Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Emerging molecular biomarkers—blood-based strategies to detect and monitor cancer

Abstract

There is an urgent need for blood-based, noninvasive molecular tests to assist in the detection and diagnosis of cancers in a cost-effective manner at an early stage, when curative interventions are still possible. Additionally, blood-based diagnostics can classify tumors into distinct molecular subtypes and monitor disease relapse and response to treatment. Increasingly, biomarker strategies are becoming critical to identify a specific patient subpopulation that is likely to respond to a new therapeutic agent. The improved understanding of the underlying molecular features of common cancers and the availability of a multitude of recently developed technologies to interrogate the genome, transcriptome, proteome and metabolome of tumors and biological fluids have made it possible to develop clinically applicable and cost-effective tests for many common cancers. Overall, the paradigm shift towards personalized and individualized medicine relies heavily on the increased use of diagnostic biomarkers and classifiers to improve diagnosis, management and treatment. International collaborations, involving both the private and public sector will be required to facilitate the development of clinical applications of biomarkers, using rigorous standardized assays. Here, we review the recent technological and scientific advances in this field.

Key Points

  • Future cancer care will rely on the use of biomarkers to detect cancer early and to individualize diagnostics, tumor classification and treatment selection

  • The rich content of blood provides an ideal compartment to develop noninvasive diagnostics for cancer

  • Large numbers of novel potential biomarkers have been discovered, including circulating proteins, nucleic acids, metabolites and tumor cells

  • For most candidate biomarkers, definitive validation studies for specific clinical applications are lacking

  • A side-by-side comparison of the performance of diverse biomarkers and causal networks constructed by integrating multiomic data would be useful to provide a better context for evaluating blood-based biomarkers

  • International collaborations will be required to facilitate the clinical application of biomarkers, using rigorous standardized assays and clinical studies

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Sources of blood-based biomarkers.
Figure 2: A proposed flowchart of the contributions of molecular tests, particularly blood-based tests, to a continuum of applications from risk assessment to molecular diagnosis, targeted therapy and disease monitoring.

Similar content being viewed by others

References

  1. Croswell, J. M., Baker, S. G., Marcus, P. M., Clapp, J. D. & Kramer, B. S. Cumulative incidence of false-positive test results in lung cancer screening: a randomized trial. Ann. Intern. Med. 152, 505–512 (2010).

    Article  PubMed  Google Scholar 

  2. Chubak, J., Boudreau, D. M., Fishman, P. A. & Elmore, J. G. Cost of breast-related care in the year following false positive screening mammograms. Med. Care 48, 815–820 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  3. Henschke, C. I. et al. Early Lung Cancer Action Project: overall design and findings from baseline screening. Lancet 354, 99–105 (1999).

    Article  CAS  PubMed  Google Scholar 

  4. Henschke, C. et al. Early Lung Cancer Action Project: initial findings on repeat screenings. Cancer 92, 153–159 (2001).

    Article  CAS  PubMed  Google Scholar 

  5. Kaneko, M. et al. Peripheral lung cancer: screening and detection with low-dose spiral CT versus radiography. Radiology 201, 798–802 (1996).

    Article  CAS  PubMed  Google Scholar 

  6. Sobue, T. et al. Screening for lung cancer with low-dose helical computed tomography: anti-lung cancer association project. J. Clin. Oncol. 20, 911–920 (2002).

    Article  PubMed  Google Scholar 

  7. Sone, S. et al. Results of three-year mass screening programme for lung cancer using mobile low-dose spiral computed tomography scanner. Br. J. Cancer 84, 25–32 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Li, F., Sone, S., Abe, H., Macmahon, H. & Doi, K. Malignant versus benign nodules at CT screenings for lung cancer: comparison of thin-section CT findings. Radiology 223, 793–798 (2004).

    Article  Google Scholar 

  9. Swenson, S. J. et al. Lung cancer screening with CT: Mayo Clinic Experience. Radiology 226, 756–761 (2003).

    Article  Google Scholar 

  10. Swensen, S. J. et al. CT screening for lung cancer: five-year prospective experience. Radiology 235, 259–265 (2005).

    Article  PubMed  Google Scholar 

  11. Diederich, S. et al. Screening for early lung cancer with low-dose spiral CT: prevalence in 817 asymptomatic smokers. Radiology 222, 773–781 (2002).

    Article  PubMed  Google Scholar 

  12. Nawa, T. et al. Lung cancer screening using low-dose spiral CT: results of baseline and 1-year follow-up studies. Chest 122, 15–20 (2002).

    Article  PubMed  Google Scholar 

  13. McWilliams, A. M., Mayo, J. R., Ahn, M. I., MacDonald, S. L. & Lam, S. C. Lung cancer screening using multi-slice thin-section computed tomography and autofluorescence bronchoscopy. J. Thorac. Oncol. 1, 61–68 (2006).

    Article  PubMed  Google Scholar 

  14. Pastorino, U. et al. Early lung-cancer detection with spiral CT and positron emission tomography in heavy smokers: 2-year results. Lancet 362, 593–597 (2003).

    Article  PubMed  Google Scholar 

  15. Roberts, H. C. et al. Lung cancer screening with low dose computed tomography: Canadian experience. Can. Assoc. Radiol. J. 58, 225–235 (2007).

    PubMed  Google Scholar 

  16. Pepe, M. S., Feng, Z., Janes, H., Bossuyt, P. M. & Potter, J. D. Pivotal evaluation of the accuracy of a biomarker used for classification of prediction: standards for study design. J. Natl Cancer Inst. 100, 1432–1438 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Kulasingam, V. & Diamandis, E. P. Strategies for discovering novel cancer biomarkers through utilization of emerging technologies. Nat. Clin. Pract. Oncol. 5, 588–599 (2008).

    Article  CAS  PubMed  Google Scholar 

  18. Sung, H. & Cho, J. Y. Biomarkers for the lung cancer diagnosis and their advances in proteomics. BMB Rep. 41, 615–625 (2008).

    Article  CAS  PubMed  Google Scholar 

  19. Greenberg, A. K. & Lee, M. S. Biomarkers for lung cancer: clinical uses. Curr. Opin. Pulm. Med. 13, 249–255 (2007).

    Article  PubMed  Google Scholar 

  20. Kellar, K. L. & Douglass, J. P. Multiplexed microsphere-based flow cytometric immunoassays for human cytokines. J. Immunol. Methods 279, 277–285 (2003).

    Article  CAS  PubMed  Google Scholar 

  21. Lee, G. et al. Blood-based biomarker profiles for detecting lung cancer [abstract]. J. Thorac. Oncol. 5 (Suppl. 3), S220–S221 (2010).

    Google Scholar 

  22. Yee, J. et al. Connective tissue-activating peptide III: a novel blood biomarker for early lung cancer detection. J. Clin. Oncol. 27, 2787–2792 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Kulasingam, V., Pavlou, M. P. & Diamandis, E. P. Integrating high-throughput technologies in the quest for effective biomarkers for ovarian cancer. Nat. Rev. Cancer 10, 371–378 (2010).

    Article  CAS  PubMed  Google Scholar 

  24. Moore, R. G. et al. A novel multiple marker bioassay utilizing HE4 and CA125 for the prediction of ovarian cancer in patients with a pelvic mass. Gynecol. Oncol. 112, 40–46 (2009).

    Article  CAS  PubMed  Google Scholar 

  25. U.S. Food and Drug Administration. Product classification: test, epithelial ovarian tumor associated antigen (HE4) [online], (2010).

  26. National Institutes of Health. Clinical proteomic technologies for cancer initiative (CPTC): proteome characterization centers (U24) [online], (2010).

  27. Tan, H. T., Low, J., Lim, S. G. & Chung, M. C. M. Serum autoantibodies as biomarkers for early cancer detection. FEBS J. 276, 6880–6904 (2009).

    Article  CAS  PubMed  Google Scholar 

  28. Chapman, C. et al. Autoantibodies in breast cancer: their use as an aid to early diagnosis. Ann. Oncol. 18, 868–873 (2007).

    Article  CAS  PubMed  Google Scholar 

  29. Brichory, F., Beer, D., Le Naour, F., Giordano, T. & Hanash, S. Proteomics-based identification of protein gene product 9.5 as a tumor antigen that induces a humoral immune response in lung cancer. Cancer Res. 61, 7908–7912 (2001).

    CAS  PubMed  Google Scholar 

  30. Brichory, F. M. et al. An immune response manifested by the common occurrence of annexins I and II autoantibodies and high circulating levels of IL-6 in lung cancer. Proc. Natl Acad. Sci. USA 98, 9824–9829 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Pereira-Faca, S. R. et al. Identification of 14-3-3 theta as an antigen that induces a humoral response in lung cancer. Cancer Res. 67, 12000–12006 (2007).

    Article  CAS  PubMed  Google Scholar 

  32. Qiu, J. et al. Occurrence of autoantibodies to annexin I, 14-3-3 theta and LAMR1 in prediagnostic lung cancer sera. J. Clin. Oncol. 26, 5060–5066 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. International Cancer Genome Consortium. International Cancer Genome Consortium [online], (2010).

  34. The International Cancer Genome Consortium. International network of cancer genome projects. Nature 464, 993–998 (2010).

  35. Wellcome Trust Sanger Institute. The Cancer Genome Project [online], (2010).

  36. National Cancer Institute. The Cancer Genome Atlas [online], (2010).

  37. Davies, H. et al. Mutations of the BRAF gene in human cancer. Nature 417, 949–954 (2002).

    Article  CAS  PubMed  Google Scholar 

  38. Jahr, S. et al. DNA fragments in the blood plasma of cancer patients: quantitations and evidence for their origin from apoptotic and necrotic cells. Cancer Res. 61, 1659–1665 (2001).

    CAS  PubMed  Google Scholar 

  39. Pathak, A. K., Bhutani, M., Kumar, S., Mohan, A. & Guleria, R. Circulating cell-free DNA in plasma/serum of lung cancer patients as a potential screening and prognostic tool. Clin. Chem. 52, 1833–1842 (2006).

    CAS  PubMed  Google Scholar 

  40. Kaye, F. J. Mutation-associated fusion cancer genes in solid tumors. Mol. Cancer Ther. 8, 1399–1408 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Leary, R. J. et al. Development of personalized tumor biomarkers using massively parallel sequencing. Sci. Transl. Med. 2, 20ra14 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. McBride, D. J. et al. Use of cancer-specific genomic rearrangements to quantify disease burden in plasma from patients with solid tumors. Genes Chromosomes Cancer 49, 1062–1069 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Vlassov, V. V., Laktionov, P. P. & Rykova, E. Y. Circulating nucleic acids as a potential source for cancer biomarkers. Curr. Mol. Med. 10, 142–165 (2010).

    Article  CAS  PubMed  Google Scholar 

  44. Dianxu, F. et al. A prospective study of detection of pancreatic carcinoma by combined plasma K-ras mutations and serum CA19–9 analysis. Pancreas 25, 336–341 (2002).

    Article  PubMed  Google Scholar 

  45. Maire, F. et al. Differential diagnosis between chronic pancreatitis and pancreatic cancer: value of the detection of KRAS2 mutations in circulating DNA. Br. J. Cancer 87, 551–554 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Marchese, R. et al. Low correspondence between K-ras mutations in pancreatic tissue and detection of K-ras mutations in circulating DNA. Pancreas 32, 171–177 (2006).

    Article  CAS  PubMed  Google Scholar 

  47. Fujiwara, K. et al. Identification of epigenetic aberrant promoter methylation in serum DNA is useful for early detection of lung cancer. Clin. Cancer Res. 11, 1219–1225 (2005).

    Article  CAS  PubMed  Google Scholar 

  48. Shames, D. S. et al. A genome-wide screen for promoter methylation in lung cancer identifies novel methylation markers for multiple malignancies. PLoS Med. 3, e486 (2006).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Shivapurkar, N. & Gazdar, A. F. DNA methylation based biomarkers in non-invasive cancer screening. Curr. Mol. Med. 10, 123–132 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Fleischhacker, M. & Schmidt, B. Free circulating nucleic acids in plasma and serum (CNAPS)—useful for the detection of lung cancer patients? Cancer Biomark. 6, 211–219 (2010).

    Article  PubMed  CAS  Google Scholar 

  51. Croce, C. M. & Calin, G. A. miRNAs, cancer and stem cell division. Cell 122, 6–7 (2005).

    Article  CAS  PubMed  Google Scholar 

  52. Cortez, M. A. & Calin, G. A. MicroRNA identification in plasma and serum: a new tool to diagnose and monitor diseases. Expert Opin. Biol. Ther. 9, 703–711 (2009).

    Article  CAS  PubMed  Google Scholar 

  53. Chen, X. et al. Characterization of microRNAs in serum: a novel class of biomarkers for diagnosis of cancer and other diseases. Cell Res. 18, 997–1006 (2008).

    Article  CAS  PubMed  Google Scholar 

  54. Ng, E. K. et al. Differential expression of microRNAs in plasma of patients with colorectal cancer: a potential marker for colorectal cancer screening. Gut 58, 1375–1381 (2009).

    Article  CAS  PubMed  Google Scholar 

  55. Mitchell, P. S. et al. Circulating microRNAs as stable blood-based markers for cancer detection. Proc. Natl Acad. Sci. USA 105, 10513–10518 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Hunter, M. P. et al. Detection of microRNA expression in human peripheral blood microvesicles. PLoS ONE 3, e3694 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. Kosaka, N., Iguchi, H. & Ochiya, T. Circulating microRNA in body fluid: a new potential biomarker for cancer diagnosis and prognosis. Cancer Sci. 101, 2087–2092 (2010).

    Article  CAS  PubMed  Google Scholar 

  58. Claudino, W. M. et al. Metabolomics: available results, current research projects in breast cancer, and future applications. J. Clin. Oncol. 25, 2840–2846 (2007).

    Article  CAS  PubMed  Google Scholar 

  59. Serkova, N. J. & Glunde, K. in Tumor Biomarker Discovery Vol. 520 Ch. 20 (ed. Tainsky, M. A.) 273–295 (Humana Press, Totowa, 2009).

    Book  Google Scholar 

  60. Sreekumar, A. et al. Metabolomic profiles delineate potential role for sarcosine in prostate cancer progression. Nature 457, 910–914 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Jenzmik, F. et al. Sarcosine in urine after digital rectal examination fails as a marker in prostate cancer detection and identification of aggressive tumours. Eur. Urol. 58, 12–18 (2010).

    Article  CAS  Google Scholar 

  62. Nordström, A. & Lewensohn, R. Metabolomics: moving to the clinic. J. Neuroimmune Pharmacol. 5, 4–17 (2010).

    Article  PubMed  Google Scholar 

  63. Schadt, E. E. et al. An integrative genomics approach to infer causal associations between gene expression and disease. Nat. Genet. 37, 710–717 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Yang, X. et al. Validation of candidate causal genes for obesity that affect shared metabolic pathways and networks. Nat. Genet. 41, 415–423 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Pantel, K. & Alix-Panabières, C. Circulating tumour cells in cancer patients: challenges and perspectives. Trends Mol. Med. 16, 398–406 (2010).

    Article  PubMed  Google Scholar 

  66. Mego, M., Mani, S. A. & Cristofanilli, M. Molecular mechanisms of metastasis in breast cancer—clinical applications. Nat. Rev. Clin. Oncol. 7, 693–701 (2010).

    Article  CAS  PubMed  Google Scholar 

  67. Chen, Y. et al. Detection of cytokeratin 19, human mammaglobin, and carcinoembryonic antigen-positive circulating tumor cells by three-marker reverse transcription-PCR assay and its relation to clinical outcome in early breast cancer. Int. J. Biol. Markers 25, 59–68 (2010).

    Article  PubMed  Google Scholar 

  68. Chen, C. C. et al. Combination of multiple mRNA markers (PTTG1, Survivin, UbcH10 and TK1) in the diagnosis of Taiwanese patients with breast cancer by membrane array. Oncology 70, 438–446 (2006).

    Article  CAS  PubMed  Google Scholar 

  69. Shen, C., Hu, L., Xia, L. & Li, Y. The detection of circulating tumor cells of breast cancer patients by using multimarker (Survivin, hTERT and hMAM) quantitative real-time PCR. Clin. Biochem. 42, 194–200 (2009).

    Article  CAS  PubMed  Google Scholar 

  70. Alunni-Fabbroni, M. & Sandri, M. T. Circulating tumour cells in clinical practice: methods of detection and possible characterization. Methods 50, 289–297 (2010).

    Article  CAS  PubMed  Google Scholar 

  71. Pantel, K., Alix-Panabières, C. & Riethdorf, S. Cancer micrometastases. Nat. Rev. Clin. Oncol. 6, 339–351 (2009).

    Article  CAS  PubMed  Google Scholar 

  72. Baccarani, M. et al. Chronic myeloid leukemia: an update of concepts and management recommendations of European LeukemiaNet. J. Clin. Oncol. 27, 6041–6051 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Hudis, C. A. Trastuzumab—mechanism of action and use in clinical practice. N. Engl. J. Med. 357, 39–51 (2007).

    Article  CAS  PubMed  Google Scholar 

  74. Herbst, R. S., Heymach, J. V. & Lippman, S. M. Lung cancer. N. Engl. J. Med. 359, 1367–1380 (2008).

    Article  CAS  PubMed  Google Scholar 

  75. Lynch, T. J. et al. Activating mutations in the epidermal growth factor receptor underlying responsiveness of non-small-cell lung cancer to gefitinib. N. Engl. J. Med. 350, 2129–2139 (2004).

    Article  CAS  PubMed  Google Scholar 

  76. Bang, Y. et al. Clinical activity of the oral ALK inhibitor PF-02341066 in ALK-positive patients with non-small cell lung cancer (NSCLC) [abstract]. J. Clin. Oncol. 28 (Suppl. 18), a3 (2010).

    Article  Google Scholar 

  77. Tufman, A. & Huber, R. M. Biological markers in lung cancer: a clinician's perspective. Cancer Biomark. 6, 123–135 (2010).

    Article  PubMed  CAS  Google Scholar 

  78. Bearz, A. et al. MUC-1 (CA 15-3 antigen) as a highly reliable predictor of response to EGFR inhibitors in patients with bronchioalveolar carcinoma: an experience on 26 patients. Int. J. Biol. Markers 22, 307–311 (2007).

    CAS  PubMed  Google Scholar 

  79. Kasahara, K. et al. Impact of serum hepatocyte growth factor on treatment response to epidermal growth factor receptor tyrosine kinase inhibitors in patients with non-small cell lung adenocarcinoma. Clin. Cancer Res. 16, 4616–4624 (2010).

    Article  CAS  PubMed  Google Scholar 

  80. Fujiwara, Y. et al. Elevated serum level of sialylated glycoprotein KL-6 predicts a poor prognosis in patients with non-small cell lung cancer treated with gefitinib. Lung Cancer 59, 81–87 (2008).

    Article  PubMed  Google Scholar 

  81. Taguchi, F. et al. Mass spectrometry to classify non-small-cell lung cancer patients for clinical outcome after treatment with epidermal growth factor receptor tyrosine kinase inhibitors: a multicohort cross-institutional study. J. Natl. Cancer Inst. 99, 838–846 (2007).

    Article  CAS  PubMed  Google Scholar 

  82. Chung, C. H. et al. Detection of tumor epidermal growth factor receptor pathway dependence by serum mass spectrometry in cancer patients. Cancer Epidemiol. Biomarkers Prev. 19, 358–365 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Amann, J. M. et al. Genetic and proteomic features associated with survival after treatment with erlotinib in first-line therapy of non-small cell lung cancer in Eastern Cooperative Oncology Group 3503. J. Thorac. Oncol. 5, 169–178 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  84. Maheswaran, S. et al. Detection of mutations in EGFR in circulating lung-cancer cells. N. Engl. J. Med. 359, 366–377 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Sequist, L. V. et al. First-line gefitinib in patients with advanced non-small-cell lung cancer harboring somatic EGFR mutations. J. Clin. Oncol. 26, 2442–2449 (2008).

    Article  CAS  PubMed  Google Scholar 

  86. Pao, W. et al. Acquired resistance of lung adenocarcinomas to gefitinib or erlotinib is associated with a second mutation in the EGFR kinase domain. PloS Med. 2, e73 (2005).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  87. van't Veer, L. J. et al. Gene expression profiling predicts clinical outcome of breast cancer. Nature 415, 530–536 (2002).

    Article  CAS  Google Scholar 

  88. Wang, Y. et al. Gene-expression profiles to predict distant metastasis of lymph-node negative primary breast cancer. Lancet 365, 671–679 (2005).

    Article  CAS  PubMed  Google Scholar 

  89. Chuang, H. Y., Lee, E., Liu, Y. T., Lee, D. & Ideker, T. Network-based classification of breast cancer metastasis. Mol. Syst. Biol. 3, 140 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  90. Director's Challenge Consortium for the Molecular Classification of Lung Adenocarcinoma et al. Gene expression-based survival prediction in lung adenocarcinoma: a multi-site, blinded validation study. Nat. Med. 14, 822–827 (2008).

  91. Raponi, M. et al. Gene expression signatures for predicting prognosis of squamous cell and adenocarcinomas of the lung. Cancer Res. 66, 7466–7472 (2006).

    Article  CAS  PubMed  Google Scholar 

  92. Zhu, J. et al. Integrating large-scale functional genomic data to dissect the complexity of yeast regulatory networks. Nat. Genet. 40, 854–861 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. U.S. National Institutes of Health. ClinicalTrials.gov [online], (2010).

  94. Kimura, H. et al. Evaluation of epidermal growth factor receptor mutation status in serum DNA as a predictor of response to gefitinib (IRESSA). Br. J. Cancer 97, 778–784 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Jian, G. et al. Prediction of epidermal growth factor receptor mutations in the plasma/pleural effusion to efficacy of gefitinib treatment in advanced non-small cell lung cancer. J. Cancer Res. Clin. Oncol. 136, 1341–1347 (2010).

    Article  PubMed  CAS  Google Scholar 

  96. Iwanicki-Caron, I. et al. Usefulness of the serum carcinoembryonic antigen kinetic for chemotherapy monitoring in patients with unresectable metastasis of colorectal cancer. J. Clin. Oncol. 26, 3681–3686 (2008).

    Article  PubMed  Google Scholar 

  97. Dudek, A. Z. et al. Phase II trial of neoadjuvant therapy with carboplatin, gemcitabine plus thalidomide for stages IIB and III non-small cell lung cancer. J. Thorac. Oncol. 4, 969–975 (2009).

    Article  PubMed  Google Scholar 

  98. Karihtala, P., Mäenpää, J., Turpeenniemi-Hujanen, T. & Puistola, U. Front-line bevacizumab in serous epithelial ovarian cancer: biomarker analysis of the FINAVAST trial. Anticancer Res. 30, 1001–1006 (2010).

    CAS  PubMed  Google Scholar 

  99. Hanrahan, E. O. et al. Baseline vascular endothelial growth factor concentration as a potential predictive marker of benefit from vandetanib in non-small cell lung cancer. Clin. Cancer Res. 15, 3600–3609 (2009).

    Article  CAS  PubMed  Google Scholar 

  100. Worldwide Innovative Networking in personalized cancer medicine. WIN Consortium [online], (2010).

  101. Patz, E. F. Jr et al. Panel of serum biomarkers for the diagnosis of lung cancer. J. Clin. Oncol. 25, 5578–5583 (2007).

    Article  PubMed  Google Scholar 

  102. Fan, T. W. et al. Altered regulation of metabolic pathways in human and lung cancer discerned by (13)C stable isotope-resolved metabolomics (SIRM). Mol. Cancer 8, 41 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to researching the data for the article, discussion of content, and writing, editing and reviewing the manuscript.

Corresponding author

Correspondence to Samir M. Hanash.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hanash, S., Baik, C. & Kallioniemi, O. Emerging molecular biomarkers—blood-based strategies to detect and monitor cancer. Nat Rev Clin Oncol 8, 142–150 (2011). https://doi.org/10.1038/nrclinonc.2010.220

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrclinonc.2010.220

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer