Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Tumor focality in prostate cancer: implications for focal therapy

Abstract

In recent years, there has been a growing interest in focal treatment for prostate cancer. Although widely used for the treatment of tumors of the breast and kidney, focal treatment for prostate cancer remains a controversial area. Criticism of focal prostate therapy has been based on the fact that prostate cancer is a multifocal disease. Until now, little attention has been paid to distinguishing between men with unifocal and those with multifocal disease because such information has little clinical relevance when treatment is aimed at the whole gland irrespective of the volume or number of cancers in the prostate. In this Review, we summarize existing knowledge and examine the issue of prostate cancer focality in the context of focal treatment.

Key Points

  • Early studies on focal therapy for prostate cancer demonstrate encouraging health outcome; the primary argument against the application of focal therapy is that prostate cancer is a multifocal and bilateral disease

  • Multiple prostate cancers arise independently and are probably secondary to numerous independent mutations; however, intra-glandular spread of a single malignant transformed cell cannot be excluded in some cases

  • Neither tumor laterality nor tumor focality per se are associated with worse pathological findings in prostatectomy specimens or worse clinical outcome following radical treatment

  • In multifocal tumors, the dominant index lesion (as measured by tumor volume focus) may represent the only lesion in the prostate with truly relevant malignant potential

  • Ablation of the index lesion alone and close monitoring of the secondary tumors for early signs of progression might be the cornerstone of successful focal treatment

  • Further studies in which only the index lesion is ablated and other untreated lesions are followed are necessary

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Radical prostatectomy step section: Multifocal prostate cancer.

Similar content being viewed by others

References

  1. Bostwick, D. G. et al. Group consensus reports from the Consensus Conference on Focal Treatment of Prostatic Carcinoma, Celebration, Florida, February 24, 2006. Urology 70 (Suppl. 1), 42–44 (2007).

    PubMed  Google Scholar 

  2. McCready, D. et al. Surgical management of early stage invasive breast cancer: a practice guideline. Can. J. Surg. 48, 185–194 (2005).

    PubMed  PubMed Central  Google Scholar 

  3. Derweesh, I. H. & Novick, A. C. Small renal tumors: natural history, observation strategies and emerging modalities of energy based tumor ablation. Can. J. Urol. 10, 1871–1879 (2003).

    PubMed  Google Scholar 

  4. Eggener, S. E. et al. Focal therapy for localized prostate cancer: a critical appraisal of rationale and modalities. J. Urol. 178, 2260–2267 (2007).

    PubMed  Google Scholar 

  5. Ahmed, H. U. et al. Will focal therapy become a standard of care for men with localized prostate cancer? Nat. Clin. Pract. Oncol. 4, 632–642 (2007).

    PubMed  Google Scholar 

  6. Lambert, E. H., Bolte, K., Masson, P. & Katz, A. E. Focal cryosurgery: encouraging health outcomes for unifocal prostate cancer. Urology 69, 1117–1120 (2007).

    PubMed  Google Scholar 

  7. Bahn, D. K. et al. Focal prostate cryoablation: initial results show cancer control and potency preservation. J. Endourol. 20, 688–692 (2006).

    PubMed  Google Scholar 

  8. Ellis, D. S., Manny, T. B. Jr & Rewcastle, J. C. Focal cryosurgery followed by penile rehabilitation as primary treatment for localized prostate cancer: initial results. Urology 70 (Suppl. 1), 9–15 (2007).

    PubMed  Google Scholar 

  9. Onik, G., Vaughan, D., Lotenfoe, R., Dineen, M. & Brady, J. The “male lumpectomy”: focal therapy for prostate cancer using cryoablation results in 48 patients with at least 2-year follow-up. Urol. Oncol. 26, 500–505 (2008).

    PubMed  Google Scholar 

  10. Muto, S. et al. Focal therapy with high-intensity-focused ultrasound in the treatment of localized prostate cancer. Jpn. J. Clin. Oncol. 38, 192–199 (2008).

    PubMed  Google Scholar 

  11. [No authors listed] Consensus statement: guidelines for PSA following radiation therapy. American Society for Therapeutic Radiology and Oncology Consensus Panel. Int. J. Radiat. Oncol. Biol. Phys. 37, 1035–1041 (1997).

  12. Villers, A., McNeal, J. E., Freiha, F. S. & Stamey, T. A. Multiple cancers in the prostate. Morphologic features of clinically recognized versus incidental tumors. Cancer 70, 2313–2318 (1992).

    CAS  PubMed  Google Scholar 

  13. Miller, G. J. & Cygan, J. M. Morphology of prostate cancer: the effects of multifocality on histological grade, tumor volume and capsule penetration. J. Urol. 152, 1709–1713 (1994).

    CAS  PubMed  Google Scholar 

  14. Ruijter, E. T., van de Kaa, C. A., Schalken, J. A., Debruyne, F. M. & Ruiter, D. J. Histological grade heterogeneity in multifocal prostate cancer. Biological and clinical implications. J. Pathol. 180, 295–299 (1996).

    CAS  PubMed  Google Scholar 

  15. Djavan, B. et al. Predictability and significance of multifocal prostate cancer in the radical prostatectomy specimen. Tech. Urol. 5, 139–142 (1999).

    CAS  PubMed  Google Scholar 

  16. Wise, A. M., Stamey, T. A., McNeal, J. E. & Clayton, J. L. Morphologic and clinical significance of multifocal prostate cancers in radical prostatectomy specimens. Urology 60, 264–269 (2002).

    PubMed  Google Scholar 

  17. Noguchi, M., Stamey, T. A., McNeal, J. E. & Nolley, R. Prognostic factors for multifocal prostate cancer in radical prostatectomy specimens: lack of significance of secondary cancers. J. Urol. 170, 459–463 (2003).

    PubMed  Google Scholar 

  18. Cheng, L. et al. Anatomic distribution and pathologic characterization of small-volume prostate cancer (<0.5 ml) in whole-mount prostatectomy specimens. Mod. Pathol. 18, 1022–1026 (2005).

    PubMed  Google Scholar 

  19. Muezzinoglu, B. et al. Clinicopathological significance of multifocal prostate cancer [abstract 695]. Lab. Invest. 86 (Suppl.), 151A (2006).

    Google Scholar 

  20. Magi-Galluzzi, C., Roma, A., Jones, S., Klein, E. & Zhou, M. Pathologic features of single-nodule prostatic carcinoma [abstract 684]. Lab. Invest. 86 (Suppl.), 148A (2006).

    Google Scholar 

  21. Simma-Chiang, V., Horn, J. J., Simko, J. P., Chan, J. M. & Carroll, P. R. Increased prevalence of unifocal prostate cancer in a contemporary series of radical prostatectomy specimens: implications for focal ablation. J. Urol. 175, 1163 (2006).

    Google Scholar 

  22. Lüttges, J., Kalbfleisch, H. & Prinz, P. Nipple involvement and multicentricity in breast cancer. A study on whole organ sections. J. Cancer Res. Clin. Oncol. 113, 481–487 (1987).

    PubMed  Google Scholar 

  23. Mouridsen, H. T. et al. Adjuvant treatment of postmenopausal patients with high risk primary breast cancer. Results from the Danish adjuvant trials DBCG 77 C and DBCG 82 C. Acta Oncol. 27, 699–705 (1988).

    CAS  PubMed  Google Scholar 

  24. Katz, A. et al. The influence of pathologic tumor characteristics on locoregional recurrence rates following mastectomy. Int. J. Radiat. Oncol. Biol. Phys. 50, 735–742 (2001).

    CAS  PubMed  Google Scholar 

  25. Hollenbeck, B. K. et al. Whole mounted radical prostatectomy specimens do not increase detection of adverse pathological features. J. Urol. 164, 1583–1586 (2000).

    CAS  PubMed  Google Scholar 

  26. Humphrey, P. A. Complete histologic serial sectioning of a prostate gland with adenocarcinoma. Am. J. Surg. Pathol. 17, 468–472 (1993).

    CAS  PubMed  Google Scholar 

  27. [No authors listed] Guidelines for the macroscopic processing of radical prostatectomy and pelvic lymphadenectomy specimens. J. Clin. Pathol. 61, 713–721 (2008).

  28. Noguchi, M., Stamey, T. A., McNeal, J. E. & Yemoto, C. E. Assessment of morphometric measurements of prostate carcinoma volume. Cancer 89, 1056–1064 (2000).

    CAS  PubMed  Google Scholar 

  29. Crawford, E. D. & Barqawi, A. Targeted focal therapy: a minimally invasive ablation technique for early prostate cancer. Oncology (Williston Park) 21, 27–32 (2007).

    Google Scholar 

  30. Tareen, A. et al. Men with unilateral prostate cancer have more favorable pathologic and oncologic outcomes than those with bilateral disease: implications for focal therapy. J. Urol. 179 (Suppl.), 396 (2008).

    Google Scholar 

  31. Mouraviev, V. et al. Prostate cancer laterality as a rationale of focal ablative therapy for the treatment of clinically localized prostate cancer. Cancer 110, 906–910 (2007).

    PubMed  Google Scholar 

  32. Polascik, T. J. et al. Pathologic stage T2a and T2b prostate cancer in the recent prostate-specific antigen era: implications for unilateral ablative therapy. Prostate 68, 1380–1386 (2008).

    PubMed  Google Scholar 

  33. Mouraviev, V. et al. Prostate cancer laterality does not predict prostate-specific antigen recurrence after radical prostatectomy. Urology 70, 1141–1145 (2007).

    PubMed  Google Scholar 

  34. Freedland, S. J., Partin, A. W., Epstein, J. I. & Walsh, P. C. Biochemical failure after radical prostatectomy in men with pathologic organ-confined disease: pT2a versus pT2b. Cancer 100, 1646–1649 (2004).

    PubMed  Google Scholar 

  35. Jones, J. S. Focal or subtotal therapy for early stage prostate cancer. Curr. Treat. Options Oncol. 8, 165–172 (2007).

    PubMed  Google Scholar 

  36. Ruijter, E. T. et al. Molecular analysis of multifocal prostate cancer lesions. J. Pathol. 188, 271–277 (1999).

    CAS  PubMed  Google Scholar 

  37. Kallioniemi, O. P. & Visakorpi, T. Genetic basis and clonal evolution of human prostate cancer. Adv. Cancer Res. 68, 225–255 (1996).

    CAS  PubMed  Google Scholar 

  38. Zhuang, Z., Merino, M. J., Chuaqui, R., Liotta, L. A. & Emmert-Buck, M. R. Identical allelic loss on chromosome 11q13 in microdissected in situ and invasive human breast cancer. Cancer Res. 55, 467–471 (1995).

    CAS  PubMed  Google Scholar 

  39. Tsuda, H., Oda, T., Sakamoto, M. & Hirohashi, S. Different pattern of chromosomal allele loss in multiple hepatocellular carcinomas as evidence of their multifocal origin. Cancer Res. 52, 1504–1509 (1992).

    CAS  PubMed  Google Scholar 

  40. Lubensky, I. A. et al. Allelic deletions on chromosome 11q13 in multiple tumors from individual MEN1 patients. Cancer Res. 56, 5272–5278 (1996).

    CAS  PubMed  Google Scholar 

  41. Cheng, L. et al. Evidence of independent origin of multiple tumors from patients with prostate cancer. J. Natl Cancer Inst. 90, 233–237 (1998).

    CAS  PubMed  Google Scholar 

  42. Vocke, C. D. et al. Analysis of 99 microdissected prostate carcinomas reveals a high frequency of allelic loss on chromosome 8p12–21. Cancer Res. 56, 2411–2416 (1996).

    CAS  PubMed  Google Scholar 

  43. Gao, X. et al. Loss of heterozygosity of the BRCA1 and other loci on chromosome 17q in human prostate cancer. Cancer Res. 55, 1002–1005 (1995).

    CAS  PubMed  Google Scholar 

  44. Barry, M., Perner, S., Demichelis, F. & Rubin, M. A. TMPRSS2-ERG fusion heterogeneity in multifocal prostate cancer: clinical and biologic implications. Urology 70, 630–633 (2007).

    PubMed  PubMed Central  Google Scholar 

  45. Tomlins, S. A. et al. Recurrent fusion of TMPRSS2 and ETS transcription factor genes in prostate cancer. Science 310, 644–648 (2005).

    CAS  Google Scholar 

  46. Bostwick, D. G. et al. Independent origin of multiple foci of prostatic intraepithelial neoplasia: comparison with matched foci of prostate carcinoma. Cancer 83, 1995–2002 (1998).

    CAS  PubMed  Google Scholar 

  47. Slaughter, D. P., Southwick, H. W. & Smejkal, W. Field cancerization in oral stratified squamous epithelium; clinical implications of multicentric origin. Cancer 6, 963–968 (1953).

    CAS  PubMed  Google Scholar 

  48. Jones, T. D. et al. Molecular evidence supporting field effect in urothelial carcinogenesis. Clin. Cancer Res. 11, 6512–6519 (2005).

    CAS  PubMed  Google Scholar 

  49. Hügel, A. & Wernert, N. Loss of heterozygosity (LOH), malignancy grade and clonality in microdissected prostate cancer. Br. J. Cancer 79, 551–557 (1999).

    PubMed  PubMed Central  Google Scholar 

  50. Nelson, B. A. et al. Tumour volume is an independent predictor of prostate-specific antigen recurrence in patients undergoing radical prostatectomy for clinically localized prostate cancer. BJU Int. 97, 1169–1172 (2006).

    PubMed  Google Scholar 

  51. Stamey, T. A. et al. Localized prostate cancer. Relationship of tumor volume to clinical significance for treatment of prostate cancer. Cancer 71 (Suppl.), 933–938 (1993).

    CAS  PubMed  Google Scholar 

  52. Schmid, H. P., McNeal, J. E. & Stamey, T. A. Observations on the doubling time of prostate cancer. The use of serial prostate-specific antigen in patients with untreated disease as a measure of increasing cancer volume. Cancer 71, 2031–2040 (1993).

    CAS  PubMed  Google Scholar 

  53. McNeal, J. E., Villers, A. A., Redwine, E. A., Freiha, F. S. & Stamey, T. A. Histologic differentiation, cancer volume, and pelvic lymph node metastasis in adenocarcinoma of the prostate. Cancer 66, 1225–1233 (1990).

    CAS  PubMed  Google Scholar 

  54. Rashid, M. et al. Maximum tumor dimension provides a clinically useful and independently significant measure for predicting PSA-free survival following radical prostatectomy [abstract]. J. Urol. 161 (Suppl.), 241A (1999).

    Google Scholar 

  55. Fuchsjäger, M. H. et al. Predicting post-external beam radiation therapy PSA relapse of prostate cancer using pretreatment, MRI. Int. J. Radiat. Oncol. Biol. Phys. 78, 743–750 (2010).

    PubMed  PubMed Central  Google Scholar 

  56. Häggman, M., Nordin, B., Mattson, S. & Busch, C. Morphometric studies of intra-prostatic volume relationships in localized prostatic cancer. Br. J. Urol. 80, 612–617 (1997).

    PubMed  Google Scholar 

  57. Schmidt, H. et al. Asynchronous growth of prostate cancer is reflected by circulating tumor cells delivered from distinct, even small foci, harboring loss of heterozygosity of the PTEN gene. Cancer Res. 66, 8959–8965 (2006).

    CAS  PubMed  Google Scholar 

  58. Gburek, B. M. et al. Chromosomal anomalies in stage D1 prostate adenocarcinoma primary tumors and lymph node metastases detected by fluorescence in situ hybridization. J. Urol. 157, 223–227 (1997).

    CAS  PubMed  Google Scholar 

  59. Kikuchi, E., Scardino, P. T., Wheeler, T. M., Slawin, K. M. & Ohori, M. Is tumor volume an independent prognostic factor in clinically localized prostate cancer? J. Urol. 172, 508–511 (2004).

    PubMed  Google Scholar 

  60. Greene, D. R. et al. Some small prostate cancers are nondiploid by nuclear image analysis: correlation of deoxyribonucleic acid ploidy status and pathological features. J. Urol. 151, 1301–1307 (1994).

    CAS  PubMed  Google Scholar 

  61. Andreoiu, M. & Cheng, L. Multifocal prostate cancer: biologic, prognostic, and therapeutic implications. Hum. Pathol. 41, 781–793 (2010).

    PubMed  Google Scholar 

  62. Merrimen, J. L. et al. Multifocal high grade prostatic intraepithelial neoplasia is a significant risk factor for prostatic adenocarcinoma. J. Urol. 182, 485–490 (2009).

    PubMed  Google Scholar 

  63. Rice, K. R. et al. Clinicopathological behavior of single focus prostate adenocarcinoma. J. Urol. 182, 2689–2694 (2009).

    PubMed  Google Scholar 

  64. Stamatiou, K. N. et al. The phenomenon of multifocality does not affect the biologic behavior of histologic prostate carcinoma. Med. Sci. Monit. 15, BR61–BR63 (2009).

    PubMed  Google Scholar 

  65. Dall'Era, M. A. et al. Active surveillance for the management of prostate cancer in a contemporary cohort. Cancer 112, 2664–2670 (2008).

    PubMed  Google Scholar 

  66. van den Bergh, R. C. et al. Outcomes of men with screen-detected prostate cancer eligible for active surveillance who were managed expectantly. Eur. Urol. 55, 1–8 (2009).

    PubMed  Google Scholar 

  67. Eggener, S. E. et al. A multi-institutional evaluation of active surveillance for low risk prostate cancer. J. Urol. 181, 1635–1641 (2009).

    PubMed  PubMed Central  Google Scholar 

  68. Klotz, L. Active surveillance for favorable risk prostate cancer: what are the results, and how safe is it? Semin. Radiat. Oncol. 18, 2–6 (2008).

    PubMed  Google Scholar 

  69. Warlick, C., Trock, B. J., Landis, P., Epstein, J. I. & Carter, H. B. Delayed versus immediate surgical intervention and prostate cancer outcome. J. Natl Cancer Inst. 98, 355–357 (2006).

    PubMed  PubMed Central  Google Scholar 

  70. Han, M. et al. Biochemical (prostate specific antigen) recurrence probability following radical prostatectomy for clinically localized prostate cancer. J. Urol. 169, 517–523 (2003).

    PubMed  Google Scholar 

  71. Klotz, L. et al. Clinical results of long-term follow-up of a large, active surveillance cohort with localized prostate cancer. J. Clin. Oncol. 28, 126–131 (2010).

    PubMed  Google Scholar 

  72. Lindner, U. et al. Image guided photothermal focal therapy for localized prostate cancer: phase I trial. J. Urol. 182, 1371–1377 (2009).

    CAS  PubMed  Google Scholar 

  73. Crawford, E. D. & Barqawi, A. Targeted focal therapy: a minimally invasive ablation technique for early prostate cancer. Oncology (Williston Park) 21, 27–32 (2007).

    Google Scholar 

  74. Iczkowski, K. A. et al. Preoperative prediction of unifocal, unilateral, margin-negative, and small volume prostate cancer. Urology 71, 1166–1171 (2008).

    PubMed  Google Scholar 

  75. Tsivian, M. et al. Biopsy accuracy in identifying unilateral prostate cancer depends on prostate weight. Urol. Oncol. doi:10.1016/j.urolonc.2009.11.001.

    PubMed  Google Scholar 

  76. Obek, C., Louis, P., Civantos, F. & Soloway, M. S. Comparison of digital rectal examination and biopsy results with the radical prostatectomy specimen. J. Urol. 161, 494–498 (1999).

    CAS  PubMed  Google Scholar 

  77. Huland, H., Hübner, D. & Henke, R. P. Systematic biopsies and digital rectal examination to identify the nerve-sparing side for radical prostatectomy without risk of positive margin in patients with clinical stage T2, N0 prostatic carcinoma. Urology 44, 211–214 (1994).

    CAS  PubMed  Google Scholar 

  78. Daniels, G. F. Jr, McNeal, J. E. & Stamey, T. A. Predictive value of contralateral biopsies in unilaterally palpable prostate cancer. J. Urol. 147, 870–874 (1992).

    PubMed  Google Scholar 

  79. Scales, C. D. Jr et al. Predicting unilateral prostate cancer based on biopsy features: implications for focal ablative therapy--results from the SEARCH database. J. Urol. 178, 1249–1252 (2007).

    PubMed  Google Scholar 

  80. Meiers, I., Waters, D. J. & Bostwick, D. G. Preoperative prediction of multifocal prostate cancer and application of focal therapy: review 2007. Urology 70 (Suppl. 1), 3–8 (2007).

    PubMed  Google Scholar 

  81. Epstein, J. I., Sanderson, H., Carter, H. B. & Scharfstein, D. O. Utility of saturation biopsy to predict insignificant cancer at radical prostatectomy. Urology 66, 356–360 (2005).

    PubMed  Google Scholar 

  82. Bott, S. R., Henderson, A., McLarty, E. & Langley, S. E. A brachytherapy template approach to standardize saturation prostatic biopsy. BJU Int. 93, 629–630 (2004).

    CAS  PubMed  Google Scholar 

  83. Crawford, E. D. et al. Clinical staging of prostate cancer: a computer-simulated study of transperineal prostate biopsy. BJU Int. 96, 999–1004 (2005).

    PubMed  Google Scholar 

  84. Onik, G., Miessau, M. & Bostwick, D. G. Three-dimensional prostate mapping biopsy has a potentially significant impact on prostate cancer management. J. Clin. Oncol. 27, 4321–4326 (2009).

    PubMed  Google Scholar 

  85. Barzell, W. E. & Melamed, M. R. Appropriate patient selection in the focal treatment of prostate cancer: the role of transperineal 3-dimensional pathologic mapping of the prostate--a 4-year experience. Urology 70 (Suppl. 1), 27–35 (2007).

    PubMed  Google Scholar 

  86. Terris, M. K., Haney, D. J., Johnstone, I. M., McNeal, J. E. & Stamey, T. A. Prediction of prostate cancer volume using prostate-specific antigen levels, transrectal ultrasound, and systematic sextant biopsies. Urology 45, 75–80 (1995).

    CAS  PubMed  Google Scholar 

  87. Fuchsjäger, M., Shukla-Dave, A., Akin, O., Barentsz, J. & Hricak, H. Prostate cancer imaging. Acta Radiol. 49, 107–120 (2008).

    PubMed  Google Scholar 

  88. Fütterer, J. J. et al. Prostate cancer localization with dynamic contrast-enhanced MR imaging and proton MR spectroscopic imaging. Radiology 241, 449–458 (2006).

    PubMed  Google Scholar 

  89. Wang, L. et al. Assessment of biologic aggressiveness of prostate cancer: correlation of MR signal intensity with Gleason grade after radical prostatectomy. Radiology 246, 168–176 (2008).

    PubMed  Google Scholar 

  90. Hricak, H. MR imaging and MR spectroscopic imaging in the pre-treatment evaluation of prostate cancer. Br. J. Radiol. 78, S103–S111 (2005).

    PubMed  Google Scholar 

  91. Puech, P. et al. Dynamic contrast-enhanced-magnetic resonance imaging evaluation of intraprostatic prostate cancer: correlation with radical prostatectomy specimens. Urology 74, 1094–1099 (2009).

    PubMed  Google Scholar 

  92. Girouin, N. et al. Prostate dynamic contrast-enhanced MRI with simple visual diagnostic criteria: is it reasonable? Eur. Radiol. 17, 1498–1509 (2007).

    PubMed  Google Scholar 

  93. Ahmed, H. U. et al. Is it time to consider a role for MRI before prostate biopsy? Nat. Rev. Clin. Oncol. 6, 197–206 (2009).

    PubMed  Google Scholar 

  94. Liu, W. et al. Copy number analysis indicates monoclonal origin of lethal metastatic prostate cancer. Nat. Med. 15, 559–565 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Karavitakis, M. et al. Histological characteristics of the index lesion in whole-mount radical prostatectomy specimens: implications for focal therapy. Prostate Cancer Prostatic Dis. doi:10.1038/pcan.2010.16.

    PubMed  Google Scholar 

  96. Ahmed, H. U. The index lesion and the origin of prostate cancer. N. Engl. J. Med. 361, 1704–1706 (2009).

    CAS  PubMed  Google Scholar 

  97. Hanson, J. A. et al. Gene promoter methylation in prostate tumor-associated stromal cells. J. Natl Cancer Inst. 98, 255–261 (2006).

    CAS  PubMed  Google Scholar 

  98. Mehrotra, J. et al. Quantitative, spatial resolution of the epigenetic field effect in prostate cancer. Prostate 68, 152–160 (2008).

    CAS  PubMed  Google Scholar 

  99. Uetsuki, H. et al. Expression of a novel biomarker, EPCA, in adenocarcinomas and precancerous lesions in the prostate. J. Urol. 174, 514–518 (2005).

    PubMed  Google Scholar 

  100. Ahmed, H. U. & Emberton, M. Active surveillance and radical therapy in prostate cancer: can focal therapy offer the middle way? World J. Urol. 26, 457–467 (2008).

    PubMed  Google Scholar 

Download references

Acknowledgements

H. U. Ahmed receives funding from the Medical Research Council, Pelican Cancer Foundation, Prostate UK, Prostate Cancer Research Centre, Prostate Cancer Research Foundation and St Peters Trust for work on focal therapy and imaging of prostate cancer.

Author information

Authors and Affiliations

Authors

Contributions

M. Karavitakis, H. U. Ahmed, P. Abel and M. Winkler researched the data for the article. All the authors provided a substantial contribution to discussions of the content. M. Karavitakis contributed to writing the article, and all authors reviewed and/or edited the manuscript before submission.

Corresponding author

Correspondence to Markos Karavitakis.

Ethics declarations

Competing interests

Dr. H. U. Ahmed is a consultant for Steba Biotech and receives grant and research support from Focus Surgery, Medical Research Council, Misonix, Pelican Cancer Foundation, Prostate Cancer Research Centre, Prostate Cancer Research Foundation, Prostate UK, St. Peters Trust, UKHIFU and USHIFU. Dr. P. D. Abel and Dr. M. H. Winkler are collaborators in the multicenter focal therapy HIFU study. M. Karavitakis and S. Hazell declare no competing interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Karavitakis, M., Ahmed, H., Abel, P. et al. Tumor focality in prostate cancer: implications for focal therapy. Nat Rev Clin Oncol 8, 48–55 (2011). https://doi.org/10.1038/nrclinonc.2010.190

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrclinonc.2010.190

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer