaty, S. et al. AKT inhibition relieves feedback suppression of receptor tyrosine kinase expression and activity. Cancer Cell 19, 58–71 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Mittendorf, E. A. et al. Loss of HER2 amplification following trastuzumab-based neoadjuvant systemic therapy and survival outcomes. Clin. Cancer Res. 15, 7381–7388 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Pao, W. et al. Acquired resistance of lung adenocarcinomas to gefitinib or erlotinib is associated with a second mutation in the EGFR kinase domain. PLoS Med 2, e73 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  25. Engelman, J. A. et al. MET amplification leads to gefitinib resistance in lung cancer by activating ERBB3 signaling. Science 316, 1039–1043 (2007).

    Article  CAS  PubMed  Google Scholar 

  26. Bean, J. et al. MET amplification occurs with or without T790M mutations in EGFR mutant lung tumors with acquired resistance to gefitinib or erlotinib. Proc. Natl Acad. Sci. USA 104, 20932–20937 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Turke, A. B. et al. Preexistence and clonal selection of MET amplification in EGFR mutant NSCLC. Cancer Cell 17, 77–88 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Sequist, L. V. et al. Genotypic and histological evolution of lung cancers acquiring resistance to EGFR inhibitors. Sci. Transl. Med. 3, 75ra26 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  29. Wetterstrand, K. A. DNA sequencing costs. Data from the NHG RI Large-Scale Genome Sequencing Program [online], (2012).

    Google Scholar 

  30. Ross, J. S. & Cronin, M. Whole cancer genome sequencing by next-generation methods. Am. J. Clin. Pathol. 136, 527–539 (2011).

    Article  CAS  PubMed  Google Scholar 

  31. Maheswaran, S. et al. Detection of mutations in EGFR in circulating lung-cancer cells. N. Engl. J. Med. 359, 366–377 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Diel, F. et al. Detection and quantification of mutations in the plasma of patients with colorectal tumors. Proc. Natl Acad. Sci. USA 102, 16368–16373 (2005).

    Article  Google Scholar 

  33. Board, R. E. et al. Detection of PIK3CA mutations in circulating free DNA in patients with breast cancer. Breast Cancer Res. Treat. 120, 461–467 (2010).

    Article  CAS  PubMed  Google Scholar 

  34. Board, R. E. et al. Detection of BRAF mutations in the tumour and serum of patients enrolled in the AZD6244 (ARRY-142886) advanced melanoma phase II study. Br. J. Cancer 101, 1724–1730 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Søndergaard, J. N. et al. Differential sensitivity of melanoma cell lines with BRAFV600E mutation to the specific Raf inhibitor PLX4032. J. Transl. Med. 8, 39 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  36. Meric, F. et al. Expression profile of tyrosine kinases in breast cancer. Clin. Cancer Res. 8, 361–367 (2002).

    CAS  PubMed  Google Scholar 

  37. Carter, P. et al. Humanization of an anti-p185HER2 antibody for human cancer therapy. Proc. Natl Acad. Sci. USA 89, 4285–4289 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Agus, D. B. et al. Targeting ligand-activated ErbB2 signaling inhibits breast and prostate tumor growth. Cancer Cell 2, 127–137 (2002).

    Article  CAS  PubMed  Google Scholar 

  39. Konecny, G. E. et al. Activity of the dual kinase inhibitor lapatinib (GW572016) against HER-2-overexpressing and trastuzumab-treated breast cancer cells. Cancer Res. 66, 1630–1639 (2006).

    Article  CAS  PubMed  Google Scholar 

  40. Mills, G. B. An emerging toolkit for targeted cancer therapies. Genome Res. 22, 177–182 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Iorns, E., Lord, C. J., Turner, N. & Ashworth, A. Utilizing RNA interference to enhance cancer drug discovery. Nat. Rev. Drug Discov. 6, 556–568 (2007).

    Article  CAS  PubMed  Google Scholar 

  42. Polyak, K. & Garber, J. Targeting the missing links for cancer therapy. Nat. Med. 17, 283–284 (2011).

    Article  CAS  PubMed  Google Scholar 

  43. Farmer, H. et al. Targeting the DNA repair defect in BRCA mutant cells as a therapeutic strategy. Nature 434, 917–921 (2005).

    Article  CAS  PubMed  Google Scholar 

  44. Paez, J. G. et al. EGFR mutations in lung cancer: correlation with clinical response to gefitinib therapy. Science 304, 1497–1500 (2004).

    Article  CAS  PubMed  Google Scholar 

  45. Goulart, B. H. et al. Trends in the use and role of biomarkers in phase I oncology trials. Clin. Cancer Res. 13, 6719–6726 (2007).

    Article  CAS  PubMed  Google Scholar 

  46. Banerji, U., de Bono, J., Judson, I., Kaye, S. & Workman, P. Biomarkers in early clinical trials: the committed and the skeptics. Clin. Cancer Res. 14, 2512; author reply 2513–2514 (2008).

    Article  PubMed  Google Scholar 

  47. Pusztai, L., Anderson, K. & Hess, K. R. Pharmacogenomic predictor discovery in phase II clinical trials for breast cancer. Clin. Cancer Res. 13, 6080–6086 (2007).

    Article  CAS  PubMed  Google Scholar 

  48. McShane, L. M., Hunsberger, S. & Adjei, A. A. Effective incorporation of biomarkers into phase II trials. Clin. Cancer Res. 15, 1898–1905 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Kim, E. S. et al. The BATTLE Trial: Personalizing therapy for lung cancer. Cancer Discov. 1, 44–53 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Irwig, L., Glasziou, P. & March, L. Ethics of n-of-1 trials. Lancet 345, 469 (1995).

    Article  CAS  PubMed  Google Scholar 

  51. Mahon, J., Laupacis, A., Donner, A. & Wood, T. Randomised study of n-of-1 trials versus standard practice. BMJ 312, 1069–1074 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Porta, M. S. The search for more clinically meaningful research designs: single-patient randomized clinical trials. J. Gen. Intern. Med. 1, 418–419 (1986).

    Article  CAS  PubMed  Google Scholar 

  53. Doroshow, J. H. Selecting systemic cancer therapy one patient at a time: is there a role for molecular profiling of individual patients with advanced solid tumors? J. Clin. Oncol. 28, 4869–4871 (2010).

    Article  PubMed  Google Scholar 

  54. Von Hoff, D. D. et al. Pilot study using molecular profiling of patients' tumors to find potential targets and select treatments for their refractory cancers. J. Clin. Oncol. 28, 4877–4883 (2010).

    Article  CAS  PubMed  Google Scholar 

  55. Olson, E. M., Lin, N. U., Krop, I. E. & Winer, E. P. The ethical use of mandatory research biopsies. Nat. Rev. Clin. Oncol. 8, 620–625 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  56. El-Osta, H. et al. Outcomes of research biopsies in phase I clinical trials: the MD Anderson Cancer Center experience. Oncologist 16, 1292–1298 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  57. MacConaill, L. E. et al. Profiling critical cancer gene mutations in clinical tumor samples. PLoS One 4, e7887 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  58. Medvedev, P., Stanciu, M. & Brudno, M. Computational methods for discovering structural variation with next-generation sequencing. Nat. Methods 6, S13–S20 (2009).

    Article  CAS  PubMed  Google Scholar 

  59. Greenman, C. et al. Patterns of somatic mutation in human cancer genomes. Nature 446, 153–158 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Stratton, M. R., Campbell, P. J. & Futreal, P. A. The cancer genome. Nature 458, 719–724 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Kopetz, S. et al. PLX4032 in metastatic colorectal cancer patients with mutant BRAF tumors [abstract]. J. Clin. Oncol. 28 (Suppl. 15), a353415 (2010).

    Google Scholar 

  62. Lee, M. J. et al. Sequential application of anticancer drugs enhances cell death by rewiring apoptotic signaling networks. Cell 149, 780–794 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Gonzalez-Angulo, A. M., Hennessy, B. T. & Mills, G. B. Future of personalized medicine in oncology: a systems biology approach. J. Clin. Oncol. 28, 2777–2783 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Centers for Medicare & Medicaid Services. Clinical Laboratory Improvement Amendments (CLIA) [online], (2012).

  65. US Food and Drug Administration. Recently-approved devices [online]. (2012).

  66. Tibes, R. et al. Patient willingness to undergo pharmacodynamic and pharmacokinetic tests in early phase oncology trials. Cancer 117, 3276–3283 (2011).

    Article  PubMed  Google Scholar 

  67. Clayton, E. W. et al. Confronting real time ethical, legal, and social issues in the Electronic Medical Records and Genomics (eMERGE) Consortium. Genet. Med. 12, 616–620 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  68. McGuire, A. L., Diaz, C. M., Wang, T. & Hilsenbeck, S. G. Social networkers' attitudes toward direct-to-consumer personal genome testing. Am. J. Bioeth. 9, 3–10 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Ruth Haynes for assistance with the manuscript preparation.

Author information

Authors and Affiliations

Authors

Contributions

All authors made a substantial contribution to researching data for the article, discussing content, and writing and editing the manuscript prior to submission, and revising the article after peer review.

Corresponding author

Correspondence to Funda Meric-Bernstam.

Ethics declarations

Competing interests

G. B. Mills declares he is a consultant and he serves as a scientific advisor of Arcxis Biotechnologies, Asuragen, Catena Pharmaceuticals, Daiichi-Sankyo, Foundation Medicine, Komen Foundation, Novartis, Targeted Molecular Diagnostics LLC, Tau Therapeutics. He owns shares from Catena Pharmaceuticals, PTV Sciences. He receives grant support from Astrazeneca, Celgene, CeMines Inc, Exelisis, GlaxoSmithKline, Lpath Inc, Pfizer, Roche. F. Meric-Bernstam declares no competing interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Meric-Bernstam, F., Mills, G. Overcoming implementation challenges of personalized cancer therapy. Nat Rev Clin Oncol 9, 542–548 (2012). https://doi.org/10.1038/nrclinonc.2012.127

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrclinonc.2012.127

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer