Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Epidemiology of heart failure with preserved ejection fraction

Key Points

  • In the community, approximately 50% of patients with the clinical syndrome of heart failure (HF) have a preserved ejection fraction (HFpEF)

  • The latest data suggest that the age-specific incidence of HF might be decreasing, but less so in HFpEF than in HF with reduced ejection fraction (HFrEF)

  • The risk of HFpEF increases sharply with age; additional risk factors for the development of HFpEF include hypertension, obesity, and coronary artery disease

  • After adjusting for age and other risk factors, the risk of HFpEF is fairly similar in men and women; however, the risk of HFrEF is much lower in women than men

  • Multimorbidity is common in both types of HF, but slightly more severe in HFpEF, in which approximately 50% of patients have five or more major comorbidities

  • The majority of deaths in patients with HFpEF are cardiovascular, but the proportion of noncardiovascular deaths is higher in HFpEF than HFrEF

Abstract

Heart failure (HF) with preserved ejection fraction (HFpEF) is a clinical syndrome associated with poor quality of life, substantial health-care resource utilization, and premature mortality. We summarize the current knowledge regarding the epidemiology of HFpEF with a focus on community-based studies relevant to quantifying the population burden of HFpEF. Current data regarding the prevalence and incidence of HFpEF in the community as well as associated conditions and risk factors, risk of morbidity and mortality after diagnosis, and quality of life are presented. In the community, approximately 50% of patients with HF have HFpEF. Although the age-specific incidence of HF is decreasing, this trend is less dramatic for HFpEF than for HF with reduced ejection fraction (HFrEF). The risk of HFpEF increases sharply with age, but hypertension, obesity, and coronary artery disease are additional risk factors. After adjusting for age and other risk factors, the risk of HFpEF is fairly similar in men and women, whereas the risk of HFrEF is much lower in women. Multimorbidity is common in both types of HF, but slightly more severe in HFpEF. A majority of deaths in patients with HFpEF are cardiovascular, but the proportion of noncardiovascular deaths is higher in HFpEF than HFrEF.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Projected population burden of heart failure in the USA.
Figure 2: Projected population burden of common risk factors for heart failure in the USA.
Figure 3: Distribution of left ventricular ejection fraction in incident heart failure.
Figure 4: Prevalence of HFpEF and HFrEF by age and sex in a southwest European community-based cohort.
Figure 5: Trends in incident HFpEF and HFrEF in Olmsted County, Minnesota, USA.
Figure 6: Summary of incident HFpEF and HFrEF in Olmsted County, Minnesota, USA.
Figure 7: Atrial fibrillation in HFpEF.
Figure 8: Multimorbidity in heart failure in the community.
Figure 9: Comparative mortality in HFpEF and HFrEF from the MAGGIC study51.

Similar content being viewed by others

References

  1. Heidenreich, P. A. et al. Forecasting the impact of heart failure in the United States: a policy statement from the American Heart Association. Circ. Heart Fail. 6, 606–619 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Ponikowski, P. et al. 2016 ESC guidelines for the diagnosis and treatment of acute and chronic heart failure: the task force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology (ESC). Developed with the special contribution of the Heart Failure Association (HFA) of the ESC. Eur. Heart J. 37, 2129–2200 (2016).

    PubMed  Google Scholar 

  3. Yancy, C. W. et al. 2013 ACCF/AHA guideline for the management of heart failure: a report of the American College of Cardiology Foundation/American Heart Association Task Force on practice guidelines. Circulation 128, e240–e327 (2013).

    PubMed  Google Scholar 

  4. Heidenreich, P. A. et al. Forecasting the future of cardiovascular disease in the United States: a policy statement from the American Heart Association. Circulation 123, 933–944 (2011).

    PubMed  Google Scholar 

  5. Colby, S. L. & Ortman, J. M. Projections of the size and composition of the U.S. population 2014 to 2060. U.S. Department of Commerce: Economics and Statistics Administration: U.S. Census Bureau https://www.census.gov/content/dam/Census/library/publications/2015/demo/p25-1143.pdf (2015).

    Google Scholar 

  6. Finkelstein, E. A. et al. Obesity and severe obesity forecasts through 2030. Am. J. Prev. Med. 42, 563–570 (2012).

    PubMed  Google Scholar 

  7. Boyle, J. P., Thompson, T. J., Gregg, E. W., Barker, L. E. & Williamson, D. F. Projection of the year 2050 burden of diabetes in the US adult population: dynamic modeling of incidence, mortality, and prediabetes prevalence. Popul. Health Metr. 8, 29 (2010).

    PubMed  PubMed Central  Google Scholar 

  8. Borlaug, B. A. & Redfield, M. M. Diastolic and systolic heart failure are distinct phenotypes within the heart failure spectrum. Circulation 123, 2006–2013 (2011).

    PubMed  PubMed Central  Google Scholar 

  9. Paulus, W. J. & Tschope, C. A novel paradigm for heart failure with preserved ejection fraction: comorbidities drive myocardial dysfunction and remodeling through coronary microvascular endothelial inflammation. J. Am. Coll. Cardiol. 62, 263–271 (2013).

    PubMed  Google Scholar 

  10. McMurray, J. J. Clinical practice. Systolic heart failure. N. Engl. J. Med. 362, 228–238 (2010).

    CAS  PubMed  Google Scholar 

  11. Redfield, M. M. Heart failure with preserved ejection fraction. N. Engl. J. Med. 375, 1868–1877 (2016).

    PubMed  Google Scholar 

  12. Dunlay, S. M., Roger, V. L., Weston, S. A., Jiang, R. & Redfield, M. M. Longitudinal changes in ejection fraction in heart failure patients with preserved and reduced ejection fraction. Circ. Heart Fail. 5, 720–726 (2012).

    PubMed  PubMed Central  Google Scholar 

  13. Lam, C. S. et al. Cardiac structure and ventricular-vascular function in persons with heart failure and preserved ejection fraction from Olmsted County, Minnesota. Circulation 115, 1982–1990 (2007).

    PubMed  PubMed Central  Google Scholar 

  14. Maurer, M. S. et al. Ventricular structure and function in hypertensive participants with heart failure and a normal ejection fraction: the Cardiovascular Health Study. J. Am. Coll. Cardiol. 49, 972–981 (2007).

    PubMed  Google Scholar 

  15. Anjan, V. Y. et al. Prevalence, clinical phenotype, and outcomes associated with normal B-type natriuretic peptide levels in heart failure with preserved ejection fraction. Am. J. Cardiol. 110, 870–876 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Borlaug, B. A., Nishimura, R. A., Sorajja, P., Lam, C. S. & Redfield, M. M. Exercise hemodynamics enhance diagnosis of early heart failure with preserved ejection fraction. Circ. Heart Fail. 3, 588–595 (2010).

    PubMed  PubMed Central  Google Scholar 

  17. Obokata, M. et al. The role of diastolic stress testing in the evaluation for HFpEF: a simultaneous invasive-echocardiographic study. Circulation 135, 825–838 (2016).

    PubMed  PubMed Central  Google Scholar 

  18. Costello-Boerrigter, L. C. et al. Amino-terminal pro-B-type natriuretic peptide and B-type natriuretic peptide in the general community: determinants and detection of left ventricular dysfunction. J. Am. Coll. Cardiol. 47, 345–353 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Redfield, M. M. et al. Plasma brain natriuretic peptide concentration: impact of age and gender. J. Am. Coll. Cardiol. 40, 976–982 (2002).

    CAS  PubMed  Google Scholar 

  20. Richards, M. et al. Atrial fibrillation impairs the diagnostic performance of cardiac natriuretic peptides in dyspneic patients: results from the BACH Study (Biomarkers in ACute Heart Failure). JACC Heart Fail. 1, 192–199 (2013).

    PubMed  Google Scholar 

  21. Redfield, M. M. et al. Burden of systolic and diastolic ventricular dysfunction in the community: appreciating the scope of the heart failure epidemic. JAMA 289, 194–202 (2003).

    PubMed  Google Scholar 

  22. McKee, P. A., Castelli, W. P., McNamara, P. M. & Kannel, W. B. The natural history of congestive heart failure: the Framingham study. N. Engl. J. Med. 285, 1441–1446 (1971).

    CAS  PubMed  Google Scholar 

  23. Eriksson, H. et al. Cardiac and pulmonary causes of dyspnoea — validation of a scoring test for clinical-epidemiological use: the Study of Men Born in 1913. Eur. Heart J. 8, 1007–1014 (1987).

    CAS  PubMed  Google Scholar 

  24. Carlson, K. J., Lee, D. C., Goroll, A. H., Leahy, M. & Johnson, R. A. An analysis of physicians' reasons for prescribing long-term digitalis therapy in outpatients. J. Chron. Dis. 38, 733–739 (1985).

    CAS  PubMed  Google Scholar 

  25. Di Bari, M. et al. The diagnosis of heart failure in the community. Comparative validation of four sets of criteria in unselected older adults: the ICARe Dicomano Study. J. Am. Coll. Cardiol. 44, 1601–1608 (2004).

    PubMed  Google Scholar 

  26. Bursi, F. et al. Systolic and diastolic heart failure in the community. JAMA 296, 2209–2216 (2006).

    CAS  PubMed  Google Scholar 

  27. Pakhomov, S. V., Buntrock, J. & Chute, C. G. Prospective recruitment of patients with congestive heart failure using an ad-hoc binary classifier. J. Biomed. Inform. 38, 145–153 (2005).

    PubMed  Google Scholar 

  28. Bielinski, S. J. et al. A robust e-epidemiology tool in phenotyping heart failure with differentiation for preserved and reduced ejection fraction: the Electronic Medical Records and Genomics (eMERGE) network. J. Cardiovasc. Transl. Res. 8, 475–483 (2015).

    PubMed  PubMed Central  Google Scholar 

  29. Blecker, S. et al. Comparison of approaches for heart failure case identification from electronic health record data. JAMA Cardiol. 1, 1014–1020 (2016).

    PubMed  PubMed Central  Google Scholar 

  30. Ceia, F. et al. Prevalence of chronic heart failure in Southwestern Europe: the EPICA study. Eur. J. Heart Fail. 4, 531–539 (2002).

    PubMed  Google Scholar 

  31. Brouwers, F. P. et al. Incidence and epidemiology of new onset heart failure with preserved versus reduced ejection fraction in a community-based cohort: 11-year follow-up of PREVEND. Eur. Heart J. 34, 1424–1431 (2013).

    CAS  PubMed  Google Scholar 

  32. Gottdiener, J. S. et al. Outcome of congestive heart failure in elderly persons: influence of left ventricular systolic function. The Cardiovascular Health Study. Ann. Intern. Med. 137, 631–639 (2002).

    PubMed  Google Scholar 

  33. Philbin, E. F., Rocco, T. A. Jr, Lindenmuth, N. W., Ulrich, K. & Jenkins, P. L. Systolic versus diastolic heart failure in community practice: clinical features, outcomes, and the use of angiotensin-converting enzyme inhibitors. Am. J. Med. 109, 605–613 (2000).

    CAS  PubMed  Google Scholar 

  34. Owan, T. E. et al. Trends in prevalence and outcome of heart failure with preserved ejection fraction. N. Engl. J. Med. 355, 251–259 (2006).

    CAS  PubMed  Google Scholar 

  35. Yancy, C. W. et al. Clinical presentation, management, and in-hospital outcomes of patients admitted with acute decompensated heart failure with preserved systolic function: a report from the Acute Decompensated Heart Failure National Registry (ADHERE) Database. J. Am. Coll. Cardiol. 47, 76–84 (2006).

    PubMed  Google Scholar 

  36. Gurwitz, J. H. et al. Contemporary prevalence and correlates of incident heart failure with preserved ejection fraction. Am. J. Med. 126, 393–400 (2013).

    PubMed  PubMed Central  Google Scholar 

  37. Gustafsson, F. et al. Long-term survival in patients hospitalized with congestive heart failure: relation to preserved and reduced left ventricular systolic function. Eur. Heart J. 24, 863–870 (2003).

    PubMed  Google Scholar 

  38. Lenzen, M. J. et al. Differences between patients with a preserved and a depressed left ventricular function: a report from the EuroHeart Failure Survey. Eur. Heart J. 25, 1214–1220 (2004).

    CAS  PubMed  Google Scholar 

  39. MacCarthy, P. A. et al. Prognosis in heart failure with preserved left ventricular systolic function: prospective cohort study. BMJ 327, 78–79 (2003).

    PubMed  PubMed Central  Google Scholar 

  40. Bhatia, R. S. et al. Outcome of heart failure with preserved ejection fraction in a population-based study. N. Engl. J. Med. 355, 260–269 (2006).

    CAS  PubMed  Google Scholar 

  41. Gerber, Y. et al. A contemporary appraisal of the heart failure epidemic in Olmsted County, Minnesota, 2000 to 2010. JAMA Intern. Med. 175, 996–1004 (2015).

    PubMed  PubMed Central  Google Scholar 

  42. St Sauver, J. L. et al. Generalizability of epidemiological findings and public health decisions: an illustration from the Rochester Epidemiology Project. Mayo Clin. Proc. 87, 151–160 (2012).

    PubMed  PubMed Central  Google Scholar 

  43. Ho, J. E. et al. Predicting heart failure with preserved and reduced ejection fraction: the International Collaboration on Heart Failure Subtypes. Circ. Heart Fail. 9, e003116 (2016).

    PubMed  Google Scholar 

  44. Devereux, R. B. et al. Congestive heart failure despite normal left ventricular systolic function in a population-based sample: the Strong Heart Study. Am. J. Cardiol. 86, 1090–1096 (2000).

    CAS  PubMed  Google Scholar 

  45. Fonarow, G. C. et al. Characteristics, treatments, and outcomes of patients with preserved systolic function hospitalized for heart failure: a report from the OPTIMIZE-HF registry. J. Am. Coll. Cardiol. 50, 768–777 (2007).

    PubMed  Google Scholar 

  46. Ho, J. E. et al. Predictors of new-onset heart failure: differences in preserved versus reduced ejection fraction. Circ. Heart Fail. 6, 279–286 (2013).

    PubMed  Google Scholar 

  47. Senni, M. et al. Congestive heart failure in the community: a study of all incident cases in Olmsted County, Minnesota, in 1991. Circulation 98, 2282–2289 (1998).

    CAS  PubMed  Google Scholar 

  48. Lee, D. S. et al. Relation of disease pathogenesis and risk factors to heart failure with preserved or reduced ejection fraction: insights from the framingham heart study of the national heart, lung, and blood institute. Circulation 119, 3070–3077 (2009).

    PubMed  PubMed Central  Google Scholar 

  49. Silverman, M. G. et al. Impact of race, ethnicity, and multimodality biomarkers on the incidence of new-onset heart failure with preserved ejection fraction (from the Multi-Ethnic Study of Atherosclerosis). Am. J. Cardiol. 117, 1474–1481 (2016).

    PubMed  PubMed Central  Google Scholar 

  50. Eaton, C. B. et al. Risk factors for incident hospitalized heart failure with preserved versus reduced ejection fraction in a multiracial cohort of postmenopausal women. Circ. Heart Fail. 9, e002883 (2016).

    PubMed  PubMed Central  Google Scholar 

  51. Meta-analysis Global Group in Chronic Heart Failure. The survival of patients with heart failure with preserved or reduced left ventricular ejection fraction: an individual patient data meta-analysis. Eur. Heart J. 33, 1750–1757 (2012).

  52. Lam, C. S., Donal, E., Kraigher-Krainer, E. & Vasan, R. S. Epidemiology and clinical course of heart failure with preserved ejection fraction. Eur. J. Heart Fail. 13, 18–28 (2011).

    PubMed  Google Scholar 

  53. Zakeri, R., Chamberlain, A. M., Roger, V. L. & Redfield, M. M. Temporal relationship and prognostic significance of atrial fibrillation in heart failure patients with preserved ejection fraction: a community-based study. Circulation 128, 1085–1093 (2013).

    PubMed  PubMed Central  Google Scholar 

  54. Chamberlain, A. M. et al. Multimorbidity in heart failure: a community perspective. Am. J. Med. 128, 38–45 (2015).

    PubMed  Google Scholar 

  55. Shah, S. J., Katz, D. H. & Deo, R. C. Phenotypic spectrum of heart failure with preserved ejection fraction. Heart Fail. Clin. 10, 407–418 (2014).

    PubMed  PubMed Central  Google Scholar 

  56. Shah, S. J. et al. Phenotype-specific treatment of heart failure with preserved ejection fraction: a multiorgan roadmap. Circulation 134, 73–90 (2016).

    PubMed  PubMed Central  Google Scholar 

  57. Kao, D. P. et al. Characterization of subgroups of heart failure patients with preserved ejection fraction with possible implications for prognosis and treatment response. Eur. J. Heart Fail. 17, 925–935 (2015).

    PubMed  Google Scholar 

  58. Lindman, B. R. et al. Cardiovascular phenotype in HFpEF patients with or without diabetes: a RELAX trial ancillary study. J. Am. Coll. Cardiol. 64, 541–549 (2014).

    PubMed  PubMed Central  Google Scholar 

  59. Shah, S. J. et al. Phenomapping for novel classification of heart failure with preserved ejection fraction. Circulation 131, 269–279 (2015).

    PubMed  Google Scholar 

  60. Gonzalez-Lopez, E. et al. Wild-type transthyretin amyloidosis as a cause of heart failure with preserved ejection fraction. Eur. Heart J. 36, 2585–2594 (2015).

    CAS  PubMed  Google Scholar 

  61. Mohammed, S. F. et al. Left ventricular amyloid deposition in patients with heart failure and preserved ejection fraction. JACC Heart Fail. 2, 113–122 (2014).

    PubMed  PubMed Central  Google Scholar 

  62. Lam, C. S. et al. Pulmonary hypertension in heart failure with preserved ejection fraction: a community-based study. J. Am. Coll. Cardiol. 53, 1119–1126 (2009).

    PubMed  PubMed Central  Google Scholar 

  63. Bursi, F. et al. Pulmonary pressures and death in heart failure: a community study. J. Am. Coll. Cardiol. 59, 222–231 (2012).

    PubMed  PubMed Central  Google Scholar 

  64. Leung, C. C., Moondra, V., Catherwood, E. & Andrus, B. W. Prevalence and risk factors of pulmonary hypertension in patients with elevated pulmonary venous pressure and preserved ejection fraction. Am. J. Cardiol. 106, 284–286 (2010).

    PubMed  Google Scholar 

  65. Adamson, P. B. et al. Wireless pulmonary artery pressure monitoring guides management to reduce decompensation in heart failure with preserved ejection fraction. Circ. Heart Fail. 7, 935–944 (2014).

    PubMed  Google Scholar 

  66. Melenovsky, V., Hwang, S. J., Lin, G., Redfield, M. M. & Borlaug, B. A. Right heart dysfunction in heart failure with preserved ejection fraction. Eur. Heart J. 35, 3452–3462 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Guazzi, M., Vicenzi, M., Arena, R. & Guazzi, M. D. Pulmonary hypertension in heart failure with preserved ejection fraction: a target of phosphodiesterase-5 inhibition in a 1-year study. Circulation 124, 164–174 (2011).

    CAS  PubMed  Google Scholar 

  68. Hoendermis, E. S. et al. Effects of sildenafil on invasive haemodynamics and exercise capacity in heart failure patients with preserved ejection fraction and pulmonary hypertension: a randomized controlled trial. Eur. Heart J. 36, 2565–2573 (2015).

    CAS  PubMed  Google Scholar 

  69. Opitz, C. F. et al. Pre-capillary, combined, and post-capillary pulmonary hypertension: a pathophysiological continuum. J. Am. Coll. Cardiol. 68, 368–378 (2016).

    PubMed  Google Scholar 

  70. Shapiro, B. P., McGoon, M. D. & Redfield, M. M. Unexplained pulmonary hypertension in elderly patients. Chest 131, 94–100 (2007).

    PubMed  Google Scholar 

  71. Fawzy, M. E. et al. Prevalence and fate of severe pulmonary hypertension in 559 consecutive patients with severe rheumatic mitral stenosis undergoing mitral balloon valvotomy. J. Heart Valve Dis. 13, 942–947 (2004).

    PubMed  Google Scholar 

  72. Edelmann, F. et al. Effect of spironolactone on diastolic function and exercise capacity in patients with heart failure with preserved ejection fraction: the Aldo-DHF randomized controlled trial. JAMA 309, 781–791 (2013).

    CAS  PubMed  Google Scholar 

  73. Redfield, M. M. et al. Effect of phosphodiesterase-5 inhibition on exercise capacity and clinical status in heart failure with preserved ejection fraction: a randomized clinical trial. JAMA 309, 1268–1277 (2013).

    CAS  PubMed  Google Scholar 

  74. Yusuf, S. et al. Effects of candesartan in patients with chronic heart failure and preserved left-ventricular ejection fraction: the CHARM-Preserved Trial. Lancet 362, 777–781 (2003).

    CAS  PubMed  Google Scholar 

  75. Zile, M. R. et al. Mode of death in patients with heart failure and a preserved ejection fraction: results from the Irbesartan in Heart Failure With Preserved Ejection Fraction Study (I-Preserve) trial. Circulation 121, 1393–1405 (2010).

    PubMed  Google Scholar 

  76. Massie, B. M. et al. Irbesartan in patients with heart failure and preserved ejection fraction. N. Engl. J. Med. 359, 2456–2467 (2008).

    CAS  PubMed  Google Scholar 

  77. Cleland, J. G. et al. The perindopril in elderly people with chronic heart failure (PEP-CHF) study. Eur. Heart J. 27, 2338–2345 (2006).

    CAS  PubMed  Google Scholar 

  78. Pitt, B. et al. Spironolactone for heart failure with preserved ejection fraction. N. Engl. J. Med. 370, 1383–1392 (2014).

    CAS  PubMed  Google Scholar 

  79. Perez de Isla, L. et al. Diastolic heart failure in the elderly: in-hospital and long-term outcome after the first episode. Int. J. Cardiol. 134, 265–270 (2009).

    PubMed  Google Scholar 

  80. Tribouilloy, C. et al. Prognosis of heart failure with preserved ejection fraction: a 5 year prospective population-based study. Eur. Heart J. 29, 339–347 (2008).

    PubMed  Google Scholar 

  81. Henkel, D. M., Redfield, M. M., Weston, S. A., Gerber, Y. & Roger, V. L. Death in heart failure: a community perspective. Circ. Heart Fail. 1, 91–97 (2008).

    PubMed  PubMed Central  Google Scholar 

  82. Somaratne, J. B. et al. The prognostic significance of heart failure with preserved left ventricular ejection fraction: a literature-based meta-analysis. Eur. J. Heart Fail. 11, 855–862 (2009).

    PubMed  Google Scholar 

  83. Steinberg, B. A. et al. Trends in patients hospitalized with heart failure and preserved left ventricular ejection fraction: prevalence, therapies, and outcomes. Circulation 126, 65–75 (2012).

    PubMed  Google Scholar 

  84. Murad, K. et al. Burden of comorbidities and functional and cognitive impairments in elderly patients at the initial diagnosis of heart failure and their impact on total mortality: the Cardiovascular Health Study. JACC Heart Fail. 3, 542–550 (2015).

    PubMed  PubMed Central  Google Scholar 

  85. Mohammed, S. F. et al. Right ventricular function in heart failure with preserved ejection fraction: a community-based study. Circulation 130, 2310–2320 (2014).

    PubMed  PubMed Central  Google Scholar 

  86. Aschauer, S. et al. Modes of death in patients with heart failure and preserved ejection fraction. Int. J. Cardiol. 228, 422–426 (2017).

    PubMed  Google Scholar 

  87. Senni, M. et al. In-hospital and 1-year outcomes of acute heart failure patients according to presentation (de novo versus worsening) and ejection fraction. Results from IN-HF Outcome Registry. Int. J. Cardiol. 173, 163–169 (2014).

    PubMed  Google Scholar 

  88. Cheng, R. K. et al. Outcomes in patients with heart failure with preserved, borderline, and reduced ejection fraction in the Medicare population. Am. Heart J. 168, 721–730 (2014).

    PubMed  Google Scholar 

  89. Vaduganathan, M. et al. Mode of death in heart failure with preserved ejection fraction. J. Am. Coll. Cardiol. 69, 556–569 (2017).

    PubMed  Google Scholar 

  90. Lee, D. S. et al. A systematic assessment of causes of death after heart failure onset in the community: impact of age at death, time period, and left ventricular systolic dysfunction. Circ. Heart Fail. 4, 36–43 (2011).

    PubMed  Google Scholar 

  91. Ahmed, A. et al. Effects of digoxin on morbidity and mortality in diastolic heart failure: the ancillary digitalis investigation group trial. Circulation 114, 397–403 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Vaduganathan, M., Patel, R. B., Shah, S. J. & Butler, J. Sudden cardiac death in heart failure with preserved ejection fraction: a target for therapy? Heart Fail. Rev. 21, 455–462 (2016).

    CAS  PubMed  Google Scholar 

  93. Levy, W. C. et al. The Seattle Heart Failure Model: prediction of survival in heart failure. Circulation 113, 1424–1433 (2006).

    PubMed  Google Scholar 

  94. Shadman, R. et al. A novel method to predict the proportional risk of sudden cardiac death in heart failure: derivation of the Seattle Proportional Risk Model. Heart Rhythm 12, 2069–2077 (2015).

    PubMed  Google Scholar 

  95. Nichols, G. A., Reynolds, K., Kimes, T. M., Rosales, A. G. & Chan, W. W. Comparison of risk of re-hospitalization, all-cause mortality, and medical care resource utilization in patients with heart failure and preserved versus reduced ejection fraction. Am. J. Cardiol. 116, 1088–1092 (2015).

    PubMed  Google Scholar 

  96. Bello, N. A. et al. Influence of previous heart failure hospitalization on cardiovascular events in patients with reduced and preserved ejection fraction. Circ. Heart Fail. 7, 590–595 (2014).

    PubMed  PubMed Central  Google Scholar 

  97. Carson, P. E. et al. The hospitalization burden and post-hospitalization mortality risk in heart failure with preserved ejection fraction: results from the I-PRESERVE trial (Irbesartan in Heart Failure and Preserved Ejection Fraction). JACC Heart Fail. 3, 429–441 (2015).

    PubMed  Google Scholar 

  98. Vader, J. M. et al. Timing and causes of readmission after acute heart failure hospitalization — insights from the Heart Failure Network Trials. J. Card. Fail. 22, 875–883 (2016).

    PubMed  PubMed Central  Google Scholar 

  99. Dunlay, S. M. et al. Hospitalizations after heart failure diagnosis a community perspective. J. Am. Coll. Cardiol. 54, 1695–1702 (2009).

    PubMed  PubMed Central  Google Scholar 

  100. Lewis, E. F. et al. Impact of spironolactone on longitudinal changes in health-related quality of life in the Treatment of Preserved Cardiac Function Heart Failure With an Aldosterone Antagonist trial. Circ. Heart Fail. 9, e001937 (2016).

    CAS  PubMed  Google Scholar 

  101. Joseph, S. M. et al. Comparable performance of the Kansas City Cardiomyopathy Questionnaire in patients with heart failure with preserved and reduced ejection fraction. Circ. Heart Fail. 6, 1139–1146 (2013).

    PubMed  PubMed Central  Google Scholar 

  102. Bekfani, T. et al. Sarcopenia in patients with heart failure with preserved ejection fraction: impact on muscle strength, exercise capacity and quality of life. Int. J. Cardiol. 222, 41–46 (2016).

    PubMed  Google Scholar 

  103. O'Meara, E. et al. Patient perception of the effect of treatment with candesartan in heart failure: results of the candesartan in heart failure: assessment of reduction in mortality and morbidity (CHARM) programme. Eur. J. Heart Fail. 7, 650–656 (2005).

    CAS  PubMed  Google Scholar 

  104. Nolte, K. et al. Effects of exercise training on different quality of life dimensions in heart failure with preserved ejection fraction: the Ex-DHF-P trial. Eur. J. Prev. Cardiol. 22, 582–593 (2015).

    PubMed  Google Scholar 

  105. Pandey, A. et al. Exercise training in patients with heart failure and preserved ejection fraction: meta-analysis of randomized control trials. Circ. Heart Fail. 8, 33–40 (2015).

    PubMed  Google Scholar 

  106. Austin, B. A. et al. Systolic function as a predictor of mortality and quality of life in long-term survivors with heart failure. Clin. Cardiol. 31, 119–124 (2008).

    PubMed  PubMed Central  Google Scholar 

  107. Joyce, E. et al. Variable contribution of heart failure to quality of life in ambulatory heart failure with reduced, better, or preserved ejection fraction. JACC Heart Fail. 4, 184–193 (2016).

    PubMed  Google Scholar 

  108. Santhanakrishnan, R. et al. The Singapore Heart Failure Outcomes and Phenotypes (SHOP) study and Prospective Evaluation of Outcome in Patients with Heart Failure with Preserved Left Ventricular Ejection Fraction (PEOPLE) study: rationale and design. J. Card. Fail. 19, 156–162 (2013).

    PubMed  Google Scholar 

  109. Tschope, C. et al. High prevalence of cardiac parvovirus B19 infection in patients with isolated left ventricular diastolic dysfunction. Circulation 111, 879–886 (2005).

    CAS  PubMed  Google Scholar 

  110. Rosamond, W. D. et al. Classification of heart failure in the Atherosclerosis Risk in Communities (ARIC) study: a comparison of diagnostic criteria. Circ. Heart Fail. 5, 152–159 (2012).

    PubMed  PubMed Central  Google Scholar 

  111. Klapholz, M. et al. Hospitalization for heart failure in the presence of a normal left ventricular ejection fraction: results of the New York Heart Failure Registry. J. Am. Coll. Cardiol. 43, 1432–1438 (2004).

    PubMed  Google Scholar 

  112. Yip, G. W., Ho, P. P., Woo, K. S. & Sanderson, J. E. Comparison of frequencies of left ventricular systolic and diastolic heart failure in Chinese living in Hong Kong. Am. J. Cardiol. 84, 563–567 (1999).

    CAS  PubMed  Google Scholar 

  113. Psaty, B. M. et al. Methods of assessing prevalent cardiovascular disease in the Cardiovascular Health Study. Ann. Epidemiol. 5, 270–277 (1995).

    CAS  PubMed  Google Scholar 

  114. Dawber, T. R., Kannel, W. B. & Lyell, L. P. An approach to longitudinal studies in a community: the Framingham Study. Ann. NY Acad. Sci. 107, 539–556 (1963).

    CAS  PubMed  Google Scholar 

  115. Kannel, W. B., Feinleib, M., McNamara, P. M., Garrison, R. J. & Castelli, W. P. An investigation of coronary heart disease in families: the Framingham Offspring Study. Am. J. Epidemiol. 110, 281–290 (1979).

    CAS  PubMed  Google Scholar 

  116. Diercks, G. F. et al. Rationale, design, and baseline characteristics of a trial of prevention of cardiovascular and renal disease with fosinopril and pravastatin in nonhypertensive, nonhypercholesterolemic subjects with microalbuminuria (the Prevention of REnal and Vascular ENdstage Disease Intervention Trial [PREVEND IT]). Am. J. Cardiol. 86, 635–638 (2000).

    CAS  PubMed  Google Scholar 

  117. Solomon, S. D. et al. Effect of candesartan on cause-specific mortality in heart failure patients: the Candesartan in Heart failure Assessment of Reduction in Mortality and morbidity (CHARM) program. Circulation 110, 2180–2183 (2004).

    CAS  PubMed  Google Scholar 

  118. Adabag, S., Smith, L. G., Anand, I. S., Berger, A. K. & Luepker, R. V. Sudden cardiac death in heart failure patients with preserved ejection fraction. J. Card. Fail. 18, 749–754 (2012).

    PubMed  Google Scholar 

  119. Hamaguchi, S. et al. Mode of death in patients with heart failure and reduced versus preserved ejection fraction: report from the registry of hospitalized heart failure patients. Circ. J. 76, 1662–1669 (2012).

    PubMed  Google Scholar 

Download references

Acknowledgements

S.M.D. is funded through an NIH K23 (K23 HL116643). M.M.R. is funded by the Mayo Foundation and the NIH (U10 HL 110262 and RO1 HL 105418).

Author information

Authors and Affiliations

Authors

Contributions

S.M.D. and M.M.R. researched data for the article, discussed its content, and wrote the manuscript. All the authors reviewed/edited the article before submission.

Corresponding author

Correspondence to Margaret M. Redfield.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dunlay, S., Roger, V. & Redfield, M. Epidemiology of heart failure with preserved ejection fraction. Nat Rev Cardiol 14, 591–602 (2017). https://doi.org/10.1038/nrcardio.2017.65

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrcardio.2017.65

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing