Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Imaging of coronary atherosclerosis — evolution towards new treatment strategies

Key Points

  • Advances in invasive and noninvasive imaging of the coronary arteries have progressed our understanding of the mechanisms underlying the precipitation of acute myocardial infarction, a leading cause of death worldwide

  • Imaging can provide assessments of luminal stenosis, plaque burden, plaque characteristics, disease activity, and ischaemia, generating complementary and potentially synergistic information about coronary atherosclerosis

  • Advances in imaging offer the potential to identify individuals at highest risk of myocardial infarction — the 'vulnerable patient'; these individuals might then be targeted with aggressive therapy to prevent future events

  • The next challenge is to demonstrate that these imaging techniques can have a beneficial and cost-effective effect on cardiovascular outcomes for patients with coronary artery disease

Abstract

Coronary atherosclerosis and the precipitation of acute myocardial infarction are highly complex processes, which makes accurate risk prediction challenging. Rapid developments in invasive and noninvasive imaging technologies now provide us with detailed, exquisite images of the coronary vasculature that allow direct investigation of a wide range of these processes. These modalities include sophisticated assessments of luminal stenoses and myocardial perfusion, complemented by novel measures of the atherosclerotic plaque burden, adverse plaque characteristics, and disease activity. Together, they can provide comprehensive, individualized assessments of coronary atherosclerosis as it occurs in patients. Not only can this information provide important pathological insights, but it can also potentially be used to guide personalized treatment decisions. In this Review, we describe the latest advances in both established and emerging imaging techniques, focusing on the strengths and weakness of each approach. Moreover, we discuss how these technological advances might be translated from attractive images into novel imaging strategies and definite improvements in clinical risk prediction and patient outcomes. This process will not be easy, and the many potential barriers and difficulties are also reviewed.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Imaging assessments of luminal stenosis, haemodynamic obstruction, and myocardial ischaemia in different patients.
Figure 2: Imaging of atherosclerotic plaque burden.
Figure 3: Imaging of adverse plaque characteristics.
Figure 4: Imaging of atherosclerotic disease activity.
Figure 5: Imaging pathway for the assessment of patients with chest pain.
Figure 6: Possible approach using multimodality imaging to risk stratify patients with atherosclerosis.

Similar content being viewed by others

References

  1. Yahagi, K. et al. Pathophysiology of native coronary, vein graft, and in-stent atherosclerosis. Nat. Rev. Cardiol. 13, 79–98 (2016).

    Article  CAS  PubMed  Google Scholar 

  2. Libby, P. Mechanisms of acute coronary syndromes and their implications for therapy. N. Engl. J. Med. 368, 2004–2013 (2013).

    Article  CAS  PubMed  Google Scholar 

  3. Brown, A. J. et al. Role of biomechanical forces in the natural history of coronary atherosclerosis. Nat. Rev. Cardiol. 13, 210–220 (2016).

    Article  PubMed  Google Scholar 

  4. Stary, H. C. et al. A definition of initial, fatty streak, and intermediate lesions of atherosclerosis. A report from the Committee on Vascular Lesions of the Council on Arteriosclerosis, American Heart Association. Circulation 89, 2462–2478 (1994).

    Article  CAS  PubMed  Google Scholar 

  5. Bentzon, J. F., Otsuka, F., Virmani, R. & Falk, E. Mechanisms of plaque formation and rupture. Circ. Res. 114, 1852–1866 (2014).

    Article  CAS  PubMed  Google Scholar 

  6. Aikawa, E. et al. Osteogenesis associates with inflammation in early-stage atherosclerosis evaluated by molecular imaging in vivo. Circulation 116, 2841–2850 (2007).

    Article  CAS  PubMed  Google Scholar 

  7. Proudfoot, D. et al. Apoptosis regulates human vascular calcification in vitro: evidence for initiation of vascular calcification by apoptotic bodies. Circ. Res. 87, 1055–1062 (2000).

    Article  CAS  PubMed  Google Scholar 

  8. Hutcheson, J. D. et al. Genesis and growth of extracellular-vesicle-derived microcalcification in atherosclerotic plaques. Nat. Mater. 15, 335–343 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Farb, A. et al. Coronary plaque erosion without rupture into a lipid core. A frequent cause of coronary thrombosis in sudden coronary death. Circulation 93, 1354–1363 (1996).

    Article  CAS  PubMed  Google Scholar 

  10. Sugiyama, S. et al. Hypochlorous acid, a macrophage product, induces endothelial apoptosis and tissue factor expression: involvement of myeloperoxidase-mediated oxidant in plaque erosion and thrombogenesis. Arterioscler. Thromb. Vasc. Biol. 24, 1309–1314 (2004).

    Article  CAS  PubMed  Google Scholar 

  11. Hachamovitch, R. et al. Incremental prognostic value of myocardial perfusion single photon emission computed tomography for the prediction of cardiac death: differential stratification for risk of cardiac death and myocardial infarction. Circulation 97, 535–543 (1998).

    Article  CAS  PubMed  Google Scholar 

  12. Hachamovitch, R., Hayes, S. W., Friedman, J. D., Cohen, I. & Berman, D. S. Comparison of the short-term survival benefit associated with revascularization compared with medical therapy in patients with no prior coronary artery disease undergoing stress myocardial perfusion single photon emission computed tomography. Circulation 107, 2900–2907 (2003).

    Article  PubMed  Google Scholar 

  13. Mock, M. B. et al. Survival of medically treated patients in the coronary artery surgery study (CASS) registry. Circulation 66, 562–568 (1982).

    Article  CAS  PubMed  Google Scholar 

  14. Emond, M. et al. Long-term survival of medically treated patients in the Coronary Artery Surgery Study (CASS) Registry. Circulation 90, 2645–2657 (1994).

    Article  CAS  PubMed  Google Scholar 

  15. Tonino, P. A. L. et al. Fractional flow reserve versus angiography for guiding percutaneous coronary intervention. N. Engl. J. Med. 360, 213–224 (2009).

    Article  CAS  PubMed  Google Scholar 

  16. Kern, M. J. & Samady, H. Current concepts of integrated coronary physiology in the catheterization laboratory. J. Am. Coll. Cardiol. 55, 173–185 (2010).

    Article  PubMed  Google Scholar 

  17. US National Library of Science. ClinicalTrials.govhttp://www.clinicaltrials.gov/ct2/show/NCT02328820 (2014).

  18. Miller, J. M. et al. Diagnostic performance of coronary angiography by 64-row CT. N. Engl. J. Med. 359, 2324–2336 (2008).

    Article  CAS  PubMed  Google Scholar 

  19. Vanhoenacker, P. K. et al. Diagnostic performance of multidetector CT angiography for assessment of coronary artery disease: meta-analysis. Radiology 244, 419–428 (2007).

    Article  PubMed  Google Scholar 

  20. Min, J. K. et al. Prognostic value of multidetector coronary computed tomographic angiography for prediction of all-cause mortality. J. Am. Coll. Cardiol. 50, 1161–1170 (2007).

    Article  PubMed  Google Scholar 

  21. Pundziute, G. et al. Prognostic value of multislice computed tomography coronary angiography in patients with known or suspected coronary artery disease. J. Am. Coll. Cardiol. 49, 62–70 (2007).

    Article  PubMed  Google Scholar 

  22. Gilard, M. et al. Midterm prognosis of patients with suspected coronary artery disease and normal multislice computed tomographic findings: a prospective management outcome study. Arch. Intern. Med. 167, 1686–1689 (2007).

    Article  PubMed  Google Scholar 

  23. Hadamitzky, M. et al. Prognostic value of coronary computed tomography angiography during 5 years of follow-up in patients with suspected coronary artery disease. Eur. Heart J. 34, 3277–3285 (2013).

    Article  PubMed  Google Scholar 

  24. Ostrom, M. P. et al. Mortality incidence and the severity of coronary atherosclerosis assessed by computed tomography angiography. J. Am. Coll. Cardiol. 52, 1335–1343 (2008).

    Article  PubMed  Google Scholar 

  25. Danad, I., Fayad, Z. A., Willemink, M. J. & Min, J. K. New applications of cardiac computed tomography: dual-energy, spectral, and molecular CT imaging. JACC Cardiovasc. Imaging 8, 710–723 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  26. Andreini, D. et al. Diagnostic accuracy of rapid kilovolt peak-switching dual-energy CT coronary angiography in patients with a high calcium score. JACC Cardiovasc. Imaging 8, 746–748 (2015).

    Article  PubMed  Google Scholar 

  27. Budoff, M. J. et al. Diagnostic performance of 64-multidetector row coronary computed tomographic angiography for evaluation of coronary artery stenosis in individuals without known coronary artery disease: results from the prospective multicenter ACCURACY (Assessment by Coronary Computed Tomographic Angiography of Individuals Undergoing Invasive Coronary Angiography) trial. J. Am. Coll. Cardiol. 52, 1724–1732 (2008).

    Article  PubMed  Google Scholar 

  28. Meijboom, W. B. et al. Diagnostic accuracy of 64-slice computed tomography coronary angiography: a prospective, multicenter, multivendor study. J. Am. Coll. Cardiol. 52, 2135–2144 (2008).

    Article  PubMed  Google Scholar 

  29. Hulten, E. et al. Outcomes after coronary computed tomography angiography in the emergency department: a systematic review and meta-analysis of randomized, controlled trials. J. Am. Coll. Cardiol. 61, 880–892 (2013).

    Article  PubMed  Google Scholar 

  30. Douglas, P. S. et al. Outcomes of anatomical versus functional testing for coronary artery disease. N. Engl. J. Med. 372, 1291–1300 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. SCOT-HEART investigators. CT coronary angiography in patients with suspected angina due to coronary heart disease (SCOT-HEART): an open-label, parallel-group, multicentre trial. Lancet 385, 2383–2391 (2015).

  32. Williams, M. C. et al. Use of coronary computed tomographic angiography to guide management of patients with coronary disease. J. Am. Coll. Cardiol. 67, 1759–1768 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  33. Li, S. et al. The diagnostic performance of CT-derived fractional flow reserve for evaluation of myocardial ischaemia confirmed by invasive fractional flow reserve: a meta-analysis. Clin. Radiol. 70, 476–486 (2015).

    Article  CAS  PubMed  Google Scholar 

  34. Douglas, P. S. et al. Clinical outcomes of fractional flow reserve by computed tomographic angiography-guided diagnostic strategies versus usual care in patients with suspected coronary artery disease: the prospective longitudinal trial of FFRct: outcome and resource impacts study. Eur. Heart J. 36, 3359–3367 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Kim, K.-H. et al. A novel noninvasive technology for treatment planning using virtual coronary stenting and computed tomography-derived computed fractional flow reserve. JACC Cardiovasc. Interv. 7, 72–78 (2014).

    Article  PubMed  Google Scholar 

  36. Dweck, M. R., Puntman, V., Vesey, A. T., Fayad, Z. A. & Nagel, E. MR imaging of coronary arteries and plaques. JACC. Cardiovasc. Imaging 9, 306–316 (2016).

    Article  PubMed  Google Scholar 

  37. Yonezawa, M. et al. Quantitative analysis of 1.5-T whole-heart coronary MR angiograms obtained with 32-channel cardiac coils: a comparison with conventional quantitative coronary angiography. Radiology 271, 356–364 (2014).

    Article  PubMed  Google Scholar 

  38. American College of Cardiology Foundation Task Force on Expert Consensus Documents et al. ACCF/ACR/AHA/NASCI/SCMR 2010 expert consensus document on cardiovascular magnetic resonance: a report of the American College of Cardiology Foundation Task Force on Expert Consensus Documents. J. Am. Coll. Cardiol. 55, 2614–2662 (2010).

  39. Flotats, A. et al. Hybrid cardiac imaging: SPECT/CT and PET/CT. A joint position statement by the European Association of Nuclear Medicine (EANM), the European Society of Cardiac Radiology (ESCR) and the European Council of Nuclear Cardiology (ECNC). Eur. J. Nucl. Med. Mol. Imaging 38, 201–212 (2011).

    Article  PubMed  Google Scholar 

  40. Santana, C. A. et al. Diagnostic performance of fusion of myocardial perfusion imaging (MPI) and computed tomography coronary angiography. J. Nucl. Cardiol. 16, 201–211 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  41. Sato, A. et al. Incremental value of combining 64-slice computed tomography angiography with stress nuclear myocardial perfusion imaging to improve noninvasive detection of coronary artery disease. J. Nucl. Cardiol. 17, 19–26 (2010).

    Article  PubMed  Google Scholar 

  42. Gaemperli, O., Bengel, F. M. & Kaufmann, P. A. Cardiac hybrid imaging. Eur. Heart J. 32, 2100–2108 (2011).

    Article  PubMed  Google Scholar 

  43. van Werkhoven, J. M. et al. Prognostic value of multislice computed tomography and gated single-photon emission computed tomography in patients with suspected coronary artery disease. J. Am. Coll. Cardiol. 53, 623–632 (2009).

    Article  PubMed  Google Scholar 

  44. Greenwood, J. P. et al. Cardiovascular magnetic resonance and single-photon emission computed tomography for diagnosis of coronary heart disease (CE-MARC): a prospective trial. Lancet 379, 453–460 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  45. Topol, E. J. & Nissen, S. E. Our preoccupation with coronary luminology. The dissociation between clinical and angiographic findings in ischemic heart disease. Circulation 92, 2333–2342 (1995).

    Article  CAS  PubMed  Google Scholar 

  46. Ambrose, J. A. et al. Angiographic progression of coronary artery disease and the development of myocardial infarction. J. Am. Coll. Cardiol. 12, 56–62 (1988).

    Article  CAS  PubMed  Google Scholar 

  47. Falk, E., Shah, P. K. & Fuster, V. Coronary plaque disruption. Circulation 92, 657–671 (1995).

    Article  CAS  PubMed  Google Scholar 

  48. Alderman, E. L. et al. Five-year angiographic follow-up of factors associated with progression of coronary artery disease in the Coronary Artery Surgery Study (CASS). CASS Participating Investigators and Staff. J. Am. Coll. Cardiol. 22, 1141–1154 (1993).

    Article  CAS  PubMed  Google Scholar 

  49. Boden, W. E. et al. Optimal medical therapy with or without PCI for stable coronary disease. N. Engl. J. Med. 356, 1503–1516 (2007).

    Article  CAS  PubMed  Google Scholar 

  50. BARI 2D Study Group. A randomized trial of therapies for type 2 diabetes and coronary artery disease. N. Engl. J. Med. 360, 2503–2515 (2009).

  51. De Bruyne, B. et al. Fractional flow reserve-guided PCI versus medical therapy in stable coronary disease. N. Engl. J. Med. 367, 991–1001 (2012).

    Article  CAS  PubMed  Google Scholar 

  52. De Bruyne, B. et al. Fractional flow reserve-guided PCI for stable coronary artery disease. N. Engl. J. Med. 371, 1208–1217 (2014).

    Article  CAS  PubMed  Google Scholar 

  53. Park, H.-B. et al. Atherosclerotic plaque characteristics by CT angiography identify coronary lesions that cause ischemia: a direct comparison to fractional flow reserve. JACC. Cardiovasc. Imaging 8, 1–10 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  54. Dey, D. et al. Relationship between quantitative adverse plaque features from coronary computed tomography angiography and downstream impaired myocardial flow reserve by 13N-ammonia positron emission tomography: a pilot study. Circ. Cardiovasc. Imaging 8, e003255 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  55. Hermiller, J. B. et al. Unrecognized left main coronary artery disease in patients undergoing interventional procedures. Am. J. Cardiol. 71, 173–176 (1993).

    Article  CAS  PubMed  Google Scholar 

  56. Nicholls, S. J. et al. Intravascular ultrasound-derived measures of coronary atherosclerotic plaque burden and clinical outcome. J. Am. Coll. Cardiol. 55, 2399–2407 (2010).

    Article  PubMed  Google Scholar 

  57. Stone, P. H. et al. Prediction of progression of coronary artery disease and clinical outcomes using vascular profiling of endothelial shear stress and arterial plaque characteristics: the PREDICTION Study. Circulation 126, 172–181 (2012).

    Article  PubMed  Google Scholar 

  58. Nissen, S. E. et al. Effect of intensive compared with moderate lipid-lowering therapy on progression of coronary atherosclerosis: a randomized controlled trial. JAMA 291, 1071–1080 (2004).

    Article  CAS  PubMed  Google Scholar 

  59. Erbel, R. et al. Coronary risk stratification, discrimination, and reclassification improvement based on quantification of subclinical coronary atherosclerosis: the Heinz Nixdorf Recall study. J. Am. Coll. Cardiol. 56, 1397–1406 (2010).

    Article  PubMed  Google Scholar 

  60. Yeboah, J. et al. Comparison of novel risk markers for improvement in cardiovascular risk assessment in intermediate-risk individuals. JAMA 308, 788–795 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Nasir, K. et al. Implications of coronary artery calcium testing among statin candidates according to American College of Cardiology/American Heart Association Cholesterol Management Guidelines: MESA (Multi-Ethnic Study of Atherosclerosis). J. Am. Coll. Cardiol. 66, 1657–1668 (2015).

    Article  CAS  PubMed  Google Scholar 

  62. Berman, D. S., Arnson, Y. & Rozanski, A. Coronary artery calcium scanning: the Agatston score and beyond. JACC. Cardiovasc. Imaging (in the press).

  63. Baber, U. et al. Prevalence, impact, and predictive value of detecting subclinical coronary and carotid atherosclerosis in asymptomatic adults: the BioImage study. J. Am. Coll. Cardiol. 65, 1065–1074 (2015).

    Article  PubMed  Google Scholar 

  64. García-García, H. M., Gogas, B. D., Serruys, P. W. & Bruining, N. IVUS-based imaging modalities for tissue characterization: similarities and differences. Int. J. Cardiovasc. Imaging 27, 215–224 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  65. Obaid, D. R. et al. Atherosclerotic plaque composition and classification identified by coronary computed tomography. Circ. Cardiovasc. Imaging 6, 655–664 (2013).

    Article  PubMed  Google Scholar 

  66. Stone, G. W. et al. A prospective natural-history study of coronary atherosclerosis. N. Engl. J. Med. 364, 226–235 (2011).

    Article  CAS  PubMed  Google Scholar 

  67. Calvert, P. A. et al. Association between IVUS findings and adverse outcomes in patients with coronary artery disease the VIVA (VH-IVUS in Vulnerable Atherosclerosis) Study. JACC Cardiovasc. Imaging 4, 894–901 (2011).

    Article  PubMed  Google Scholar 

  68. Cheng, J. M. et al. In vivo detection of high-risk coronary plaques by radiofrequency intravascular ultrasound and cardiovascular outcome: results of the ATHEROREMO-IVUS study. Eur. Heart J. 35, 639–647 (2014).

    Article  PubMed  Google Scholar 

  69. Bezerra, H. G., Costa, M. A., Guagliumi, G., Rollins, A. M. & Simon, D. I. Intracoronary optical coherence tomography: a comprehensive review clinical and research applications. JACC Cardiovasc. Interv. 2, 1035–1046 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  70. Suter, M. J. et al. Intravascular optical imaging technology for investigating the coronary artery. JACC Cardiovasc. Imaging 4, 1022–1039 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  71. Tearney, G. J. et al. Consensus standards for acquisition, measurement, and reporting of intravascular optical coherence tomography studies: a report from the International Working Group for Intravascular Optical Coherence Tomography Standardization and Validation. J. Am. Coll. Cardiol. 59, 1058–1072 (2012).

    Article  PubMed  Google Scholar 

  72. Kubo, T. et al. Assessment of culprit lesion morphology in acute myocardial infarction: ability of optical coherence tomography compared with intravascular ultrasound and coronary angioscopy. J. Am. Coll. Cardiol. 50, 933–939 (2007).

    Article  PubMed  Google Scholar 

  73. Prati, F. et al. OCT-based diagnosis and management of STEMI associated with intact fibrous cap. JACC Cardiovasc. Imaging 6, 283–287 (2013).

    Article  PubMed  Google Scholar 

  74. Kim, B.-K. et al. Optical coherence tomography-based evaluation of malapposed strut coverage after drug-eluting stent implantation. Int. J. Cardiovasc. Imaging 28, 1887–1894 (2012).

    Article  PubMed  Google Scholar 

  75. Hattori, K. et al. Impact of statin therapy on plaque characteristics as assessed by serial OCT, grayscale and integrated backscatter-IVUS. JACC Cardiovasc. Imaging 5, 169–177 (2012).

    Article  PubMed  Google Scholar 

  76. Vergallo, R. et al. Endothelial shear stress and coronary plaque characteristics in humans: combined frequency-domain optical coherence tomography and computational fluid dynamics study. Circ. Cardiovasc. Imaging 7, 905–911 (2014).

    Article  PubMed  Google Scholar 

  77. Tearney, G. J. et al. Quantification of macrophage content in atherosclerotic plaques by optical coherence tomography. Circulation 107, 113–119 (2003).

    Article  PubMed  Google Scholar 

  78. Caplan, J. D., Waxman, S., Nesto, R. W. & Muller, J. E. Near-infrared spectroscopy for the detection of vulnerable coronary artery plaques. J. Am. Coll. Cardiol. 47, C92–96 (2006).

    Article  PubMed  Google Scholar 

  79. Waxman, S., Ishibashi, F. & Caplan, J. D. Rationale and use of near-infrared spectroscopy for detection of lipid-rich and vulnerable plaques. J. Nucl. Cardiol. 14, 719–728 (2007).

    Article  PubMed  Google Scholar 

  80. Waxman, S. et al. In vivo validation of a catheter-based near-infrared spectroscopy system for detection of lipid core coronary plaques: initial results of the SPECTACL study. JACC Cardiovasc. Imaging 2, 858–868 (2009).

    Article  PubMed  Google Scholar 

  81. Gardner, C. M. et al. Detection of lipid core coronary plaques in autopsy specimens with a novel catheter-based near-infrared spectroscopy system. JACC Cardiovasc. Imaging 1, 638–648 (2008).

    Article  PubMed  Google Scholar 

  82. Puri, R. et al. Near-infrared spectroscopy enhances intravascular ultrasound assessment of vulnerable coronary plaque. Arterioscler. Thromb. Vasc. Biol. 35, 2423–2431 (2015).

    Article  CAS  PubMed  Google Scholar 

  83. Madder, R. D. et al. Detection by near-infrared spectroscopy of large lipid core plaques at culprit sites in patients with acute ST-segment elevation myocardial infarction. JACC Cardiovasc. Interv. 6, 838–846 (2013).

    Article  PubMed  Google Scholar 

  84. US National Library of Science. ClinicalTrials.govhttp://www.clinicaltrials.gov/ct2/show/NCT02033694 (2016).

  85. Leber, A. W. et al. Accuracy of 64-slice computed tomography to classify and quantify plaque volumes in the proximal coronary system: a comparative study using intravascular ultrasound. J. Am. Coll. Cardiol. 47, 672–677 (2006).

    Article  PubMed  Google Scholar 

  86. Øvrehus, K. A. et al. Reproducibility of semi-automatic coronary plaque quantification in coronary CT angiography with sub-mSv radiation dose. J. Cardiovasc. Comput. Tomogr. 10, 115–120 (2016).

    Article  Google Scholar 

  87. Motoyama, S. et al. Multislice computed tomographic characteristics of coronary lesions in acute coronary syndromes. J. Am. Coll. Cardiol. 50, 319–326 (2007).

    Article  PubMed  Google Scholar 

  88. Pundziute, G. et al. Evaluation of plaque characteristics in acute coronary syndromes: non-invasive assessment with multi-slice computed tomography and invasive evaluation with intravascular ultrasound radiofrequency data analysis. Eur. Heart J. 29, 2373–2381 (2008).

    Article  PubMed  Google Scholar 

  89. Hoffmann, U. et al. Noninvasive assessment of plaque morphology and composition in culprit and stable lesions in acute coronary syndrome and stable lesions in stable angina by multidetector computed tomography. J. Am. Coll. Cardiol. 47, 1655–1662 (2006).

    Article  PubMed  Google Scholar 

  90. Motoyama, S. et al. Plaque characterization by coronary computed tomography angiography and the likelihood of acute coronary events in mid-term follow-up. J. Am. Coll. Cardiol. 66, 337–346 (2015).

    Article  PubMed  Google Scholar 

  91. Nakazato, R. et al. Quantification and characterisation of coronary artery plaque volume and adverse plaque features by coronary computed tomographic angiography: a direct comparison to intravascular ultrasound. Eur. Radiol. 23, 2109–2117 (2013).

    Article  PubMed  Google Scholar 

  92. Dey, D. et al. Automated three-dimensional quantification of noncalcified coronary plaque from coronary CT angiography: comparison with intravascular US. Radiology 257, 516–522 (2010).

    Article  PubMed  Google Scholar 

  93. Boogers, M. J. et al. Automated quantification of coronary plaque with computed tomography: comparison with intravascular ultrasound using a dedicated registration algorithm for fusion-based quantification. Eur. Heart J. 33, 1007–1016 (2012).

    Article  PubMed  Google Scholar 

  94. Fayad, Z. A. et al. Noninvasive in vivo human coronary artery lumen and wall imaging using black-blood magnetic resonance imaging. Circulation 102, 506–510 (2000).

    Article  CAS  PubMed  Google Scholar 

  95. Ehara, S. et al. Hyperintense plaque identified by magnetic resonance imaging relates to intracoronary thrombus as detected by optical coherence tomography in patients with angina pectoris. Eur. Heart J. Cardiovasc. Imaging 13, 394–399 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  96. Jansen, C. H. P. et al. Detection of intracoronary thrombus by magnetic resonance imaging in patients with acute myocardial infarction. Circulation 124, 416–424 (2011).

    Article  CAS  PubMed  Google Scholar 

  97. Noguchi, T. et al. High-intensity signals in coronary plaques on noncontrast T1-weighted magnetic resonance imaging as a novel determinant of coronary events. J. Am. Coll. Cardiol. 63, 989–999 (2014).

    Article  PubMed  Google Scholar 

  98. Davies, M. J., Bland, J. M., Hangartner, J. R., Angelini, A. & Thomas, A. C. Factors influencing the presence or absence of acute coronary artery thrombi in sudden ischaemic death. Eur. Heart J. 10, 203–208 (1989).

    Article  CAS  PubMed  Google Scholar 

  99. Mann, J. & Davies, M. J. Mechanisms of progression in native coronary artery disease: role of healed plaque disruption. Heart 82, 265–268 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Arbab-Zadeh, A. & Fuster, V. The myth of the 'vulnerable plaque': transitioning from a focus on individual lesions to atherosclerotic disease burden for coronary artery disease risk assessment. J. Am. Coll. Cardiol. 65, 846–855 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  101. Vergallo, R. et al. Pancoronary plaque vulnerability in patients with acute coronary syndrome and ruptured culprit plaque: a 3-vessel optical coherence tomography study. Am. Heart J. 167, 59–67 (2014).

    Article  PubMed  Google Scholar 

  102. Kubo, T. et al. The dynamic nature of coronary artery lesion morphology assessed by serial virtual histology intravascular ultrasound tissue characterization. J. Am. Coll. Cardiol. 55, 1590–1597 (2010).

    Article  CAS  PubMed  Google Scholar 

  103. Jaffer, F. A., Libby, P. & Weissleder, R. Optical and multimodality molecular imaging: insights into atherosclerosis. Arterioscler. Thromb. Vasc. Biol. 29, 1017–1024 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Vinegoni, C. et al. Indocyanine green enables near-infrared fluorescence imaging of lipid-rich, inflamed atherosclerotic plaques. Sci. Transl. Med. 3, 84ra45 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  105. Thukkani, A. K. & Jaffer, F. A. Intravascular near-infrared fluorescence molecular imaging of atherosclerosis. Am. J. Nucl. Med. Mol. Imaging 3, 217–231 (2013).

    PubMed  PubMed Central  Google Scholar 

  106. Jaffer, F. A. et al. Real-time catheter molecular sensing of inflammation in proteolytically active atherosclerosis. Circulation 118, 1802–1809 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  107. Jaffer, F. A. et al. Two-dimensional intravascular near-infrared fluorescence molecular imaging of inflammation in atherosclerosis and stent-induced vascular injury. J. Am. Coll. Cardiol. 57, 2516–2526 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  108. Hara, T. et al. Intravascular fibrin molecular imaging improves the detection of unhealed stents assessed by optical coherence tomography in vivo. Eur. Heart J. http://dx.doi.org/10.1093/eurheartj/ehv677 (2015).

  109. Jenkins, W. S. A. et al. Valvular 18F-fluoride and 18F-fluorodeoxyglucose uptake predict disease progression and clinical outcome in patients with aortic stenosis. J. Am. Coll. Cardiol. 66, 1200–1201 (2015).

    Article  PubMed  Google Scholar 

  110. Dweck, M. R. et al. Aortic stenosis, atherosclerosis, and skeletal bone: is there a common link with calcification and inflammation? Eur. Heart J. 34, 1567–1574 (2013).

    Article  CAS  PubMed  Google Scholar 

  111. Adamson, P. D., Newby, D. E. & Dweck, M. R. Translational coronary atherosclerosis imaging with PET. Cardiol. Clin. 34, 179–186 (2016).

    Article  PubMed  Google Scholar 

  112. Adamson, P. D., Dweck, M. R. & Newby, D. E. The vulnerable atherosclerotic plaque: in vivo identification and potential therapeutic avenues. Heart 101, 1755–1766 (2015).

    Article  CAS  PubMed  Google Scholar 

  113. Rudd, J. H. F. et al. Imaging atherosclerotic plaque inflammation by fluorodeoxyglucose with positron emission tomography: ready for prime time? J. Am. Coll. Cardiol. 55, 2527–2535 (2010).

    Article  PubMed  Google Scholar 

  114. Folco, E. J. et al. Hypoxia but not inflammation augments glucose uptake in human macrophages. J. Am. Coll. Cardiol. 58, 603–614 (2011).

    Article  CAS  PubMed  Google Scholar 

  115. Joshi, N. V. et al. Systemic atherosclerotic inflammation following acute myocardial infarction: myocardial infarction begets myocardial infarction. J. Am. Heart Assoc. 4, e001956 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  116. Tahara, N. et al. Simvastatin attenuates plaque inflammation: evaluation by fluorodeoxyglucose positron emission tomography. J. Am. Coll. Cardiol. 48, 1825–1831 (2006).

    Article  CAS  PubMed  Google Scholar 

  117. Fayad, Z. A. et al. Safety and efficacy of dalcetrapib on atherosclerotic disease using novel non-invasive multimodality imaging (dal-PLAQUE): a randomised clinical trial. Lancet 378, 1547–1559 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Tawakol, A. et al. Effect of treatment for 12 weeks with rilapladib, a lipoprotein-associated phospholipase A2 inhibitor, on arterial inflammation as assessed with 18F-fluorodeoxyglucose-positron emission tomography imaging. J. Am. Coll. Cardiol. 63, 86–88 (2014).

    Article  CAS  PubMed  Google Scholar 

  119. Figueroa, A. L. et al. Measurement of arterial activity on routine FDG PET/CT images improves prediction of risk of future CV events. JACC Cardiovasc. Imaging 6, 1250–1259 (2013).

    Article  PubMed  Google Scholar 

  120. Moon, S.-H. et al. Carotid FDG uptake improves prediction of future cardiovascular events in asymptomatic individuals. JACC Cardiovasc. Imaging 8, 949–956 (2015).

    Article  PubMed  Google Scholar 

  121. US National Library of Science. ClinicalTrials.govhttp://www.clinicaltrials.gov/ct2/show/NCT00738725 (2015).

  122. Rogers, I. S. et al. Feasibility of FDG imaging of the coronary arteries: comparison between acute coronary syndrome and stable angina. JACC Cardiovasc. Imaging 3, 388–397 (2010).

    Article  PubMed  Google Scholar 

  123. Cheng, V. Y. et al. Coronary arterial 18F-FDG uptake by fusion of PET and coronary CT angiography at sites of percutaneous stenting for acute myocardial infarction and stable coronary artery disease. J. Nucl. Med. 53, 575–583 (2012).

    Article  CAS  PubMed  Google Scholar 

  124. Joshi, N. V. et al. 18F-fluoride positron emission tomography for identification of ruptured and high-risk coronary atherosclerotic plaques: a prospective clinical trial. Lancet 383, 705–713 (2014).

    Article  PubMed  Google Scholar 

  125. Irkle, A. et al. Identifying active vascular microcalcification by 18F-sodium fluoride positron emission tomography. Nat. Commun. 6, 1–11 (2015).

    Article  Google Scholar 

  126. Dweck, M. R. et al. 18F-sodium fluoride uptake is a marker of active calcification and disease progression in patients with aortic stenosis. Circ. Cardiovasc. Imaging 7, 371–378 (2014).

    Article  PubMed  Google Scholar 

  127. Dweck, M. R. et al. Coronary arterial 18F-sodium fluoride uptake. J. Am. Coll. Cardiol. 59, 1539–1548 (2012).

    Article  CAS  PubMed  Google Scholar 

  128. Dweck, M. R., Joshi, F. R., Newby, D. E. & Rudd, J. H. F. Noninvasive imaging in cardiovascular therapy: the promise of coronary arterial 18F-sodium fluoride uptake as a marker of plaque biology. Expert Rev. Cardiovasc. Ther. 10, 1075–1077 (2012).

    Article  CAS  PubMed  Google Scholar 

  129. Joshi, N. V., Vesey, A., Newby, D. E. & Dweck, M. R. Will 18F-sodium fluoride PET-CT imaging be the magic bullet for identifying vulnerable coronary atherosclerotic plaques? Curr. Cardiol. Rep. 16, 521–527 (2014).

    Article  PubMed  Google Scholar 

  130. US National Library of Science. ClinicalTrials.govhttp://www.clinicaltrials.gov/ct2/show/NCT02278211 (2015).

  131. Rubeaux, M. et al. Motion correction of 18F-sodium fluoride PET for imaging coronary atherosclerotic plaques. J. Nucl. Med. 57, 54–59 (2016).

    Article  CAS  PubMed  Google Scholar 

  132. Rominger, A. et al. In vivo imaging of macrophage activity in the coronary arteries using 68Ga-DOTATATE PET/CT: correlation with coronary calcium burden and risk factors. J. Nucl. Med. 51, 193–197 (2010).

    Article  PubMed  Google Scholar 

  133. Tahara, N. et al. 2-deoxy-2-[18F]fluoro-d-mannose positron emission tomography imaging in atherosclerosis. Nat. Med. 20, 215–219 (2014).

    Article  CAS  PubMed  Google Scholar 

  134. Vesey, A. T., Dweck, M. R. & Fayad, Z. A. Utility of combining PET and MR imaging of carotid plaque. Neuroimaging Clin. N. Am. 26, 55–68 (2016).

    Article  PubMed  Google Scholar 

  135. Achenbach, S. et al. Coronary computed tomography angiography with a consistent dose below 1 mSv using prospectively electrocardiogram-triggered high-pitch spiral acquisition. Eur. Heart J. 31, 340–346 (2010).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Michelle Williams (Centre for Cardiovascular Science, University of Edinburgh, UK) and Charles Taylor (HeartFlow Inc., Redwood, California, USA) for providing images used as part of Fig. 1. M.R.D. and D.E.N. are supported by the British Heart Foundation (SS/CH/ 09/002/26360, FS/13/77/30488, SS/CH/09/002/2636, FS/14/78/31020, CH/09/002). M.R.D. is the recipient of the Sir Jules Thorn Award for Biomedical Research 2015. M.M. is supported by the Dowager Countess Eleanor Peel Trust (Rothwell-Jackson Travelling Fellowship, UK) and the Dickinson Trust Scholarship (UK). P.S. is supported by NIH/NHLBI R01 HL089765. D.D. is supported by research grants from the American Heart Association. D.D. and D.S.B. are supported by research grants from the American Heart Association and Adelson Family Foundation. Z.A.F. is supported by NIH/NHLBI R01 HL071021, NIH/NHLBI R01 HL128056, and NIH/NBIB R01 EB009638. D.E.N. is the recipient of a Wellcome Trust Senior Investigator Award (WT103782AIA).

Author information

Authors and Affiliations

Authors

Contributions

M.R.D. and D.B. discussed the content of the article, and M.R.D. and M.K.D. wrote the manuscript. All the authors reviewed/edited the article before submission.

Corresponding author

Correspondence to Marc R. Dweck.

Ethics declarations

Competing interests

Cedars-Sinai Medical Center (M.M., P.S., D.D., D.B.) licenses nuclear cardiology software to several instrumentation vendors. P.S. has received grant support from Siemens. D.E.N. is the chief investigator of the PREFFIR study (NCT02278211). The other authors declare no competing interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dweck, M., Doris, M., Motwani, M. et al. Imaging of coronary atherosclerosis — evolution towards new treatment strategies. Nat Rev Cardiol 13, 533–548 (2016). https://doi.org/10.1038/nrcardio.2016.79

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrcardio.2016.79

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing