Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Implications for KRAS status and EGFR-targeted therapies in metastatic CRC

Abstract

EGFR regulates cancer-cell proliferation, apoptosis and tumor-induced neoangiogenesis, and has been validated as a relevant therapeutic target in several human cancers, including metastatic colorectal cancer (mCRC). The anti-EGFR monoclonal antibodies cetuximab and panitumumab are available for the treatment of patients with mCRC. Although EGFR is expressed in approximately 85% of patients with mCRC, the clinical efficacy of treatment with anti-EGFR antibodies is limited to a subset of patients. A series of potential biomarkers that could be useful in predicting response to EGFR inhibitors has been investigated. In patients with mCRC, activating mutations within KRAS can predict resistance to anti-EGFR monoclonal antibodies. Activating mutations in KRAS, which could result in EGFR-independent intracellular signal transduction activation, are found in approximately 35–40% of patients with mCRC. These mutations are almost exclusively detected in codons 12 and 13 of exon 2. KRAS mutations have been significantly associated with lack of response to cetuximab or panitumumab therapy in patients with mCRC, which suggests that EGFR-independent, constitutive activation of the RAS signaling pathway could impair response to anti-EGFR drugs. We summarize the experimental and clinical evidence supporting the use of KRAS testing for the optimal selection of patients with mCRC to be treated with anti-EGFR monoclonal antibodies.

Key Points

  • Cetuximab and panitumumab are effective as single agents, and cetuximab is effective in combination with irinotecan, in heavily pretreated patients with chemorefractory metastatic colorectal cancer (mCRC)

  • Cetuximab in combination with standard chemotherapy is also active as first-line therapy in untreated patients with mCRC; however, efficacy of anti-EGFR monoclonal antibodies in mCRC is limited to a subgroup of patients

  • Several potential biomarkers for the optimal selection of patients with mCRC who are candidates for treatment with anti-EGFR drugs have been evaluated

  • Activating mutations in KRAS have been strongly correlated with lack of efficacy of anti-EGFR drugs in mCRC, whereas patients with wild-type KRAS respond to cetuximab or panitumumab monotherapy

  • Combination of cetuximab with standard 5-fluorouracil-based chemotherapy doublets is a valid therapeutic option for the first-line treatment of patients with wild-type KRAS mCRC

  • Determination of KRAS status should be mandatory in all patients with mCRC to help select the most appropriate combinations and/or sequences of molecular targeted drugs and cytotoxic agents

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: RAS mediated intracellular signal transduction pathways.

Similar content being viewed by others

References

  1. Ciardiello, F. & Tortora, G. EGFR antagonists in cancer treatment. N. Eng. J. Med. 358, 1160–1174 (2008).

    Article  CAS  Google Scholar 

  2. Shepard, H. M., Brdlik, C. M. & Schreiber, H. Signal integration: a framework for understanding the efficacy of therapeutics targeting the human EGFR family. J. Clin. Invest. 118, 3574–3581 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Normanno, N., Bianco, C., De Luca, A., Maiello, M. R. & Salomon, D. S. Target-based agents against ErbB receptors and their ligands: a novel approach to cancer treatment. Endocr. Relat. Cancer 10, 1–21 (2003).

    Article  CAS  PubMed  Google Scholar 

  4. Malumbres, M. & Barbacid, M. RAS oncogenes: the first 30 years. Nat. Rev. Cancer 3, 459–465 (2003).

    Article  CAS  PubMed  Google Scholar 

  5. Koera, K. et al. K-ras is essential for the development of the mouse embryo. Oncogene 15, 1151–1159 (1997).

    Article  CAS  PubMed  Google Scholar 

  6. Johnson, L. et al. K-ras is an essential gene in the mouse with partial functional overlap with N-ras. Genes Dev. 11, 2468–2481 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Haigis, K. M. et al. Differential effects of oncogenic K-Ras and N-Ras on proliferation, differentiation and tumor progression in the colon. Nat. Genet. 40, 600–608 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Schafer, W. R. et al. Enzymatic coupling of cholesterol intermediates to a mating pheromone precursor and to the ras protein. Science 249, 1133–1139 (1990).

    Article  CAS  PubMed  Google Scholar 

  9. Schubbert, S., Shannon, K. & Bollag, G. Hyperactive Ras in developmental disorders and cancer. Nat. Rev. Cancer 7, 295–308 (2007).

    Article  CAS  PubMed  Google Scholar 

  10. Rosen, N. Molecular biology of gastrointestinal cancers. In Cancer—Principles and Practice of Oncology 5th edn (Eds DeVita, V. T. J., Hellman, S. & Rosenberg, S. A.) 971–979 (Lippincott Williams & Wilkins, 1997).

    Google Scholar 

  11. Fearon, E. R. & Vogelstein, B. A genetic model for colorectal tumorigenesis. Cell 61, 759–767 (1990).

    Article  CAS  PubMed  Google Scholar 

  12. Bos, J. L. et al. Prevalence of ras gene mutations in human colorectal cancers. Nature 327, 293–297 (1987).

    Article  CAS  PubMed  Google Scholar 

  13. Samowitz, W. S. et al. Poor survival associated with the BRAF V600E mutation in microsatellite-stable colon cancers. Cancer Res. 65, 6063–6069 (2005).

    Article  CAS  PubMed  Google Scholar 

  14. Ogino, S. et al. CpG island methylator phenotype, microsatellite instability, BRAF mutation and clinical outcome in colon cancer. Gut 58, 90–96 (2009).

    Article  PubMed  Google Scholar 

  15. Takayama, T. et al. Analysis of K-ras, APC, and beta-catenin in aberrant crypt foci in sporadic adenoma, cancer, and familial adenomatous polyposis. Gastroenterology 121, 599–611 (2001).

    Article  CAS  PubMed  Google Scholar 

  16. Pretlow, T. P. & Pretlow, T. G. Mutant KRAS in aberrant crypt foci (ACF): initiation of colorectal cancer? Biochim. Biophys. Acta 1756, 83–96 (2005).

    CAS  PubMed  Google Scholar 

  17. Santini, D. et al. High concordance of KRAS status between primary colorectal tumors and related metastatic sites: implications for clinical practice. Oncologist 13, 1270–1275 (2008).

    Article  CAS  PubMed  Google Scholar 

  18. Artale, S. et al. Mutations of KRAS and BRAF in primary and matched metastatic sites of colorectal cancer. J. Clin. Oncol. 26, 4217–4219 (2008).

    Article  PubMed  Google Scholar 

  19. Forbes, S. et al. Cosmic 2005. Br. J. Cancer 94, 318–322 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Bos, J. L. ras oncogenes in human cancer: a review. Cancer Res. 49, 4682–4689 (1989).

    CAS  PubMed  Google Scholar 

  21. Andreyev, H. J. et al. Kirsten ras mutations in patients with colorectal cancer: the 'RASCAL II' study. Br. J. Cancer 85, 692–696 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Benvenuti, S. et al. Oncogenic activation of the RAS/RAF signaling pathway impairs the response of metastatic colorectal cancers to anti-epidermal growth factor receptor antibody therapies. Cancer Res. 67, 2643–2648 (2007).

    Article  CAS  PubMed  Google Scholar 

  23. Di Nicolantonio, F. et al. Wild-type BRAF is required for response to panitumimab or cetuximab in metastatic colorectal cancer. J. Clin. Oncol. 26, 5705–5712 (2008).

    Article  CAS  PubMed  Google Scholar 

  24. Andreyev, H. J., Norman, A. R., Cunningham, D., Oates, J. R. & Clarke, P. A. Kirsten ras mutations in patients with colorectal cancer: the multicenter “RASCAL” study. J. Natl Cancer Inst. 90, 675–684 (1998).

    Article  CAS  PubMed  Google Scholar 

  25. Samowitz, W. S. et al. Relationship of Ki-ras mutations in colon cancers to tumor location, stage, and survival: a population-based study. Cancer Epidemiol. Biomarkers Prev. 9, 1193–1197 (2000).

    CAS  PubMed  Google Scholar 

  26. Westra, J. L. et al. Determination of TP53 mutation is more relevant than microsatellite instability status for the prediction of disease-free survival in adjuvant-treated stage III colon cancer patients. J. Clin. Oncol. 23, 5635–5643 (2005).

    Article  CAS  PubMed  Google Scholar 

  27. Barault, L. et al. Mutations in the RAS-MAPK, PI(3)K (phosphatidylinositol-3-OH kinase) signaling network correlate with poor survival in a population-based series of colon cancers. Int. J. Cancer 122, 2255–2259 (2008).

    Article  CAS  PubMed  Google Scholar 

  28. Belly, R. T. et al. Detection of mutated K12-ras in histologically negative lymph nodes as an indicator of poor prognosis in stage II colorectal cancer. Clin. Colorectal Cancer 1, 110–116 (2001).

    Article  CAS  PubMed  Google Scholar 

  29. Moroni, M. et al. Gene copy number for epidermal growth factor receptor (EGFR) and clinical response to antiEGFR treatment in colorectal cancer: a cohort study. Lancet Oncol. 6, 279–286 (2005).

    Article  CAS  PubMed  Google Scholar 

  30. Lièvre, A. et al. KRAS mutation status is predictive of response to cetuximab therapy in colorectal cancer. Cancer Res. 66, 3992–3995 (2006).

    Article  PubMed  Google Scholar 

  31. Frattini, M. et al. PTEN loss of expression predicts cetuximab efficacy in metastatic colorectal cancer patients. Br. J. Cancer 9, 1139–1145 (2007).

    Article  Google Scholar 

  32. Di Fiore, F. et al. Clinical relevance of KRAS mutation detection in metastatic colorectal cancer treated by cetuximab plus chemotherapy. Br. J. Cancer 96, 1166–1169 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Khambata-Ford, S. et al. Expression of epregulin and amphiregulin and K-ras mutation status predict disease control in metastatic colorectal cancer patients treated with cetuximab. J. Clin. Oncol. 25, 3230–3237 (2007).

    Article  CAS  PubMed  Google Scholar 

  34. De Roock, W. et al. KRAS wild-type state predicts survival and is associated to early radiological response in metastatic colorectal cancer treated with cetuximab. Ann. Oncol. 19, 508–515 (2008).

    Article  CAS  PubMed  Google Scholar 

  35. Lièvre, A. et al. KRAS mutation as an independent prognostic factor in patients with advanced colorectal cancer treated with cetuximab. J. Clin. Oncol. 26, 374–379 (2008).

    Article  PubMed  Google Scholar 

  36. Bibeau, F. et al. Impact of FcγRIIa–FcγRIIIa polymorphisms and KRAS mutations on the clinical outcome of patients with metastatic colorectal cancer treated with cetuximab plus irinotecan. J. Clin. Oncol. 27, 1122–1129 (2009).

    Article  CAS  PubMed  Google Scholar 

  37. Amado, R. G. et al. Wild-type KRAS is required for panitumumab efficacy in patients with metastatic colorectal cancer. J. Clin. Oncol. 26, 1626–1634 (2008).

    Article  CAS  PubMed  Google Scholar 

  38. Karapetis, C. S. et al. KRAS mutations and benefit from cetuximab in advanced colorectal cancer. N. Engl. J. Med. 359, 1757–1765 (2008).

    Article  CAS  PubMed  Google Scholar 

  39. Cervantes, A. et al. Correlation of KRAS status (wild type [wt] vs. mutant [mt]) with efficacy to first-line cetuximab in a study of cetuximab single agent followed by cetuximab + FOLFIRI in patients (pts) with metastatic colorectal cancer (mCRC) [abstract]. ASCO Meeting Abstracts 26, 4129 (2008).

    Google Scholar 

  40. Folprecht, G. et al. Cetuximab plus FOLFOX or cetuximab plus FOLFIRI as neoadjuvant treatment of nonresectable colorectal liver metastases: A randomized multicenter study (CELIM study) [abstract]. Gastrointestinal Cancer Symposium 2009: 296 (2009).

  41. Bokemeyer, C. et al. Fluorouracil, leucovorin, and oxaliplatin with and without cetuximab in the first-line treatment of metastatic colorectal cancer. J. Clin. Oncol. 27, 663–671 (2008).

    Article  PubMed  Google Scholar 

  42. Van Cutsem, E. et al. Cetuximab and chemotherapy as initial treatment for metastatic colorectal cancer. N. Engl. J. Med. 360, 1408–1417 (2009).

    Article  CAS  PubMed  Google Scholar 

  43. Allegra, C. J. et al. American Society of Clinical Oncology provisional clinical opinion: testing for KRAS gene muations in patients with metastatic colorectal carcinoma to predict response to anti-epidermal growth factor receptor monoclonal antibody therapy. J. Clin. Oncol. 27, 2091–2096 (2009).

    Article  PubMed  Google Scholar 

  44. van Krieken, J. H. et al. KRAS mutation testing for predicting response to anti-EGFR therapy for colorectal carcinoma: proposal for an European quality assurance program. Virchows Arch. 454, 233–235 (2008).

    Article  Google Scholar 

  45. Jimeno, A., Messersmith, W. A., Hirsch, F. R., Franklin, W. A. & Eckhardt, S. G. KRAS mutations and sensitivity to epidermal growth factor receptor inhibitors in colorectal cancer: practical application of patient selection. J. Clin. Oncol. 27, 1130–1136 (2009).

    Article  CAS  PubMed  Google Scholar 

  46. Ogino, S. et al. Sensitive sequencing method for KRAS mutation detection by Pyrosequencing. J. Mol. Diagn. 3, 413–421 (2005).

    Article  Google Scholar 

  47. Juan, T. et al. A comparability study of 4 commercial KRAS tests [abstract]. AACR Meeting Abstracts 2008: 1811 (2008).

  48. Linardou, H. et al. Assessment of somatic k-RAS mutations as a mechanism associated with resistance to EGFR-targeted agents: a systematic review and meta-analysis of studies in advanced non-small-cell lung cancer and metastatic colorectal cancer. Lancet Oncol. 10, 962–972 (2008).

    Article  Google Scholar 

  49. Cappuzzo, F. et al. EGFR FISH assay predicts for response to cetuximab in chemotherapy refractory colorectal cancer patients. Ann. Oncol. 19, 717–723 (2008).

    Article  CAS  PubMed  Google Scholar 

  50. Personeni, N. et al. Clinical usefulness of EGFR gene copy number as a predictive marker in colorectal cancer patients treated with cetuximab: a fluorescent in situ hybridization study. Clin. Cancer Res. 14, 5869–5876 (2008).

    Article  CAS  PubMed  Google Scholar 

  51. De Roock, W., Lambrechts, D. & Tejpar, S. K-ras mutations and cetuximab in colorectal cancer. N. Engl. J. Med. 360, 834 (2009).

    CAS  PubMed  Google Scholar 

  52. Perrone, F. et al. PI3KCA/PTEN deregulation contributes to impaired responses to cetuximab in metastatic colorectal cancer patients. Ann. Oncol. 20, 84–90 (2009).

    Article  CAS  PubMed  Google Scholar 

  53. Sartore-Bianchi, A. et al. PIK3CA mutations in colorectal cancer are associated with clinical resistance to EGFR-targeted monoclonal antibodies. Cancer Res. 69, 1851–1857 (2009).

    Article  CAS  PubMed  Google Scholar 

  54. Loupakis, F. et al. Evaluation of PTEN expression in colorectal cancer (CRC) metastases (mets) and in primary tumors as predictors of activity of cetuximab plus irinotecan treatment [abstract]. ASCO Meeting Abstracts 26, 4003 (2008).

    Google Scholar 

  55. Morgillo, F., Bareschino, M. A., Bianco, R., Tortora, G. & Ciardiello, F. Primary and acquired resistance to anti-EGFR targeted drugs in cancer therapy. Differentiation 75, 788–799 (2007).

    Article  CAS  PubMed  Google Scholar 

  56. Jorissen, R. N. et al. Epidermal growth factor receptor: mechanisms of activation and signalling. Exp. Cell Res. 284, 31–53 (2003).

    Article  CAS  PubMed  Google Scholar 

  57. Yordy, J. S. & Muise-Helmericks, R. C. Signal transduction and the Ets family of transcription factors. Oncogene 19, 6503–6513 (2000).

    Article  CAS  PubMed  Google Scholar 

  58. Malliri, A. et al. Mice deficient in the Rac activator Tiam1 are resistant to Ras-induced skin tumours. Nature 417, 867–871 (2002).

    Article  CAS  PubMed  Google Scholar 

  59. Wolthuis, R. M. & Bos, J. L. Ras caught in another affair: the exchange factors for Ral. Curr. Opin. Genet. Dev. 9, 112–117 (1999).

    Article  CAS  PubMed  Google Scholar 

  60. Kelley, G. G., Reks, S. E., Ondrako, J. M. & Smrcka, A. V. Phospholipase C(epsilon): a novel Ras effector. EMBO J. 20, 743–754 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Song, C. et al. Regulation of a novel human phospholipase C, PLCepsilon, through membrane targeting by Ras. J. Biol. Chem. 276, 2752–2757 (2001).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Research projects in the laboratories of F. Ciardiello and N. Normanno are partly supported by Associazione Italiana per la Ricerca sul Cancro (AIRC), Milan, Italy. S. Tejpar and E. Van Cutsem are Senior Clinical Investigators of the Fund for Scientific Research, Flanders. Their work is partly supported by a grant of the Belgian Foundation against Cancer.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fortunato Ciardiello.

Ethics declarations

Competing interests

E. Van Cutsem declares he receives grant/research support from Amgen and Merck Serono. F. Ciardiello declares he receives grant/research support from Merck Serono. S. Tejpar declares she receives grant/research support from Merck Serono and Pfizer. The other authors declare no competing interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Normanno, N., Tejpar, S., Morgillo, F. et al. Implications for KRAS status and EGFR-targeted therapies in metastatic CRC. Nat Rev Clin Oncol 6, 519–527 (2009). https://doi.org/10.1038/nrclinonc.2009.111

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrclinonc.2009.111

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing