Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Targeted therapy in non-small-cell lung cancer—is it becoming a reality?

A Correction to this article was published on 29 June 2011

This article has been updated

Abstract

Treatment outcomes in advanced or metastatic non-small-cell lung cancer (NSCLC) remain unsatisfactory, with low long-term survival rates. Palliative chemotherapy offers a median survival not exceeding 1 year. To date, various combinations of cytotoxic drugs have not improved treatment results beyond what has been observed with platinum doublets. By contrast, molecular targeted drugs may block important pathways that drive cancer progression and achieve long-term disease control. Conflicting results have demonstrated marginal benefit with EGFR inhibitors, anti-EGFR monoclonal antibodies and antiangiogenic strategies in unselected populations of patients with advanced NSCLC. However, patients with an EGFR mutation are likely to respond to agents that target this gene. Novel targeted therapies that interfere with insulin-like growth factor 1 receptor, or the EML4-ALK fusion protein have shown promising activity. Aberrations in other key signaling pathways and molecules, such as RAS/RAF/MEK, PI3K/AKT/mTOR, or MET kinase, have been identified as crucial targets, especially in resistant patients. Novel drugs aimed at these abnormalities are already in the clinic. This Review outlines the current state-of-the-art research for targeted therapy in NSCLC.

Key Points

  • EGFR tyrosine kinase inhibitors have limited efficacy in an unselected population of patients with advanced NSCLC, but are very effective in patients who have underlying EGFR mutations

  • The anti-EGFR monoclonal antibody cetuximab modestly prolongs survival in combination with chemotherapy in an unselected patient population; patients who develop skin rash after treatment initiation have considerably prolonged survival

  • Mutated KRAS is not clearly associated with complete resistance to anti-EGFR therapy in NSCLC, but patients with mutated KRAS generally have a poor outcome irrespective of the treatment regimen

  • The anti-VEGF monoclonal antibody bevacizumab marginally improves progression-free survival and may improve overall survival when combined with chemotherapy in NSCLC patients with nonsquamous histology

  • The product of EML4-ALK constitutively activates RAS, which may confer EGFR resistance; other targets that possibly mediate resistance include the MET kinase receptor and PI3K/AKT/mTOR pathway

  • IGF-1R is an interesting target in advanced NSCLC—antibodies have demonstrated promise in phase II trials with chemotherapy, and inhibitors of this target are in early clinical testing

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: EGFR signaling pathways.
Figure 2: IGF-1R signaling pathway.
Figure 3: MET signaling pathway.

Similar content being viewed by others

Change history

  • 01 June 2011

    In the version of this article initially published online, the last reference in this article, reference 141, is incorrect. The correct reference is US National Library of Medicine. ClinicalTrials.gov [online], http://clinicaltrials.gov/ct2/show/NCT00596648 (2010). The error has been corrected for the HTML and PDF versions of the article.

References

  1. National Cancer Institute. SEER Cancer Statistics Review 1975–2006 [online], (2009).

  2. Subramanian, J. & Govindan, R. Lung cancer in never smokers: a review. J. Clin. Oncol. 25, 561–570 (2007).

    PubMed  Google Scholar 

  3. Herbst, R. S., Heymach, J. V. & Lippman, S. M. Lung cancer. N. Engl. J. Med. 359, 1367–1380 (2008).

    CAS  PubMed  Google Scholar 

  4. Rapp, E. et al. Chemotherapy can prolong survival in patients with advanced non-small-cell lung cancer—report of a Canadian multicenter randomized trial. J. Clin. Oncol. 6, 633–641 (1988).

    CAS  PubMed  Google Scholar 

  5. Ellis, P. A. et al. Symptom relief with MVP (mitomycin C, vinblastine and cisplatin) chemotherapy in advanced non-small-cell lung cancer. Br. J. Cancer 71, 366–370 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. [No authors listed] Chemotherapy in non-small-cell lung-cancer—a meta-analysis using updated data on individual patients from 52 randomized clinical trials. BMJ 311, 899–909 (1995).

  7. Burdett, S., Stewart, L. & Pignon, J. P. Chemotherapy in non-small cell lung cancer: an update of an individual patient data-based meta-analysis. J. Thorac. Cardiovasc. Surg. 129, 1205 (2005).

    PubMed  Google Scholar 

  8. Burdett, S. et al. Chemotherapy in addition to supportive care improves survival in advanced non-small-cell lung cancer: a systematic review and meta-analysis of individual patient data from 16 randomized controlled trials. J. Clin. Oncol. 26, 4617–4625 (2008).

    Google Scholar 

  9. Schiller, J. H. et al. Comparison of four chemotherapy regimens for advanced non-small-cell lung cancer. N. Engl. J. Med. 346, 92–98 (2002).

    CAS  PubMed  Google Scholar 

  10. Scagliotti, G. V. et al. Phase III randomized trial comparing three platinum-based doublets in advanced non-small-cell lung cancer. J. Clin. Oncol. 20, 4285–4291 (2002).

    CAS  PubMed  Google Scholar 

  11. Fossella, F. et al. Randomized, multinational, phase III study of docetaxel plus platinum combinations versus vinorelbine plus cisplatin for advanced non-small-cell lung cancer: the TAX 326 study group. J. Clin. Oncol. 21, 3016–3024 (2003).

    CAS  PubMed  Google Scholar 

  12. Kelly, K. et al. Randomized phase III trial of paclitaxel plus carboplatin versus vinorelbine plus cisplatin in the treatment of patients with advanced non-small-cell lung cancer: a Southwest Oncology Group trial. J. Clin. Oncol. 19, 3210–3218 (2001).

    CAS  PubMed  Google Scholar 

  13. Zatloukal, P. et al. Gemcitabine plus cisplatin vs. gemcitabine plus carboplatin in stage IIIb and IV non-small cell lung cancer: a phase III randomized trial. Lung Cancer 41, 321–331 (2003).

    PubMed  Google Scholar 

  14. Coiffier, B. et al. CHOP chemotherapy plus rituximab compared with CHOP alone in elderly patients with diffuse large-B-cell lymphoma. N. Engl. J. Med. 346, 235–242 (2002).

    CAS  PubMed  Google Scholar 

  15. Slamon, D. J. et al. Use of chemotherapy plus a monoclonal antibody against HER2 for metastatic breast cancer that overexpresses HER2. N. Engl. J. Med. 344, 783–792 (2001).

    CAS  PubMed  Google Scholar 

  16. Druker, B. J. et al. Efficacy and safety of a specific inhibitor of the BCR-ABL tyrosine kinase in chronic myeloid leukemia. N. Engl. J. Med. 344, 1031–1037 (2001).

    CAS  PubMed  Google Scholar 

  17. Demetri, G. D. et al. Efficacy and safety of imatinib mesylate in advanced gastrointestinal stromal tumors. N. Engl. J. Med. 347, 472–480 (2002).

    CAS  PubMed  Google Scholar 

  18. Motzer, R. J. et al. Sunitinib versus interferon alfa in metastatic renal-cell carcinoma. N. Engl. J. Med. 356, 115–124 (2007).

    CAS  PubMed  Google Scholar 

  19. Salomon, D. S., Brandt, R., Ciardiello, F. & Normanno, N. Epidermal growth factor-related peptides and their receptors in human malignancies. Crit. Rev. Oncol. Hematol. 19, 183–232 (1995).

    CAS  PubMed  Google Scholar 

  20. Rusch, V. et al. Differential expression of the epidermal growth factor receptor and its ligands in primary non-small cell lung cancers and adjacent benign lung. Cancer Res. 53, 2379–2385 (1993).

    CAS  PubMed  Google Scholar 

  21. Fujino, S. et al. A comparison of epidermal growth factor receptor levels and other prognostic parameters in non-small cell lung cancer. Eur. J. Cancer 32A, 2070–2074 (1996).

    CAS  PubMed  Google Scholar 

  22. Rusch, V. et al. Overexpression of the epidermal growth factor receptor and its ligand transforming growth factor alpha is frequent in resectable non-small cell lung cancer but does not predict tumor progression. Clin. Cancer Res. 3, 515–522 (1997).

    CAS  PubMed  Google Scholar 

  23. Fontanini, G. et al. Evaluation of epidermal growth factor-related growth factors and receptors and of neoangiogenesis in completely resected stage I–IIIA non-small-cell lung cancer: amphiregulin and microvessel count are independent prognostic indicators of survival. Clin. Cancer Res. 4, 241–249 (1998).

    CAS  PubMed  Google Scholar 

  24. Hirsch, F. R. et al. Molecular predictors of outcome with gefitinib in a phase III placebo-controlled study in advanced non-small-cell lung cancer. J. Clin. Oncol. 24, 5034–5042 (2006).

    CAS  PubMed  Google Scholar 

  25. Hirsch, F. R. et al. Increased EGFR gene copy number detected by fluorescent in situ hybridization predicts outcome in non-small-cell lung cancer patients treated with cetuximab and chemotherapy. J. Clin. Oncol. 26, 3351–3357 (2008).

    CAS  PubMed  Google Scholar 

  26. O'Byrne, K. B. et al. Molecular and clinical predictors of outcome for cetuximab in non-small cell lung cancer (NSCLC): Data from the FLEX study [abstract]. J. Clin. Oncol. 27, 8007 (2009).

    Google Scholar 

  27. Hynes, N. E. & Lane, H. A. ERBB receptors and cancer: the complexity of targeted inhibitors. Nat. Rev. Cancer 5, 341–354 (2005).

    CAS  PubMed  Google Scholar 

  28. Ladanyi, M. & Pao, W. Lung adenocarcinoma: guiding EGFR-targeted therapy and beyond. Mod. Pathol. 21 (Suppl. 2), S16–S22 (2008).

    CAS  PubMed  Google Scholar 

  29. Fukuoka, M. et al. Multi-institutional randomized phase II trial of gefitinib for previously treated patients with advanced non-small-cell lung cancer (The IDEAL 1 Trial) [corrected]. J. Clin. Oncol. 21, 2237–2246 (2003).

    CAS  PubMed  Google Scholar 

  30. Kris, M. G. et al. Efficacy of gefitinib, an inhibitor of the epidermal growth factor receptor tyrosine kinase, in symptomatic patients with non-small cell lung cancer: a randomized trial. JAMA 290, 2149–2158 (2003).

    CAS  PubMed  Google Scholar 

  31. Shepherd, F. A. et al. Prospective randomized trial of docetaxel versus best supportive care in patients with non-small-cell lung cancer previously treated with platinum-based chemotherapy. J. Clin. Oncol. 18, 2095–2103 (2000).

    CAS  PubMed  Google Scholar 

  32. Shepherd, F. A. et al. Erlotinib in previously treated non-small-cell lung cancer. N. Engl. J. Med. 353, 123–132 (2005).

    CAS  PubMed  Google Scholar 

  33. Clark, G. M. et al. Smoking history and epidermal growth factor receptor expression as predictors of survival benefit from erlotinib for patients with non-small-cell lung cancer in the National Cancer Institute of Canada Clinical Trials Group study BR.21. Clin. Lung Cancer 7, 389–394 (2006).

    CAS  PubMed  Google Scholar 

  34. Tsao, M. S. et al. Erlotinib in lung cancer—molecular and clinical predictors of outcome. N. Engl. J. Med. 353, 133–144 (2005).

    CAS  PubMed  Google Scholar 

  35. Thatcher, N. et al. Gefitinib plus best supportive care in previously treated patients with refractory advanced non-small-cell lung cancer: results from a randomised, placebo-controlled, multicentre study (Iressa Survival Evaluation in Lung Cancer). Lancet 366, 1527–1537 (2005).

    CAS  PubMed  Google Scholar 

  36. Wacker, B. et al. Correlation between development of rash and efficacy in patients treated with the epidermal growth factor receptor tyrosine kinase inhibitor erlotinib in two large phase III studies. Clin. Cancer Res. 13, 3913–3921 (2007).

    CAS  PubMed  Google Scholar 

  37. Kim, E. S. et al. Gefitinib versus docetaxel in previously treated non-small-cell lung cancer (INTEREST): a randomised phase III trial. Lancet 372, 1809–1818 (2008).

    CAS  PubMed  Google Scholar 

  38. Maruyama, R. et al. Phase III study, V-15-32, of gefitinib versus docetaxel in previously treated Japanese patients with non-small-cell lung cancer. J. Clin. Oncol. 26, 4244–4252 (2008).

    CAS  PubMed  Google Scholar 

  39. Cufer, T. et al. Phase II, open-label, randomized study (SIGN) of single-agent gefitinib (IRESSA) or docetaxel as second-line therapy in patients with advanced (stage IIIb or IV) non-small-cell lung cancer. Anticancer Drugs 17, 401–409 (2006).

    CAS  PubMed  Google Scholar 

  40. Herbst, R. S. et al. Phase II study of efficacy and safety of bevacizumab in combination with chemotherapy or erlotinib compared with chemotherapy alone for treatment of recurrent or refractory non small-cell lung cancer. J. Clin. Oncol. 25, 4743–4750 (2007).

    CAS  PubMed  Google Scholar 

  41. Crinò, L. et al. Gefitinib versus vinorelbine in chemotherapy-naive elderly patients with advanced non-small-cell lung cancer (INVITE): a randomized, phase II study. J. Clin. Oncol. 26, 4253–4260 (2008).

    PubMed  Google Scholar 

  42. Douillard, J. Y. et al. Molecular predictors of outcome with gefitinib and docetaxel in previously treated non-small-cell lung cancer: data from the randomized phase III INTEREST trial. J. Clin. Oncol. 28, 744–752 (2010).

    CAS  PubMed  Google Scholar 

  43. Broglio, K. R. & Berry, D. A. Detecting an overall survival benefit that is derived from progression-free survival. J. Natl Cancer Inst. 101, 1642–1649 (2009).

    PubMed  PubMed Central  Google Scholar 

  44. Giaccone, G. et al. Gefitinib in combination with gemcitabine and cisplatin in advanced non-small-cell lung cancer: a phase III trial—INTACT 1. J. Clin. Oncol. 22, 777–784 (2004).

    CAS  PubMed  Google Scholar 

  45. Herbst, R. S. et al. Gefitinib in combination with paclitaxel and carboplatin in advanced non-small-cell lung cancer: a phase III trial—INTACT 2. J. Clin. Oncol. 22, 785–794 (2004).

    CAS  PubMed  Google Scholar 

  46. Gatzemeier, U. et al. Phase III study of erlotinib in combination with cisplatin and gemcitabine in advanced non-small-cell lung cancer: the Tarceva Lung Cancer Investigation Trial. J. Clin. Oncol. 25, 1545–1552 (2007).

    CAS  PubMed  Google Scholar 

  47. Herbst, R. S. et al. TRIBUTE: a phase III trial of erlotinib hydrochloride (OSI-774) combined with carboplatin and paclitaxel chemotherapy in advanced non-small-cell lung cancer. J. Clin. Oncol. 23, 5892–5899 (2005).

    CAS  PubMed  Google Scholar 

  48. Miller, V. H. et al. Long survival of never smoking non-small cell lung cancer (NSCLC) patients (pts) treated with erlotinib HCl (OSI-774) and chemotherapy: sub-group analysis of TRIBUTE [abstract]. J. Clin. Oncol. 22, 7061 (2004).

    Google Scholar 

  49. Eberhard, D. A. et al. Mutations in the epidermal growth factor receptor and in KRAS are predictive and prognostic indicators in patients with non-small-cell lung cancer treated with chemotherapy alone and in combination with erlotinib. J. Clin. Oncol. 23, 5900–5909 (2005).

    CAS  PubMed  Google Scholar 

  50. Vogel, C. L. et al. Efficacy and safety of trastuzumab as a single agent in first-line treatment of HER2-overexpressing metastatic breast cancer. J. Clin. Oncol. 20, 719–726 (2002).

    CAS  PubMed  Google Scholar 

  51. Mahaffey, C. M. et al. Schedule-dependent apoptosis in K-ras mutant non-small-cell lung cancer cell lines treated with docetaxel and erlotinib: rationale for pharmacodynamic separation. Clin. Lung Cancer 8, 548–553 (2007).

    CAS  PubMed  Google Scholar 

  52. Tsai, C., Chen, T., Chang, K. & Hsiao, S. Combination effects of gefitinib plus cisplatin in non-small cell lung cancer (NSCLC): Why have phase III trials failed? [abstract]. J. Clin. Oncol. 27, 11022 (2009).

    Google Scholar 

  53. Stewart, D. J. et al. Decitabine effect on tumor global DNA methylation and other parameters in a phase I trial in refractory solid tumors and lymphomas. Clin. Cancer Res. 15, 3881–3888 (2009).

    CAS  PubMed  Google Scholar 

  54. Engelman, J. A. et al. MET amplification leads to gefitinib resistance in lung cancer by activating ERBB3 signaling. Science 316, 1039–1043 (2007).

    CAS  PubMed  Google Scholar 

  55. Cappuzzo, F. et al. Increased MET gene copy number negatively affects survival of surgically resected non-small-cell lung cancer patients. J. Clin. Oncol. 27, 1667–1674 (2009).

    PubMed  PubMed Central  Google Scholar 

  56. Shaw, A. T. et al. Clinical features and outcome of patients with non-small-cell lung cancer who harbor EML4-ALK. J. Clin. Oncol. 27, 4247–4253 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Weihua, Z. et al. Survival of cancer cells is maintained by EGFR independent of its kinase activity. Cancer Cell 13, 385–393 (2008).

    PubMed  PubMed Central  Google Scholar 

  58. Inoue, A. et al. First-line gefitinib for patients with advanced non-small-cell lung cancer harboring epidermal growth factor receptor mutations without indication for chemotherapy. J. Clin. Oncol. 27, 1394–1400 (2009).

    CAS  PubMed  Google Scholar 

  59. Sequist, L. V. et al. First-line gefitinib in patients with advanced non-small-cell lung cancer harboring somatic EGFR mutations. J. Clin. Oncol. 26, 2442–2449 (2008).

    CAS  PubMed  Google Scholar 

  60. Rosell, R. et al. Screening for epidermal growth factor receptor mutations in lung cancer. N. Engl. J. Med. 361, 958–967 (2009).

    CAS  PubMed  Google Scholar 

  61. Mok, T. et al. Phase III, randomized, open-label, first-line study of gefitinib (G) vs carboplatin/paclitaxel (C/P) in clinically selected patients (PTS) with advanced non-small-cell lung cancer (NSCLC) (IPASS) [abstract]. Ann. Oncol. 19 (Suppl. 8), LBA2 (2008).

    Google Scholar 

  62. Mok, T. S. et al. Gefitinib or carboplatin-paclitaxel in pulmonary adenocarcinoma. N. Engl. J. Med. 361, 947–957 (2009).

    CAS  PubMed  Google Scholar 

  63. Mok, T. S. et al. Clinical outcome of patients with different types of epidermal growth factor receptor mutations in IPASS [abstract]. J. Thorac. Oncol. 4 (9) (Suppl. 1), B9.5 (2009).

    Google Scholar 

  64. Lee, J. S. et al. A randomized phase III study of gefitinib (IRESSATM) versus standard chemotherapy (gemcitabine plus cisplatin) as a first-line treatment for never-smokers with advanced or metastatic adenocarcinoma of the lung [abstract]. J. Thorac. Oncol. 4 (Suppl. 1), PRS.4 (2009).

    Google Scholar 

  65. Cappuzzo, F. et al. SATURN: A double-blind, randomized, phase III study of maintenance erlotinib versus placebo following nonprogression with first-line platinum-based chemotherapy in patients with advanced NSCLC [abstract]. J. Clin. Oncol. 27, 8001 (2009).

    Google Scholar 

  66. Lee, J. S. et al. FAST-ACT: A phase II randomized double-blind trial of sequential erlotinib and chemotherapy as first-line treatment in patients (pts) with stage IIIB/IV non-small cell lung cancer (NSCLC) [abstract]. J. Clin. Oncol. 26, 8031 (2008).

    Google Scholar 

  67. Hida, T. et al. Randomized phase III study of platinum-doublet chemotherapy followed by gefitinib versus continued platinum-doublet chemotherapy in patients (pts) with advanced non-small cell lung cancer (NSCLC): Results of West Japan Thoracic Oncology Group trial (WJTOG) [abstract]. J. Clin. Oncol. 26, LBA8012 (2008).

    Google Scholar 

  68. Miller, V. A., O'Connor, P., Soh, C. & Kabbinavar, F. A randomized, double-blind, placebo-controlled, phase IIIb trial (ATLAS) comparing bevacizumab (B) therapy with or without erlotinib (E) after completion of chemotherapy with B for first-line treatment of locally advanced, recurrent, or metastatic non-small cell lung cancer (NSCLC) [abstract]. J. Clin. Oncol. 27, LBA8002 (2009).

    Google Scholar 

  69. Tan, E. H. et al. A multicentre phase II gene expression profiling study of putative relationships between tumour biomarkers and clinical response with erlotinib in non-small-cell lung cancer. Ann. Oncol. 21, 217–222 (2010).

    PubMed  PubMed Central  Google Scholar 

  70. Eberhard, D. A., Giaccone, G. & Johnson, B. E. Biomarkers of response to epidermal growth factor receptor inhibitors in Non-Small-Cell Lung Cancer Working Group: standardization for use in the clinical trial setting. J. Clin. Oncol. 26, 983–994 (2008).

    PubMed  Google Scholar 

  71. Hirsch, F. R. et al. Epidermal growth factor receptor immunohistochemistry: comparison of antibodies and cutoff points to predict benefit from gefitinib in a phase 3 placebo-controlled study in advanced nonsmall-cell lung cancer. Cancer 112, 1114–1121 (2008).

    CAS  PubMed  Google Scholar 

  72. Hirsch, F. R. et al. Epidermal growth factor receptor in non-small-cell lung carcinomas: correlation between gene copy number and protein expression and impact on prognosis. J. Clin. Oncol. 21, 3798–3807 (2003).

    CAS  PubMed  Google Scholar 

  73. Kurai, J. et al. Antibody-dependent cellular cytotoxicity mediated by cetuximab against lung cancer cell lines. Clin. Cancer Res. 13, 1552–1561 (2007).

    CAS  PubMed  Google Scholar 

  74. Cunningham, D. et al. Cetuximab monotherapy and cetuximab plus irinotecan in irinotecan-refractory metastatic colorectal cancer. N. Engl. J. Med. 351, 337–345 (2004).

    CAS  PubMed  Google Scholar 

  75. Bonner, J. A. et al. Radiotherapy plus cetuximab for squamous-cell carcinoma of the head and neck. N. Engl. J. Med. 354, 567–578 (2006).

    CAS  PubMed  Google Scholar 

  76. Thienelt, C. D. et al. Multicenter phase I/II study of cetuximab with paclitaxel and carboplatin in untreated patients with stage IV non-small-cell lung cancer. J. Clin. Oncol. 23, 8786–8793 (2005).

    PubMed  Google Scholar 

  77. Robert, F. et al. Phase I/IIa study of cetuximab with gemcitabine plus carboplatin in patients with chemotherapy-naive advanced non-small-cell lung cancer. J. Clin. Oncol. 23, 9089–9096 (2005).

    CAS  PubMed  Google Scholar 

  78. Belani, C. P. et al. Cetuximab in combination with carboplatin and docetaxel for patients with metastatic or advanced-stage nonsmall cell lung cancer: a multicenter phase 2 study. Cancer 113, 2512–2517 (2008).

    CAS  PubMed  Google Scholar 

  79. Socinski, M. A. et al. A randomized, phase II trial of two dose schedules of carboplatin/paclitaxel/cetuximab in stage IIIB/IV non-small-cell lung cancer (NSCLC). Ann. Oncol. 20, 1068–1073 (2009).

    CAS  PubMed  Google Scholar 

  80. Butts, C. A. et al. Randomized phase II study of gemcitabine plus cisplatin or carboplatin [corrected], with or without cetuximab, as first-line therapy for patients with advanced or metastatic non small-cell lung cancer. J. Clin. Oncol. 25, 5777–5784 (2007).

    CAS  PubMed  Google Scholar 

  81. Rosell, R. et al. Randomized phase II study of cetuximab plus cisplatin/vinorelbine compared with cisplatin/vinorelbine alone as first-line therapy in EGFR-expressing advanced non-small-cell lung cancer. Ann. Oncol. 19, 362–369 (2008).

    CAS  PubMed  Google Scholar 

  82. Herbst, R. C. et al. A phase II randomized selection trial evaluating concurrent chemotherapy plus cetuximab or chemotherapy followed by cetuximab in patients with advanced non-small cell lung cancer (NSCLC): Final report of SWOG 0342 [abstract]. J. Clin. Oncol. 25, 7545 (2007).

    Google Scholar 

  83. Pirker, R. et al. Cetuximab plus chemotherapy in patients with advanced non-small-cell lung cancer (FLEX): an open-label randomised phase III trial. Lancet 373, 1525–1531 (2009).

    CAS  PubMed  Google Scholar 

  84. Gatzemeier, U. et al. FLEX: Cetuximab in combination with platinum-based chemotherapy (CT) improves survival versus CT alone in the 1st-line treatment of patients (pts) with advanced non-small cell lung cancer (NSCLC) [abstract]. J. Thorac. Oncol. 3 (Suppl. 4), 8 (2008).

    Google Scholar 

  85. Lynch, T. J. et al. Cetuximab and first-line taxane/carboplatin chemotherapy in advanced non-small-cell lung cancer: results of the randomized multicenter phase III trial BMS099. J. Clin. Oncol. 28, 911–917 (2010).

    CAS  PubMed  Google Scholar 

  86. Khambata-Ford, S. et al. Analysis of potential predictive markers of cetuximab benefit in BMS099, a phase III study of cetuximab and first-line taxane/carboplatin in advanced non-small-cell lung cancer. J. Clin. Oncol. 28, 918–927 (2010).

    CAS  PubMed  Google Scholar 

  87. Sandler, A. et al. Paclitaxel-carboplatin alone or with bevacizumab for non-small-cell lung cancer. N. Engl. J. Med. 355, 2542–2550 (2006).

    CAS  PubMed  Google Scholar 

  88. Manegold, C. et al. Randomised, double-blind multicentre phase III study of bevacizumab in combination with cisplatin and gemcitabine in chemotherapy-naïve patients with advanced or recurrent non-squamous non-small cell lung cancer (NSCLC): BO1770 [abstract]. J. Clin. Oncol. 25, LBA7514 (2008).

    Google Scholar 

  89. Reck, M. et al. Phase III trial of cisplatin plus gemcitabine with either placebo or bevacizumab as first-line therapy for nonsquamous non-small-cell lung cancer: AVAil. J. Clin. Oncol. 27, 1227–1234 (2009).

    CAS  PubMed  Google Scholar 

  90. Manegold, C. et al. BO17704 (AVAiL): a phase III randomised study of first-line bevacizumab combined with cisplatin/gemcitabine in patients with advanced or recurrent non-squamous, non-small-cell-lung cancer [abstract]. Ann. Oncol. 19, LBA1 (2008).

    Google Scholar 

  91. Scagliotti, G. V. et al. Phase III study comparing cisplatin plus gemcitabine with cisplatin plus pemetrexed in chemotherapy-naive patients with advanced-stage non-small-cell lung cancer. J. Clin. Oncol. 26, 3543–3551 (2008).

    CAS  PubMed  Google Scholar 

  92. Dahlberg, S. E., Sandler, A. B., Brahmer, J. R., Schiller, J. H. & Johnson, D. H. Clinical course of advanced non-small-cell lung cancer patients experiencing hypertension during treatment with bevacizumab in combination with carboplatin and paclitaxel on ECOG 4599. J. Clin. Oncol. 28, 949–954 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Escudier, B. et al. Sorafenib in advanced clear-cell renal-cell carcinoma. N. Engl. J. Med. 356, 125–134 (2007).

    CAS  PubMed  Google Scholar 

  94. Motzer, R. J. & Bukowski, R. M. Targeted therapy for metastatic renal cell carcinoma. J. Clin. Oncol. 24, 5601–5608 (2006).

    CAS  PubMed  Google Scholar 

  95. Llovet, J. M. et al. Sorafenib in advanced hepatocellular carcinoma. N. Engl. J. Med. 359, 378–390 (2008).

    CAS  PubMed  Google Scholar 

  96. Socinski, M. A. et al. Efficacy and safety of sunitinib in previously treated, advanced non-small cell lung cancer (NSCLC): Preliminary results of a multicenter phase II trial [abstract]. J. Clin. Oncol. 24, 7001 (2006).

    Google Scholar 

  97. Gatzemeier, U. et al. Phase II trial of single-agent sorafenib in patients with advanced non-small cell lung carcinoma [abstract]. J. Clin. Oncol. 24, 7002 (2006).

    Google Scholar 

  98. Scagliotti, G. et al. Phase III study of carboplatin and paclitaxel alone or with sorafenib in advanced non-small-cell lung cancer. J. Clin. Oncol. 28, 1835–1842 (2010).

    CAS  PubMed  Google Scholar 

  99. Heymach, J. V. et al. Randomized phase II study of vandetanib alone or with paclitaxel and carboplatin as first-line treatment for advanced non-small-cell lung cancer. J. Clin. Oncol. 26, 5407–5415 (2008).

    CAS  PubMed  Google Scholar 

  100. Natale, R. B. et al. Vandetanib versus gefitinib in patients with advanced non-small-cell lung cancer: results from a two-part, double-blind, randomized phase ii study. J. Clin. Oncol. 27, 2523–2529 (2009).

    CAS  PubMed  Google Scholar 

  101. Herbst, R. S. et al. Vandetanib plus docetaxel versus docetaxel as second-line treatment for patients with advanced non-small cell lung cancer (NSCLC): A randomized, double-blind phase III trial (ZODIAC) [abstract]. J. Clin. Oncol. 27, CRA8003 (2009).

    Google Scholar 

  102. Soda, M. et al. Identification of the transforming EML4-ALK fusion gene in non-small-cell lung cancer. Nature 448, 561–566 (2007).

    CAS  PubMed  Google Scholar 

  103. Martelli, M. P. et al. EML4-ALK rearrangement in non-small cell lung cancer and non-tumor lung tissues. Am. J. Pathol. 174, 661–670 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Wong, D. W. et al. The EML4-ALK fusion gene is involved in various histologic types of lung cancers from nonsmokers with wild-type EGFR and KRAS. Cancer 115, 1723–1733 (2009).

    CAS  PubMed  Google Scholar 

  105. Kwak, E. L. et al. Clinical activity observed in a phase I dose escalation trial of an oral c-met and ALK inhibitor, PF-02341066 [abstract]. J. Clin. Oncol. 27, 3509 (2009).

    Google Scholar 

  106. Ouban, A., Muraca, P., Yeatman, T. & Coppola, D. Expression and distribution of insulin-like growth factor-1 receptor in human carcinomas. Hum. Pathol. 34, 803–808 (2003).

    CAS  PubMed  Google Scholar 

  107. Werner, H. & Le Roith, D. New concepts in regulation and function of the insulin-like growth factors: implications for understanding normal growth and neoplasia. Cell. Mol. Life Sci. 57, 932–942 (2000).

    CAS  PubMed  Google Scholar 

  108. Karp, D. D. et al. Phase II study of the anti-insulin-like growth factor type 1 receptor antibody CP-751,871 in combination with paclitaxel and carboplatin in previously untreated, locally advanced, or metastatic non-small-cell lung cancer. J. Clin. Oncol. 27, 2516–2522 (2009).

    CAS  PubMed  Google Scholar 

  109. Han, J. Y., Choi, B. G., Choi, J. Y., Lee, S. Y. & Ju, S. Y. The prognostic significance of pretreatment plasma levels of insulin-like growth factor (IGF)-1, IGF-2, and IGF binding protein-3 in patients with advanced non-small cell lung cancer. Lung Cancer 54, 227–234 (2006).

    PubMed  Google Scholar 

  110. Tang, X. et al. EGFR tyrosine kinase domain mutations are detected in histologically normal respiratory epithelium in lung cancer patients. Cancer Res. 65, 7568–7572 (2005).

    CAS  PubMed  Google Scholar 

  111. Guo, M. et al. Promoter hypermethylation of resected bronchial margins: a field defect of changes? Clin. Cancer Res. 10, 5131–5136 (2004).

    CAS  PubMed  Google Scholar 

  112. Pao, W. et al. KRAS mutations and primary resistance of lung adenocarcinomas to gefitinib or erlotinib. PLoS Med. 2, e17 (2005).

    PubMed  PubMed Central  Google Scholar 

  113. Riely, G. J. et al. Frequency and distinctive spectrum of KRAS mutations in never smokers with lung adenocarcinoma. Clin. Cancer Res. 14, 5731–5734 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Van Cutsem, E. et al. Cetuximab and chemotherapy as initial treatment for metastatic colorectal cancer. N. Engl. J. Med. 360, 1408–1417 (2009).

    CAS  PubMed  Google Scholar 

  115. Douillard, J. et al. Molecular and clinical subgroup analyses from a phase III trial comparing gefitinib with docetaxel in previously treated non-small cell lung cancer (INTEREST) [abstract]. J. Clin. Oncol. 26, 8001 (2008).

    Google Scholar 

  116. Jackman, D. M. et al. Impact of EGFR and KRAS genotype on outcomes in a clinical trial registry of NSCLC patients initially treated with erlotinib or gefitinib [abstract]. J. Clin. Oncol. 26, 8035 (2008).

    Google Scholar 

  117. Massarelli, E. et al. KRAS mutation is an important predictor of resistance to therapy with epidermal growth factor receptor tyrosine kinase inhibitors in non-small-cell lung cancer. Clin. Cancer Res. 13, 2890–2896 (2007).

    CAS  PubMed  Google Scholar 

  118. Zhu, C. Q. et al. Role of KRAS and EGFR as biomarkers of response to erlotinib in National Cancer Institute of Canada Clinical Trials Group Study BR.21. J. Clin. Oncol. 26, 4268–4275 (2008).

    CAS  PubMed  Google Scholar 

  119. Balko, J. M., Jones, B. R., Coakley, V. L. & Black, E. P. Combined MEK and EGFR inhibition demonstrates synergistic activity in EGFR-dependent NSCLC. Cancer Biol. Ther. 8, 522–530 (2009).

    CAS  PubMed  Google Scholar 

  120. Mahoney, C. L. et al. LKB1/KRAS mutant lung cancers constitute a genetic subset of NSCLC with increased sensitivity to MAPK and mTOR signalling inhibition. Br. J. Cancer 100, 370–375 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  121. Engelman, J. A. et al. Effective use of PI3K and MEK inhibitors to treat mutant Kras G12D and PIK3CA H1047R murine lung cancers. Nat. Med. 14, 1351–1356 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  122. West, K. A., Linnoila, I. R., Belinsky, S. A., Harris, C. C. & Dennis, P. A. Tobacco carcinogen-induced cellular transformation increases activation of the phosphatidylinositol 3'-kinase/Akt pathway in vitro and in vivo. Cancer Res. 64, 446–451 (2004).

    CAS  PubMed  Google Scholar 

  123. Yamamoto, H. et al. PIK3CA mutations and copy number gains in human lung cancers. Cancer Res. 68, 6913–6921 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  124. Kawano, O. et al. PIK3CA gene amplification in Japanese non-small cell lung cancer. Lung Cancer 58, 159–160 (2007).

    PubMed  Google Scholar 

  125. Kawano, O. et al. PIK3CA mutation status in Japanese lung cancer patients. Lung Cancer 54, 209–215 (2006).

    PubMed  Google Scholar 

  126. Hudes, G. et al. Temsirolimus, interferon alfa, or both for advanced renal-cell carcinoma. N. Engl. J. Med. 356, 2271–2281 (2007).

    CAS  PubMed  Google Scholar 

  127. Motzer, R. J. et al. Efficacy of everolimus in advanced renal cell carcinoma: a double-blind, randomised, placebo-controlled phase III trial. Lancet 372, 449–456 (2008).

    CAS  PubMed  Google Scholar 

  128. Wislez, M. et al. Inhibition of mammalian target of rapamycin reverses alveolar epithelial neoplasia induced by oncogenic K-ras. Cancer Res. 65, 3226–3235 (2005).

    CAS  PubMed  Google Scholar 

  129. Ihle, N. T. et al. Mutations in the phosphatidylinositol-3-kinase pathway predict for antitumor activity of the inhibitor PX-866 whereas oncogenic Ras is a dominant predictor for resistance. Cancer Res. 69, 143–150 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  130. Mita, M. M. et al. Phase I trial of the novel mammalian target of rapamycin inhibitor deforolimus (AP23573; MK-8669) administered intravenously daily for 5 days every 2 weeks to patients with advanced malignancies. J. Clin. Oncol. 26, 361–367 (2008).

    CAS  PubMed  Google Scholar 

  131. Ihle, N. T. et al. The phosphatidylinositol-3-kinase inhibitor PX-866 overcomes resistance to the epidermal growth factor receptor inhibitor gefitinib in A-549 human non-small cell lung cancer xenografts. Mol. Cancer Ther. 4, 1349–1357 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  132. Ihle, N. T. et al. Molecular pharmacology and antitumor activity of PX-866, a novel inhibitor of phosphoinositide-3-kinase signaling. Mol. Cancer Ther. 3, 763–772 (2004).

    CAS  PubMed  Google Scholar 

  133. Cipriani, N. A., Abidoye, O. O., Vokes, E. & Salgia, R. MET as a target for treatment of chest tumors. Lung Cancer 63, 169–179 (2009).

    PubMed  Google Scholar 

  134. Bean, J. et al. MET amplification occurs with or without T790M mutations in EGFR mutant lung tumors with acquired resistance to gefitinib or erlotinib. Proc. Natl Acad. Sci. USA 104, 20932–20937 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  135. Braiteh, F. & Kurzrock, R. Uncommon tumors and exceptional therapies: paradox or paradigm? Mol. Cancer Ther. 6, 1175–1179 (2007).

    CAS  PubMed  Google Scholar 

  136. Stewart, D. J. & Kurzrock, R. Cancer: the road to Amiens. J. Clin. Oncol. 27, 328–333 (2009).

    PubMed  Google Scholar 

  137. Engelman, J. A. et al. Allelic dilution obscures detection of a biologically significant resistance mutation in EGFR-amplified lung cancer. J. Clin. Invest. 116, 2695–2706 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  138. Sos, M. L. et al. PTEN loss contributes to erlotinib resistance in EGFR-mutant lung cancer by activation of Akt and EGFR. Cancer Res. 69, 3256–3261 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  139. Kubo, T. et al. MET gene amplification or EGFR mutation activate MET in lung cancers untreated with EGFR tyrosine kinase inhibitors. Int. J. Cancer 124, 1778–1784 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  140. Onozato, R. et al. Activation of MET by gene amplification or by splice mutations deleting the juxtamembrane domain in primary resected lung cancers. J. Thorac. Oncol. 4, 5–11 (2009).

    PubMed  Google Scholar 

  141. US National Library of Medicine. ClinicalTrials.gov [online], (2010).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Filip Janku.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Janku, F., Stewart, D. & Kurzrock, R. Targeted therapy in non-small-cell lung cancer—is it becoming a reality?. Nat Rev Clin Oncol 7, 401–414 (2010). https://doi.org/10.1038/nrclinonc.2010.64

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrclinonc.2010.64

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing