Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Mendelian randomization in cardiometabolic disease: challenges in evaluating causality

Key Points

  • Mendelian randomization (MR) is a powerful tool that utilizes genetic information to inform about the likely causal relevance of an exposure to an outcome

  • When performed rigorously, MR findings should be free from reverse causality bias, and only minimally affected by confounding

  • The number of MR studies has been increasing in the past decade, providing important new insights into disease aetiology

  • However, as MR studies become more common, and as increasingly complex gene-to-exposure and exposure-to-outcome relationships are investigated, reliable conduct and interpretation of MR analyses can be challenging

  • Potential solutions to aid the conduct and interpretation of MR studies can be derived, for example, through use of emerging statistical approaches to investigate potential genetic pleiotropy that can distort the findings

Abstract

Mendelian randomization (MR) is a burgeoning field that involves the use of genetic variants to assess causal relationships between exposures and outcomes. MR studies can be straightforward; for example, genetic variants within or near the encoding locus that is associated with protein concentrations can help to assess their causal role in disease. However, a more complex relationship between the genetic variants and an exposure can make findings from MR more difficult to interpret. In this Review, we describe some of these challenges in interpreting MR analyses, including those from studies using genetic variants to assess causality of multiple traits (such as branched-chain amino acids and risk of diabetes mellitus); studies describing pleiotropic variants (for example, C-reactive protein and its contribution to coronary heart disease); and those investigating variants that disrupt normal function of an exposure (for example, HDL cholesterol or IL-6 and coronary heart disease). Furthermore, MR studies on variants that encode enzymes responsible for the metabolism of an exposure (such as alcohol) are discussed, in addition to those assessing the effects of variants on time-dependent exposures (extracellular superoxide dismutase), cumulative exposures (LDL cholesterol), and overlapping exposures (triglycerides and non-HDL cholesterol). We elaborate on the molecular features of each relationship, and provide explanations for the likely causal associations. In doing so, we hope to contribute towards more reliable evaluations of MR findings.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Instrumental variable analysis to generate causal estimates through Mendelian randomization.
Figure 2: Paradoxical scenarios in Mendelian randomization (MR).
Figure 3: Mendelian randomization (MR) using a genetic variant that associates with multiple biomarkers on separate pathways.
Figure 4: Mendelian randomization (MR) using a variant that disrupts normal function of the exposure.
Figure 5: Mendelian randomization of biomarkers on the same pathway.
Figure 6: Mendelian randomization of a time-dependent and cumulative exposure.
Figure 7: Mendelian randomization of overlapping exposures.

Similar content being viewed by others

References

  1. Fewell, Z., Davey Smith, G. & Sterne, J. A. The impact of residual and unmeasured confounding in epidemiologic studies: a simulation study. Am. J. Epidemiol. 166, 646–655 (2007).

    PubMed  Google Scholar 

  2. Davey Smith, G. et al. Clustered environments and randomized genes: a fundamental distinction between conventional and genetic epidemiology. PLoS Med. 4, e352 (2007).

    Google Scholar 

  3. Harrison, R. K. Phase II and phase III failures: 2013–2015. Nat. Rev. Drug Discov. 15, 817–818 (2016).

    CAS  PubMed  Google Scholar 

  4. Fordyce, C. B. et al. Cardiovascular drug development: is it dead or just hibernating? J. Am. Coll. Cardiol. 65, 1567–1582 (2015).

    PubMed  Google Scholar 

  5. Wang, Q. et al. Effects of hormonal contraception on systemic metabolism: cross-sectional and longitudinal evidence. Int. J. Epidemiol. 45, 1445–1457 (2016).

    PubMed  PubMed Central  Google Scholar 

  6. Corrao, G., Rubbiati, L., Bagnardi, V., Zambon, A. & Poikolainen, K. Alcohol and coronary heart disease: a meta-analysis. Addiction 95, 1505–1523 (2000).

    CAS  PubMed  Google Scholar 

  7. Marmot, M. & Brunner, E. Alcohol and cardiovascular disease: the status of the U shaped curve. BMJ 303, 565–568 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Kloner, R. A. & Rezkalla, S. H. To drink or not to drink? That is the question. Circulation 116, 1306–1317 (2007).

    PubMed  Google Scholar 

  9. Mukamal, K. J. & Rimm, E. B. Alcohol's effects on the risk for coronary heart disease. Alcohol Res. Health 25, 255–261 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Davey Smith, G. & Hemani, G. Mendelian randomization: genetic anchors for causal inference in epidemiological studies. Hum. Mol. Genet. 23, R89–R98 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Davey Smith, G. & Ebrahim, S. 'Mendelian randomization': can genetic epidemiology contribute to understanding environmental determinants of disease? Int. J. Epidemiol. 32, 1–22 (2003).

    Google Scholar 

  12. Swerdlow, D. I. et al. Selecting instruments for Mendelian randomization in the wake of genome-wide association studies. Int. J. Epidemiol. 45, 1600–1616 (2016).

    PubMed  PubMed Central  Google Scholar 

  13. Evans, D. M. & Davey Smith, G. Mendelian randomization: new applications in the coming age of hypothesis-free causality. Annu. Rev. Genomics Hum. Genet. 16, 327–350 (2015).

    CAS  PubMed  Google Scholar 

  14. Nelson, M. R. et al. The support of human genetic evidence for approved drug indications. Nat. Genet. 47, 856–860 (2015).

    CAS  PubMed  Google Scholar 

  15. Ference, B. A. et al. Effect of long-term exposure to lower low-density lipoprotein cholesterol beginning early in life on the risk of coronary heart disease: a Mendelian randomization analysis. J. Am. Coll. Cardiol. 60, 2631–2639 (2012).

    CAS  PubMed  Google Scholar 

  16. Holmes, M. V. et al. Mendelian randomization of blood lipids for coronary heart disease. Eur. Heart J. 36, 539–550 (2015).

    CAS  PubMed  Google Scholar 

  17. Voight, B. F. et al. Plasma HDL cholesterol and risk of myocardial infarction: a Mendelian randomisation study. Lancet 380, 572–580 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. White, J. et al. Association of lipid fractions with risks for coronary artery disease and diabetes. JAMA Cardiol. 1, 692–699 (2016).

    PubMed  PubMed Central  Google Scholar 

  19. Cholesterol Treatment Trialists' Collaborators et al. Efficacy and safety of more intensive lowering of LDL cholesterol: a meta-analysis of data from 170,000 participants in 26 randomised trials. Lancet 376, 1670–1681 (2010).

  20. Collins, R. et al. Interpretation of the evidence for the efficacy and safety of statin therapy. Lancet 388, 2532–2561 (2016).

    CAS  PubMed  Google Scholar 

  21. Silverman, M. G. et al. Association between lowering LDL-C and cardiovascular risk reduction among different therapeutic interventions: a systematic review and meta-analysis. JAMA 316, 1289–1297 (2016).

    CAS  PubMed  Google Scholar 

  22. C Reactive Protein Coronary Heart Disease Genetics Collaboration et al. Association between C reactive protein and coronary heart disease: Mendelian randomisation analysis based on individual participant data. BMJ 342, d548 (2011).

  23. Zacho, J. et al. Genetically elevated C-reactive protein and ischemic vascular disease. N. Engl. J. Med. 359, 1897–1908 (2008).

    CAS  PubMed  Google Scholar 

  24. Holmes, M. V. et al. Association between alcohol and cardiovascular disease: Mendelian randomisation analysis based on individual participant data. BMJ 349, g4164 (2014).

    PubMed  PubMed Central  Google Scholar 

  25. Hagg, S. et al. Adiposity as a cause of cardiovascular disease: a Mendelian randomization study. Int. J. Epidemiol. 44, 578–586 (2015).

    PubMed  PubMed Central  Google Scholar 

  26. Nordestgaard, B. G. et al. The effect of elevated body mass index on ischemic heart disease risk: causal estimates from a Mendelian randomisation approach. PLoS Med. 9, e1001212 (2012).

    PubMed  PubMed Central  Google Scholar 

  27. Emdin, C. A. et al. Genetic association of waist-to-hip ratio with cardiometabolic traits, type 2 diabetes, and coronary heart disease. JAMA 317, 626–634 (2017).

    PubMed  PubMed Central  Google Scholar 

  28. Dale, C. et al. Causal associations of adiposity and body fat distribution with coronary heart disease, stroke subtypes and type 2 diabetes: a Mendelian randomization analysis. Circulation http://dx.doi.org/10.1161/CIRCULATIONAHA.116.026560

  29. Look AHEAD Research Group et al. Cardiovascular effects of intensive lifestyle intervention in type 2 diabetes. N. Engl. J. Med. 369, 145–154 (2013).

  30. Wurtz, P. et al. Metabolomic profiling of statin use and genetic inhibition of HMG-CoA reductase. J. Am. Coll. Cardiol. 67, 1200–1210 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Swerdlow, D. I. et al. HMG-coenzyme A reductase inhibition, type 2 diabetes, and bodyweight: evidence from genetic analysis and randomised trials. Lancet 385, 351–361 (2014).

    PubMed  Google Scholar 

  32. Holmes, M. V. et al. Secretory phospholipase A2-IIA and cardiovascular disease: a Mendelian randomization study. J. Am. Coll. Cardiol. 62, 1966–1976 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Nicholls, S. J. et al. Varespladib and cardiovascular events in patients with an acute coronary syndrome: the VISTA-16 randomized clinical trial. JAMA 311, 252–262 (2014).

    CAS  PubMed  Google Scholar 

  34. Polfus, L. M., Gibbs, R. A. & Boerwinkle, E. Coronary heart disease and genetic variants with low phospholipase A2 activity. N. Engl. J. Med. 372, 295–296 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. STABILITY Investigators et al. Darapladib for preventing ischemic events in stable coronary heart disease. N. Engl. J. Med. 370, 1702–1711 (2014).

  36. Millwood, I. Y. et al. Lipoprotein-associated phospholipase A2 loss-of-function variant and risk of vascular diseases in 90,000 Chinese adults. J. Am. Coll. Cardiol. 67, 230–231 (2016).

    PubMed  PubMed Central  Google Scholar 

  37. Millwood, I. Y. et al. A phenome-wide association study of a lipoprotein-associated phospholipase A2 loss-of-function variant in 90 000 Chinese adults. Int. J. Epidemiol. 45, 1588–1599 (2016).

    PubMed  PubMed Central  Google Scholar 

  38. Talmud, P. J. & Holmes, M. V. Deciphering the causal role of sPLA2s and Lp-PLA2 in coronary heart disease. Arterioscler. Thromb. Vasc. Biol. 35, 2281–2289 (2015).

    CAS  PubMed  Google Scholar 

  39. Ference, B. A., Majeed, F., Penumetcha, R., Flack, J. M. & Brook, R. D. Effect of naturally random allocation to lower low-density lipoprotein cholesterol on the risk of coronary heart disease mediated by polymorphisms in NPC1L1, HMGCR, or both: a 2 × 2 factorial Mendelian randomization study. J. Am. Coll. Cardiol. 65, 1552–1561 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Schmidt, A. F. et al. PCSK9 genetic variants and risk of type 2 diabetes: a Mendelian randomisation study. Lancet Diabetes Endocrinol. 5, 97–105 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Ference, B. A. et al. Variation in PCSK9 and HMGCR and risk of cardiovascular disease and diabetes. N. Engl. J. Med. 375, 2144–2153 (2016).

    CAS  PubMed  Google Scholar 

  42. Lotta, L. A. et al. Association between low-density lipoprotein cholesterol-lowering genetic variants and risk of type 2 diabetes: a meta-analysis. JAMA 316, 1383–1391 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Guasch-Ferre, M. et al. Metabolomics in prediabetes and diabetes: a systematic review and meta-analysis. Diabetes Care 39, 833–846 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Soininen, P., Kangas, A. J., Wurtz, P., Suna, T. & Ala-Korpela, M. Quantitative serum nuclear magnetic resonance metabolomics in cardiovascular epidemiology and genetics. Circ. Cardiovasc. Genet. 8, 192–206 (2015).

    CAS  PubMed  Google Scholar 

  45. Wurtz, P. et al. Branched-chain and aromatic amino acids are predictors of insulin resistance in young adults. Diabetes Care 36, 648–655 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Wurtz, P. et al. Circulating metabolite predictors of glycemia in middle-aged men and women. Diabetes Care 35, 1749–1756 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Wurtz, P. et al. Metabolic signatures of insulin resistance in 7,098 young adults. Diabetes 61, 1372–1380 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Wang, T. J. et al. Metabolite profiles and the risk of developing diabetes. Nat. Med. 17, 448–453 (2011).

    PubMed  PubMed Central  Google Scholar 

  49. Lotta, L. A. et al. Genetic predisposition to an impaired metabolism of the branched-chain amino acids and risk of type 2 diabetes: a Mendelian randomisation analysis. PLoS Med. 13, e1002179 (2016).

    PubMed  PubMed Central  Google Scholar 

  50. Elliott, P. et al. Genetic loci associated with C-reactive protein levels and risk of coronary heart disease. JAMA 302, 37–48 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Evans, D. M. et al. Mining the human phenome using allelic scores that index biological intermediates. PLoS Genet. 9, e1003919 (2013).

    PubMed  PubMed Central  Google Scholar 

  52. Prins, B. P. et al. Investigating the causal relationship of C-reactive protein with 32 complex somatic and psychiatric outcomes: a large-scale cross-consortium Mendelian randomization study. PLoS Med. 13, e1001976 (2016).

    PubMed  PubMed Central  Google Scholar 

  53. Bowden, J., Davey Smith, G. & Burgess, S. Mendelian randomization with invalid instruments: effect estimation and bias detection through Egger regression. Int. J. Epidemiol. 44, 512–525 (2015).

    PubMed  PubMed Central  Google Scholar 

  54. Bowden, J., Davey Smith, G., Haycock, P. C. & Burgess, S. Consistent estimation in Mendelian randomization with some invalid instruments using a weighted median estimator. Genet. Epidemiol. 40, 304–314 (2016).

    PubMed  PubMed Central  Google Scholar 

  55. Zanoni, P. et al. Rare variant in scavenger receptor BI raises HDL cholesterol and increases risk of coronary heart disease. Science 351, 1166–1171 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Ledford, H. 'Good' cholesterol mutation linked to heart disease. Nature http://www.nature.com/news/good-cholesterol-mutation-linked-to-heart-disease-1.19543?WT.mc_id=FBK_NA_1603_NEWSCHOLESTEROLMUTATION_PORTFOLIO (2016).

  57. Harb, J. Why having too much 'good' cholesterol can actually be BAD for you. Daily Mail http://www.dailymail.co.uk/health/article-3384473/Why-having-good-cholesterol-actually-BAD-you.html (2016).

  58. Tall, A. R. An overview of reverse cholesterol transport. Eur. Heart J. 19 (Suppl. A), A31–A35 (1998).

    CAS  PubMed  Google Scholar 

  59. Rosenson, R. S. et al. Cholesterol efflux and atheroprotection: advancing the concept of reverse cholesterol transport. Circulation 125, 1905–1919 (2012).

    PubMed  PubMed Central  Google Scholar 

  60. Zhang, Y. et al. Hepatic expression of scavenger receptor class B type I (SR-BI) is a positive regulator of macrophage reverse cholesterol transport in vivo. J. Clin. Invest. 115, 2870–2874 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Barter, P. J. et al. Effects of torcetrapib in patients at high risk for coronary events. N. Engl. J. Med. 357, 2109–2122 (2007).

    CAS  PubMed  Google Scholar 

  62. Schwartz, G. G. et al. Effects of dalcetrapib in patients with a recent acute coronary syndrome. N. Engl. J. Med. 367, 2089–2099 (2012).

    CAS  PubMed  Google Scholar 

  63. Eli Lilly and Company. Lilly to discontinue development of evacetrapib for high-risk atherosclerotic cardiovascular disease. Lilly https://investor.lilly.com/releasedetail.cfm?ReleaseID=936130 (2015).

  64. Rohatgi, A. et al. HDL cholesterol efflux capacity and incident cardiovascular events. N. Engl. J. Med. 371, 2383–2393 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Anastasius, M. et al. Cholesterol efflux capacity: an introduction for clinicians. Am. Heart J. 180, 54–63 (2016).

    CAS  PubMed  Google Scholar 

  66. Rosenson, R. S. et al. Dysfunctional HDL and atherosclerotic cardiovascular disease. Nat. Rev. Cardiol. 13, 48–60 (2016).

    CAS  PubMed  Google Scholar 

  67. Kingwell, B. A., Chapman, M. J., Kontush, A. & Miller, N. E. HDL-targeted therapies: progress, failures and future. Nat. Rev. Drug Discov. 13, 445–464 (2014).

    CAS  PubMed  Google Scholar 

  68. Hunter, C. A. & Jones, S. A. IL-6 as a keystone cytokine in health and disease. Nat. Immunol. 16, 448–457 (2015).

    CAS  PubMed  Google Scholar 

  69. Lissilaa, R. et al. Although IL-6 trans-signaling is sufficient to drive local immune responses, classical IL-6 signaling is obligate for the induction of T cell-mediated autoimmunity. J. Immunol. 185, 5512–5521 (2010).

    CAS  PubMed  Google Scholar 

  70. IL6R Genetics Consortium Emerging Risk Factors Collaboration et al. Interleukin-6 receptor pathways in coronary heart disease: a collaborative meta-analysis of 82 studies. Lancet 379, 1205–1213 (2012).

  71. Interleukin-6 Receptor Mendelian Randomisation Analysis Consortium. The interleukin-6 receptor as a target for prevention of coronary heart disease: a Mendelian randomisation analysis. Lancet 379, 1214–1224 (2012).

  72. Hansson, G. K. Inflammation, atherosclerosis, and coronary artery disease. N. Engl. J. Med. 352, 1685–1695 (2005).

    CAS  PubMed  Google Scholar 

  73. Rafiq, S. et al. A common variant of the interleukin 6 receptor (IL-6r) gene increases IL-6r and IL-6 levels, without other inflammatory effects. Genes Immun. 8, 552–559 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Mullberg, J. et al. The soluble human IL-6 receptor. Mutational characterization of the proteolytic cleavage site. J. Immunol. 152, 4958–4968 (1994).

    CAS  PubMed  Google Scholar 

  75. Rose-John, S. IL-6 trans-signaling via the soluble IL-6 receptor: importance for the pro-inflammatory activities of IL-6. Int. J. Biol. Sci. 8, 1237–1247 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Kleveland, O. et al. Effect of a single dose of the interleukin-6 receptor antagonist tocilizumab on inflammation and troponin T release in patients with non-ST-elevation myocardial infarction: a double-blind, randomized, placebo-controlled phase 2 trial. Eur. Heart J. 37, 2406–2413 (2016).

    CAS  PubMed  Google Scholar 

  77. Richmond, R. C., Hemani, G., Tilling, K., Davey Smith, G. & Relton, C. L. Challenges and novel approaches for investigating molecular mediation. Hum. Mol. Genet. 25, R149–R156 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Secretan, B. et al. A review of human carcinogens — part E: tobacco, areca nut, alcohol, coal smoke, and salted fish. Lancet Oncol. 10, 1033–1034 (2009).

    PubMed  Google Scholar 

  79. Cho, Y. et al. Alcohol intake and cardiovascular risk factors: a Mendelian randomisation study. Sci. Rep. 5, 18422 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Brooks, P. J., Enoch, M. A., Goldman, D., Li, T. K. & Yokoyama, A. The alcohol flushing response: an unrecognized risk factor for esophageal cancer from alcohol consumption. PLoS Med. 6, e50 (2009).

    PubMed  Google Scholar 

  81. Peng, G. S. & Yin, S. J. Effect of the allelic variants of aldehyde dehydrogenase ALDH2*2 and alcohol dehydrogenase ADH1B*2 on blood acetaldehyde concentrations. Hum. Genomics 3, 121–127 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Marmot, M. G. et al. Alcohol and blood pressure: the INTERSALT study. BMJ 308, 1263–1267 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Chen, L., Davey Smith, G., Harbord, R. M. & Lewis, S. J. Alcohol intake and blood pressure: a systematic review implementing a Mendelian randomization approach. PLoS Med. 5, e52 (2008).

    PubMed  PubMed Central  Google Scholar 

  84. Lawlor, D. A., Harbord, R. M., Sterne, J. A., Timpson, N. & Davey Smith, G. Mendelian randomization: using genes as instruments for making causal inferences in epidemiology. Stat. Med. 27, 1133–1163 (2008).

    PubMed  Google Scholar 

  85. Davey Smith, G. Use of genetic markers and gene-diet interactions for interrogating population-level causal influences of diet on health. Genes Nutr. 6, 27–43 (2011).

    PubMed  Google Scholar 

  86. Tabara, Y. et al. Mendelian randomization analysis in three Japanese populations supports a causal role of alcohol consumption in lowering low-density lipid cholesterol levels and particle numbers. Atherosclerosis 254, 242–248 (2016).

    CAS  PubMed  Google Scholar 

  87. Lewis, S. J. & Davey Smith, G. Alcohol, ALDH2, and esophageal cancer: a meta-analysis which illustrates the potentials and limitations of a Mendelian randomization approach. Cancer Epidemiol. Biomarkers Prev. 14, 1967–1971 (2005).

    CAS  PubMed  Google Scholar 

  88. Zuccolo, L. & Holmes, M. V. Commentary: Mendelian randomization-inspired causal inference in the absence of genetic data. Int. J. Epidemiol. http://dx.doi.org/10.1093/ije/dyw327 (2016).

  89. Mokry, L. E. et al. Vitamin D and risk of multiple sclerosis: a Mendelian randomization study. PLoS Med. 12, e1001866 (2015).

    PubMed  PubMed Central  Google Scholar 

  90. Cabre, P. Migration and multiple sclerosis: the French West Indies experience. J. Neurol. Sci. 262, 117–121 (2007).

    PubMed  Google Scholar 

  91. Dean, G. & Elian, M. Age at immigration to England of Asian and Caribbean immigrants and the risk of developing multiple sclerosis. J. Neurol. Neurosurg. Psychiatry 63, 565–568 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Elian, M., Nightingale, S. & Dean, G. Multiple sclerosis among United Kingdom-born children of immigrants from the Indian subcontinent, Africa and the West Indies. J. Neurol. Neurosurg. Psychiatry 53, 906–911 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Dean, G. & Kurtzke, J. F. On the risk of multiple sclerosis according to age at immigration to South Africa. Br. Med. J. 3, 725–729 (1971).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Navab, M. et al. The Yin and Yang of oxidation in the development of the fatty streak. A review based on the 1994 George Lyman Duff Memorial Lecture. Arterioscler. Thromb. Vasc. Biol. 16, 831–842 (1996).

    CAS  PubMed  Google Scholar 

  95. Myung, S. K. et al. Efficacy of vitamin and antioxidant supplements in prevention of cardiovascular disease: systematic review and meta-analysis of randomised controlled trials. BMJ 346, f10 (2013).

    PubMed  PubMed Central  Google Scholar 

  96. Vivekananthan, D. P., Penn, M. S., Sapp, S. K., Hsu, A. & Topol, E. J. Use of antioxidant vitamins for the prevention of cardiovascular disease: meta-analysis of randomised trials. Lancet 361, 2017–2023 (2003).

    CAS  PubMed  Google Scholar 

  97. Powers, K. M., Oberley, L. W. & Domann, F. E. in Oxidants in Biology: A Question of Balance (eds Valacchi, G. & Davis, P. A.) 183–201 (Springer, 2008).

    Google Scholar 

  98. Jung, O. et al. Extracellular superoxide dismutase is a major determinant of nitric oxide bioavailability: in vivo and ex vivo evidence from ecSOD-deficient mice. Circ. Res. 93, 622–629 (2003).

    CAS  PubMed  Google Scholar 

  99. Gongora, M. C. et al. Role of extracellular superoxide dismutase in hypertension. Hypertension 48, 473–481 (2006).

    CAS  PubMed  Google Scholar 

  100. Juul, K. et al. Genetically reduced antioxidative protection and increased ischemic heart disease risk: The Copenhagen City Heart Study. Circulation 109, 59–65 (2004).

    CAS  PubMed  Google Scholar 

  101. Siedlinski, M., van Diemen, C. C., Postma, D. S., Vonk, J. M. & Boezen, H. M. Superoxide dismutases, lung function and bronchial responsiveness in a general population. Eur. Respir. J. 33, 986–992 (2009).

    CAS  PubMed  Google Scholar 

  102. Young, R. P. et al. Functional variants of antioxidant genes in smokers with COPD and in those with normal lung function. Thorax 61, 394–399 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Juul, K., Tybjaerg-Hansen, A., Marklund, S., Lange, P. & Nordestgaard, B. G. Genetically increased antioxidative protection and decreased chronic obstructive pulmonary disease. Am. J. Respir. Crit. Care Med. 173, 858–864 (2006).

    CAS  PubMed  Google Scholar 

  104. Kobylecki, C. J., Afzal, S. & Nordestgaard, B. G. Does SOD3 R213G homozygosity influence morbidity, mortality, and lung function in the general population? Antioxid. Redox Signal. 24, 884–891 (2016).

    CAS  PubMed  Google Scholar 

  105. Hartney, J. M. et al. A common polymorphism in extracellular superoxide dismutase affects cardiopulmonary disease risk by altering protein distribution. Circ. Cardiovasc. Genet. 7, 659–666 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Kobylecki, C. J., Afzal, S., Davey Smith, G. & Nordestgaard, B. G. Genetically high plasma vitamin C, intake of fruit and vegetables, and risk of ischemic heart disease and all-cause mortality: a Mendelian randomization study. Am. J. Clin. Nutr. 101, 1135–1143 (2015).

    CAS  PubMed  Google Scholar 

  107. Cook, N. R. et al. A randomized factorial trial of vitamins C and E and beta carotene in the secondary prevention of cardiovascular events in women: results from the Women's Antioxidant Cardiovascular Study. Arch. Intern. Med. 167, 1610–1618 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Cholesterol Treatment Trialists' Collaborators et al. The effects of lowering LDL cholesterol with statin therapy in people at low risk of vascular disease: meta-analysis of individual data from 27 randomised trials. Lancet 380, 581–590 (2012).

  109. Davey Smith, G. & Ebrahim, S. Mendelian randomization: prospects, potentials, and limitations. Int. J. Epidemiol. 33, 30–42 (2004).

    Google Scholar 

  110. McGill, H. C. Jr et al. Origin of atherosclerosis in childhood and adolescence. Am. J. Clin. Nutr. 72, 1307S–1315S (2000).

    CAS  PubMed  Google Scholar 

  111. Strong, J. P., Malcom, G. T., Newman, W. P. III & Oalmann, M. C. Early lesions of atherosclerosis in childhood and youth: natural history and risk factors. J. Am. Coll. Nutr. 11 (Suppl.), 51S–54S (1992).

    PubMed  Google Scholar 

  112. Rosengren, A. et al. Age, clinical presentation, and outcome of acute coronary syndromes in the Euroheart acute coronary syndrome survey. Eur. Heart J. 27, 789–795 (2006).

    PubMed  Google Scholar 

  113. Burgess, S. & Thompson, S. G. Multivariable Mendelian randomization: the use of pleiotropic genetic variants to estimate causal effects. Am. J. Epidemiol. 181, 251–260 (2015).

    PubMed  PubMed Central  Google Scholar 

  114. Aschard, H., Vilhjalmsson, B. J., Joshi, A. D., Price, A. L. & Kraft, P. Adjusting for heritable covariates can bias effect estimates in genome-wide association studies. Am. J. Hum. Genet. 96, 329–339 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Richiardi, L., Bellocco, R. & Zugna, D. Mediation analysis in epidemiology: methods, interpretation and bias. Int. J. Epidemiol. 42, 1511–1519 (2013).

    PubMed  Google Scholar 

  116. Helgadottir, A. et al. Variants with large effects on blood lipids and the role of cholesterol and triglycerides in coronary disease. Nat. Genet. 48, 634–639 (2016).

    CAS  PubMed  Google Scholar 

  117. Friedewald, W. T., Levy, R. I. & Fredrickson, D. S. Estimation of the concentration of low-density lipoprotein cholesterol in plasma, without use of the preparative ultracentrifuge. Clin. Chem. 18, 499–502 (1972).

    CAS  PubMed  Google Scholar 

  118. Niemi, J. et al. Estimation of VLDL, IDL, LDL, HDL2, apoA-I, and apoB from the Friedewald inputs — apoB and IDL, but not LDL, are associated with mortality in type 1 diabetes. Ann. Med. 41, 451–461 (2009).

    CAS  PubMed  Google Scholar 

  119. Shah, T. et al. Gene-centric analysis identifies variants associated with interleukin-6 levels and shared pathways with other inflammation markers. Circ. Cardiovasc. Genet. 6, 163–170 (2013).

    CAS  PubMed  Google Scholar 

  120. Fall, T. et al. The role of adiposity in cardiometabolic traits: a Mendelian randomization analysis. PLoS Med. 10, e1001474 (2013).

    PubMed  PubMed Central  Google Scholar 

  121. Burgess, S., Dudbridge, F. & Thompson, S. G. Re: “Multivariable Mendelian randomization: the use of pleiotropic genetic variants to estimate causal effects”. Am. J. Epidemiol. 181, 290–291 (2015).

    PubMed  Google Scholar 

  122. Hartwig, F. P., Davey Smith, G. & Bowden, J. Robust inference in two-sample Mendelian randomisation via the zero modal pleiotropy assumption. Int. J. Epidemiol. (in press).

  123. Bowden, J. et al. A framework for the investigation of pleiotropy in two-sample summary data Mendelian randomization. Stat. Med. 36, 1783–1802 (2017).

    PubMed  PubMed Central  Google Scholar 

  124. Ala-Korpela, M. & Davey Smith, G. Metabolic profiling-multitude of technologies with great research potential, but (when) will translation emerge? Int. J. Epidemiol. 45, 1311–1318 (2016).

    PubMed  PubMed Central  Google Scholar 

  125. Mundra, P. A., Shaw, J. E. & Meikle, P. J. Lipidomic analyses in epidemiology. Int. J. Epidemiol. 45, 1329–1338 (2016).

    PubMed  Google Scholar 

  126. Ganz, P. et al. Development and validation of a protein-based risk score for cardiovascular outcomes among patients with stable coronary heart disease. JAMA 315, 2532–2541 (2016).

    CAS  PubMed  Google Scholar 

  127. Hartwig, F. P., Davies, N. M., Hemani, G. & Davey Smith, G. Two-sample Mendelian randomisation: avoiding the downsides of a powerful, widely applicable but potentially fallible technique. Int. J. Epidemiol. 6, 1717–1726 (2016).

    Google Scholar 

  128. Khera, A. V. & Kathiresan, S. Genetics of coronary artery disease: discovery, biology and clinical translation. Nat. Rev. Genet. http://dx.doi.org/10.1038/nrg.2016.160 (2017).

  129. Hemani, G. et al. MR-Base: a platform for systematic causal inference across the phenome using billions of genetic associations. Preprint at bioRxiv http://dx.doi.org/10.1101/078972 (2016).

    Google Scholar 

  130. Zheng, J. et al. LD Hub: a centralized database and web interface to perform LD score regression that maximizes the potential of summary level GWAS data for SNP heritability and genetic correlation analysis. Bioinformatics 33, 272–279 (2017).

    CAS  PubMed  Google Scholar 

  131. Staley, J. R. et al. PhenoScanner: a database of human genotype-phenotype associations. Bioinformatics 32, 3207–3209 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  132. Davey Smith, G., Paternoster, L. & Relton, C. When will Mendelian randomization become relevant for clinical practice and public health? JAMA 317, 589–591 (2017).

    PubMed  Google Scholar 

  133. Gibson, G. Rare and common variants: twenty arguments. Nat. Rev. Genet. 13, 135–145 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  134. Bush, W. S. & Moore, J. H. Chapter 11: genome-wide association studies. PLoS Comput. Biol. 8, e1002822 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  135. Global Lipids Genetics Consortium et al. Discovery and refinement of loci associated with lipid levels. Nat. Genet. 45, 1274–1283 (2013).

  136. Merino, J. et al. Genetically driven hyperglycemia increases risk of coronary artery disease separately from type 2 diabetes. Diabetes Care 40, 687–693 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  137. Egger, M., Davey Smith, G., Schneider, M. & Minder, C. Bias in meta-analysis detected by a simple, graphical test. BMJ 315, 629–634 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  138. Bowden, J. et al. Assessing the suitability of summary data for two-sample Mendelian randomization analyses using MR-Egger regression: the role of the I2 statistic. Int. J. Epidemiol. 45, 1961–1974 (2016).

    PubMed  PubMed Central  Google Scholar 

  139. Wurtz, P. et al. Metabolic signatures of adiposity in young adults: Mendelian randomization analysis and effects of weight change. PLoS Med. 11, e1001765 (2014).

    PubMed  PubMed Central  Google Scholar 

  140. Emerging Risk Factors Collaboration et al. Major lipids, apolipoproteins, and risk of vascular disease. JAMA 302, 1993–2000 (2009).

    PubMed Central  Google Scholar 

  141. Do, R. et al. Common variants associated with plasma triglycerides and risk for coronary artery disease. Nat. Genet. 45, 1345–1352 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  142. Casas, J. P. et al. PLA2G7 genotype, lipoprotein-associated phospholipase A2 activity, and coronary heart disease risk in 10 494 cases and 15 624 controls of European Ancestry. Circulation 121, 2284–2293 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  143. Cannon, C. P. et al. Ezetimibe added to statin therapy after acute coronary syndromes. N. Engl. J. Med. 372, 2387–2397 (2015).

    CAS  PubMed  Google Scholar 

  144. Myocardial Infarction Genetics Consortium Investigators et al. Inactivating mutations in NPC1L1 and protection from coronary heart disease. N. Engl. J. Med. 371, 2072–2082 (2014).

  145. Sabatine, M. S. et al. Evolocumab and clinical outcomes in patients with cardiovascular disease. N. Engl. J. Med. 376, 1713–1722 (2017).

    CAS  PubMed  Google Scholar 

  146. Cohen, J. C., Boerwinkle, E., Mosley, T. H. Jr & Hobbs, H. H. Sequence variations in PCSK9, low LDL, and protection against coronary heart disease. N. Engl. J. Med. 354, 1264–1272 (2006).

    CAS  PubMed  Google Scholar 

  147. Clarke, R. et al. Genetic variants associated with Lp(a) lipoprotein level and coronary disease. N. Engl. J. Med. 361, 2518–2528 (2009).

    CAS  PubMed  Google Scholar 

  148. Dewey, F. E. et al. Inactivating variants in ANGPTL4 and risk of coronary artery disease. N. Engl. J. Med. 374, 1123–1133 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  149. Ridker, P. M., Pradhan, A., MacFadyen, J. G., Libby, P. & Glynn, R. J. Cardiovascular benefits and diabetes risks of statin therapy in primary prevention: an analysis from the JUPITER trial. Lancet 380, 565–571 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  150. Sattar, N. et al. Statins and risk of incident diabetes: a collaborative meta-analysis of randomised statin trials. Lancet 375, 735–742 (2010).

    CAS  PubMed  Google Scholar 

  151. Piepoli, M. F. et al. 2016 European Guidelines on cardiovascular disease prevention in clinical practice: The Sixth Joint Task Force of the European Society of Cardiology and Other Societies on Cardiovascular Disease Prevention in Clinical Practice (constituted by representatives of 10 societies and by invited experts). Developed with the special contribution of the European Association for Cardiovascular Prevention & Rehabilitation (EACPR). Eur. Heart J. 37, 2315–2381 (2016).

    PubMed  PubMed Central  Google Scholar 

  152. Yun, K. E. et al. Alcohol and coronary artery calcification: an investigation using alcohol flushing as an instrumental variable. Int. J. Epidemiol. http://dx.doi.org/10.1093/ije/dyw237 (2017).

Download references

Acknowledgements

M.A.-K. is supported by Biocenter Oulu and Sigrid Juselius Foundation, Finland. M.A.-K. and G.D.S. work in a unit that receives funding from the University of Bristol and UK Medical Research Council (MC_UU_12013/1). M.V.H. works in a unit that receives funds from the University of Oxford and the UK Medical Research Council. These funding bodies did not have a role in the study design, decision to publish, or preparation of the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

All authors researched data for the article, and made substantial contributions to discussion of content, writing, reviewing, and editing the manuscript before submission.

Corresponding author

Correspondence to Michael V. Holmes.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Glossary

Randomized, controlled trials (RCTs)

An interventional study in which individuals are randomized to an 'exposed' arm (for example, an active drug) or to a comparator control arm (for example, placebo) to test the efficacy of an intervention on an outcome (such as disease risk). Such trials are considered the gold standard for asserting causal relationships of an exposure to disease risk.

Mendelian randomization

A genetic epidemiological approach that aims to quantify the causal relationship between an exposure and an outcome, by using the properties of the genome (randomized owing to Mendel's second law, and invariant) to minimize the issues of confounding and reverse causality that can undermine traditional observational epidemiology.

Vertical pleiotropy

The association of a genetic marker (for example, a single nucleotide polymorphism [SNP] in isolation, or a genetic instrument consisting of multiple SNPs) with more than one phenotype on the same biological pathway.

Horizontal pleiotropy

The association of a genetic marker with more than one phenotype on discrete biological pathways.

Genome-wide association study (GWAS)

The hypothesis-free investigation of hundreds of thousands to millions of genetic variants (typically single nucleotide polymorphisms) for their association with a phenotype to characterize the underlying genetic architecture of the phenotype.

Linkage disequilibrium

The nonrandom assortment of genetic variants, meaning that when linkage disequilibrium between a pair of variants is high (for example, as measured by a r2 value of >0.80), a single nucleotide polymorphism (SNP) can be used as a 'proxy' for another SNP in the absence of this second SNP being directly genotyped.

Unbalanced horizontal pleiotropy

When horizontal pleiotropy is such that alternative pathways from the genetic marker to disease can lead to distortion of the association of the exposure under investigation. Unbalanced horizontal pleiotrophy is a violation of the exclusion restriction assumption of an instrumental variable.

Instrumental variable

A variable used as a proxy for an exposure of interest that is not associated with confounders and only associates with an outcome through the exposure of interest

Friedewald equation

The estimation of LDL-cholesterol levels in the absence of its direct measurement, from total cholesterol, high-density lipoprotein cholesterol, and triglycerides

Two-sample Mendelian randomization

The single nucleotide polymorphism (SNP)-to-exposure estimate is obtained from a separate dataset to that of the SNP-to-outcome estimate.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Holmes, M., Ala-Korpela, M. & Smith, G. Mendelian randomization in cardiometabolic disease: challenges in evaluating causality. Nat Rev Cardiol 14, 577–590 (2017). https://doi.org/10.1038/nrcardio.2017.78

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrcardio.2017.78

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing